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Minkowski 3-space

Definition

A Minkowski 3-space is a real affine space whose underlying vector
space R3 is endowed with a pseudo-scalar product, that is, with a
non-degenerate indefinite symmetric bilinear form.

If x = (x1, x2, x3), y = (y1, y2, y3), we define this form by

< x , y >1:= −x1y1 + x2y2 + x3x3 (1)

and denote the vector space by R3
1.

Željka Milin Šipuš, Ivana Protrka Harmonic evolutes of timelike ruled surfaces in Minkowski space



Introduction
Ruled surfaces in R3

1
Helicoidal surfaces in R3

1

Minkowski 3-space
Harmonic evolute in R3

1

Harmonic evolute in R3
1

Definition

The harmonic evolute of a surface S is the locus of points p̄ which are
harmonic conjugates of a point p ∈ S with respect to centers of
curvature p1, p2 of S

(p1,p2; p, p̄) =
p1p · p2p̄
p2p · p1p̄

= −1. (2)

The harmonic evolute of a surface S can be parametrized by

f̄(u, v) = f(u, v) +
ε

H(u, v)
n(u, v), ε ∈ {1,−1}. (3)
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Ruled surface in R3
1

Definition

A ruled surface in 3-dimensional Minkowski space R3
1 is a surface

parametrized by
f(u, v ) = c(u) + ve(u), (4)

where c(u) is a base curve and e(u) a non-vanishing vector field
along c which generates the rulings.

1 skew ruled surfaces (K 6= 0)

2 developable surfaces (K = 0)
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Developable surfaces

one principal curvature is 0, therefore the corresponding center
of curvature is a point at infinity

the point of a harmonic evolute is a symmetric point to p ∈ S
with respect to the remaining center of curvature p1 (p1 is the
mid-point)

developable surface are divided into cylindrical surfaces, conical
surfaces and tangent surfaces
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Cylindrical surfaces

Definition

A ruled surface is called a cylindrical surface if it can be
parameterized by

f(u, v) = c(u) + ve, e ∈ R3
1, e2 = ε = {1,−1}, c′ · e = 0, (5)

where c(u) is base curve.

The mean curvature of cylindrical surfaces are
given by

H(u) =
εk1

2
(6)

where k1 is the principal curvature.
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Cylindrical surfaces

The harmonic evolute of cylindrical surface S is given by

f̄(u, v) = (c(u) +
2

k1(u)
N(u)) + ve (7)

where N(u) is the principal normal of the curve c(u).

Proposition

The harmonic evolute of cylindrical surface in Minkowski space
is again a cylindrical surface with parallel rulings.

Željka Milin Šipuš, Ivana Protrka Harmonic evolutes of timelike ruled surfaces in Minkowski space



Introduction
Ruled surfaces in R3

1
Helicoidal surfaces in R3

1

Cylindrical surfaces
Conical surfaces
Tangent surfaces
Example

Cylindrical surfaces

The harmonic evolute of cylindrical surface S is given by

f̄(u, v) = (c(u) +
2

k1(u)
N(u)) + ve (7)

where N(u) is the principal normal of the curve c(u).

Proposition

The harmonic evolute of cylindrical surface in Minkowski space
is again a cylindrical surface with parallel rulings.

Željka Milin Šipuš, Ivana Protrka Harmonic evolutes of timelike ruled surfaces in Minkowski space



Introduction
Ruled surfaces in R3

1
Helicoidal surfaces in R3

1

Cylindrical surfaces
Conical surfaces
Tangent surfaces
Example

Conical surfaces

Definition

A ruled surface is called a conical surface if it can be parameterized
by

f(u, v) = p + ve(u), e · e′ = 0, (8)

where p ∈ R3
1 is fixed (it can be interpreted as the vertex of the cone).

The mean curvature of conical surfaces are
given by

H(u) =
−εdet(e,e′,e′′)

2|v |‖e′‖3 . (9)
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Conical surfaces

The harmonic evolute of a conical surface S is given by

f̄(u, v) = p + v(e(u) +
2‖e′‖2

det(e,e′,e′′)
· e(u)×1 e′(u)), (10)

where e(u)×1e′(u) is the cross product in Minkowski
space.

Proposition

The harmonic evolute of conical surface in Minkowski space is
again a conical surface with the same vertex.
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Tangent surfaces

Definition

A ruled surface is called a tangent surface if it can be parameterized
by

f(u, v) = c(u) + vc′(u), ‖c′(u)‖ = ε = {1,−1} c′(u) · c′′(u) = 0,
(11)

where p ∈ R3
1 is fixed (it can be interpreted as the vertex of the cone).

the mean curvature of tangent surfaces are given by

H(u) = −(sing v)
ε τ(u)

2vκ(u)
B(u) ε = {1,−1} (12)
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Tangent surfaces

The harmonic evolute of tangent surface S is given by

f̄(u, v) = c(u) + v(c′(u) +
κ(u)

τ(u)
B(u)), (13)

where κ(u) is the flexion, τ(u) is the torsion of c(u) and B(u) is
the binormal of the curve c.
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Tangent surfaces

The harmonic evolute of S is again a ruled surface with rulings

ē(u) = c′(u) +
εκ(u)

τ(u)
B(u). (14)

Because the parameter of distribution of S̄ does not vanish
since

det(c′, ē, ē′) = −ε2κ(u)2

τ(u)
6= 0, ε = {1,−1}, (15)

the harmonic evolute is skew ruled surface.
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Theorem

The harmonic evolute of a developable surface in Minkowski
3-space is a ruled surface.
In particular, harmonic evolutes of cylindrical and conical
surfaces are developable surfaces, cylindrical and conical
respectively, whereas harmonic evolutes of tangent surfaces
are skew ruled surfaces.
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Example

Minimal surfaces
Harmonic evolute of a minimal surface degenerates to a point
at infinity.
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Example

The harmonic evolute of a regular surface in Euclidean space is
always a surface or a point (for spheres = totally umbilical
surface).

But in Minkowski space it can also be a curve (for
quasi-umbilical surfaces).

Example
A harmonic evolute of a ruled helicoidal surface
given by this parametrization

f(u, v) = (h u + v , v cosu, v sinu) h > 0 (16)

degenerates to a curve (helix).
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The first case

suppose that the axis of revolution is a z-axis chv shv 0
shv chv 0

0 0 1

 (17)

without loss of generality, we may assume that the curve c
is parametrized by the arc-length and is lying in the
yz-plane or in the xz-plane

the curve c is parametrized either by

c(u) = (0, f (u),g(u)) or c(u) = (f (u),0,g(u)) (18)

where f (u) is a positive function of class C1 and g(u) is a
function of class C2 on I = 〈a,b〉
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The helicoidal surfaces can be parametrized by

Type I

f(u, v) = (f (u) shv , f (u) chv ,g(u) + c v), f (u) > 0, c ∈ R+

or

Type II

f(u, v) = (f (u) chv , f (u) shv ,g(u) + c v), f (u) > 0, c ∈ R+
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The harmonic evolute of a helicoidal surface type I is given
by

f̄(u, v) =

 chv shv 0
shv chv 0

0 0 1




− ε cf ′(u)
H(u)W (u)

f (u)(1 + ε g′(u)
H(u)W (u) )

g(u)− ε f (u)f ′(u)
H(u)W (u)

+

 0
0

c v


(19)

where W (u)2=−c2f ′(u)2+f (u)2, ε = {1, −1} and H(u) is the
mean curvature.
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The harmonic evolute of a helicoidal surface type II is given
by

f̄(u, v) =

 chv shv 0
shv chv 0

0 0 1




f (u)(1 + ε g′(u)
H(u)W (u) )

− ε cf ′(u)
H(u)W (u)

g(u) + ε·f (u)f ′(u)
H(u)W (u)

+

 0
0

c v


(20)

where W (u)2=c2f ′(u)2−ε f (u)2, ε = {1, −1} and H(u) is the
mean curvature.
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The secand case

suppose that the axis of revolution is the x-axis 1 0 0
0 cosv −sinv
0 sinv cosv

 (21)

without loss of generality we may assume that the curve c
is parametrized by the arc-length and is lying in the
xy -plane

The curve c is parametrized either by

c(u) = (g(u), f (u),0), (22)

where f (u) is a positive function of class C1 and g(u) is a
function of class C2 on I = 〈a,b〉.
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The secand case

Type III

f(u, v) = (g(u) + c v , f (u) cosv , f (u) sinv , ), f (u) > 0 c ∈ R+

The harmonic evolute of a helicoidal surface type III is given by

f̄(u, v) =

 1 0 0
0 cosv −sinv
0 sinv cosv




g(u)− ε f (u)f ′(u)
H(u)W (u)

f (u)(1− ε g′(u)
H(u)W (u) )

− ε cf ′(u)
H(u)W (u)

+

 c v
0
0


(23)

where W (u)2 = −εf (u)2 + c2f ′(u)2, ε = {1,−1} and H(u) is
the mean curvature.
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The third case

Suppose that the axis of revolution is the line spanned by
(1, 1, 0)  1 + v2

2 − v2

2 v
v2

2 1− v2

2 v
v −v 1

 (24)

Since the surface S is non-degenerate, we can assume
without loss of generality that the curve c is parametrized
by the arc-length and is lying in the xy -plane.

The curve c is parametrized either by

c(u) = (f (u),g(u),0),u ∈ I (25)

where f (u) and g(u) are functions on I, such that f (u) 6=
g(u), for each u ∈ I.
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The third case

Type IV

f(u, v) = ((1 +
v2

2
)f (u)−

v2

2
g(u) + v c,

v2

2
f (u) + (1−

v2

2
)g(u) + v c, (f (u)−g(u))v)

(26)

The harmonic evolute a helicoidal surface of type IV is given by

f̄(u, v) =

 1 + v2

2 − v2

2 v
v2

2 1− v2

2 v
v −v 1




f (u) + ε(−g′(u)f (u)+g′(u)g(u))
H(u)W (u)

g(u) + ε(−f ′(u)f (u)+f ′(u)g(u)
H(u)W (u)
−c ε

H(u)W (u)

 +

 c v
c v
0


(27)

where W (u)2 = (f (u) + g(u))2 − ε2(v(f (u)− g(u)) + c)2, and
H(u) is the mean curvature.
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Theorem

The harmonic evolute of a helicoidal surface is a coaxial
helicoidal surface.

Special case of helicoidal surfaces are rotation surfaces when
is c = 0.

Proposition

The harmonic evolute of a rotation surface is a coaxial rotation
surface.
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Example

A time-like helicoidal surface
Red is the a time-like helicoidal surface and green is its harmonic
evolute.

f(u, v) = (u,uv ,−uv2

2
+ v), u > 0, v ∈ R (28)

f̄(u, v) = (u +
uv2 − 2v

2H
,uv +

uv − 1
H

, v − uv2

2
+

u
H

), (29)

Figure 6. Time-like helicoidal surface of its harmonic evolute
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Example

Spheres
The harmonic evolutes of spheres degenerate to a point.
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Example

Torus
Red is the torus and green is its harmonic evolute.

In Euclidean space, we have the following result.

Theorem

The harmonic evolute of
a ring-torus is a rotation
quadratic surface if and
only R =

√
2r (R > 0

radius of the central
circle and r radius of a
meridian circle).
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