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Abstract. In this paper a certain class of Weingarten surfaces
in Sol geometry is considered. The theorem that the only non-
planar ruled Weingarten surface composed from vertical geodesics
are surfaces r(u, v) = (aeku, be−ku, v) is proved.

1. Introduction

A Weingarten surface or a W surface is a surface satisfying the
Jacobi equation

Φ(K,H) = det

(

Ku Kv

Hu Hv

)

= 0,

where K is Gaussian curvature and H is mean curvature of the surface.
If a surface satisfies a linear equation with respect to K and H

aK + bH = c,

a, b, c ∈ R, not all zero, then the surface is called linear Weingarten

surface or LW-surface.
It is clear that surface with constant Gauss curvature or constant

mean curvature is a Weingarten surface. Therefore, Weingarten sur-
faces can be regarded as generalization of surfaces of constant Gauss
and constant mean curvature.
The study of Weingarten surfaces was initiated by J. Weingarten in

1861. E. Beltrami and U. Dini few years later proved that the only
non-developable Weingarten ruled surface in Euclidean 3-space is a he-
licoidal ruled surface. In the last decade several papers on Weingarten
surfaces in different 3-dimensional spaces have appeared. Some results
on W-surfaces can be found in [2], [3] and [8].
Motivated by the fact that there are no results about Weingarten sur-

faces in Sol geometry, we examine a class of ruled Weingarten surface
in Sol geometry.
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The Sol geometry is one of the eight homogeneous Thurston
3-geometries

E3, S3, H3, S2 × R, H2 × R, ˜SL(2,R), Nil, Sol.

More about curves and surfaces in Sol geometry can be found in [1],
[5], [6] and [7].
In this paper we examine ruled Weingarten surfaces in Sol space gen-

erated by vertical geodesics (Proposition 3.1) and prove that the only
non-planar surfaces of this type are surfaces r(u, v) = (aeku, be−ku, v)
(Theorem 3.3).

2. The Sol geometry

The Sol geometry is a geometry of 3-dimensional Sol space, the
space R3 equipped with the metric

ds2 = e2zdx2 + e−2zdy2 + dz2. (2.1)

As we mentioned the Sol geometry is one of the 3-dimensional homoge-
neous geometries. Generally, the Riemannian manifold (M, g) is called
homogeneous if for any x, y ∈ M there exists an isometry Φ : M → M

such that y = Φ(x). For more about other 3-dim homogeneous geome-
tries see [9].
The Sol space is also a Lie group with the multiplication

(x, y, z) ∗ (a, b, c) = (x+ e−za, y + ezb, z + c).

Given metric is left-invariant with respect to this operation,. It is worth
to mention that in contrast to other homogeneous geometries in Sol

geometry there are no rotations and the corresponding isometry group
is 3 dimensional, the lowest dimension among homogeneous geometries.
A left orthonormal frame {e1, e2, e3} in Sol is given by

e1 = e−z ∂

∂x
, e2 = ez

∂

∂y
, e3 =

∂

∂z
. (2.2)

The Levi-Civita connection ∇ (in terms of the orthonormal frame),
is given by

∇e1
e1 = −e3 ∇e1

e2 = 0 ∇e1
e3 = e1

∇e2
e1 = 0 ∇e2

e2 = e3 ∇e2
e3 = −e2 (2.3)

∇e3
e1 = 0 ∇e3

e2 = 0 ∇e3
e3 = 0.
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3. The Weingarten ruled surface in Sol geometry

In this section we consider ruled surface r(u, v) = (x(u), y(u), v)
generated by vertical geodesics c(t) = (x0, y0, t). Unlike the usual where
the investigation of surfaces in a space begins with a surface that is a
graph of the function z = z(x, y), here we start with other type of
surface taking in account specificity of Sol metric. Even though the
chosen type of cylindrical surface is perhaps the simplest to consider
in Sol, calculations are not trivial and require the use of a computer
algebra system.
First, we determine the Gauss curvature and mean curvature of the

given surface.

Proposition 3.1. The Gauss curvature K and the mean curvature H

of the ruled surface r(u, v) = (x(u), y(u), v) are given by

K =
−4x2

uy
2
u

W 4
, (3.1)

H =
xuuyu − xuyuu

2W 3
, (3.2)

where xu = ∂x
∂u
, yu = ∂y

∂u
, xuu = ∂2x

∂u2 , yuu = ∂2y

∂u2 and W =
√

x2
ue

2v + y2ue
−2v.

Proof. The tangent vectors to the surface r(u, v) =
(

x(u), y(u), v
)

in
the base of ambient space Sol are

ru = (xu, yu, 0) = xue
ve1 + yue

−ve2, rv = (0, 0, 1) = e3.

The coefficients of the first fundamental form are

E = x2
ue

2v + y2ue
−2v, F = 0, G = 1. (3.3)

The normal vector is given by n = 1
W
(yue

−ve1 − xue
ve2) and covariant

derivations of tangent vectors are

∇ruru = xuue
ve1 + yuue

−ve2 +
(

y2ue
−2v − x2

ue
2v
)

e3

∇rurv = ∇rurv = xue
ve1 − yue

−ve2

∇rvrv = 0

The coefficients of the second fundamental form are

L =
1

W
(xuuyu − xuyuu), M =

2xuyu

W
, N = 0. (3.4)

Therefore, knowing

K =
LN −M2

EG− F 2
and H =

EN − 2FM +GL

2W 2
,

we obtain the equations (3.1) and (3.2). �
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Remark 3.2. In [7] the author investigated minimal ruled surfaces in
Sol geometry and obtained the same expressions for the first and the
second fundamental form. In the same paper he also proved the fol-
lowing statement: ”The ruled minimal surfaces composed from ver-
tical geodesics are the surfaces of the form r(s, t) = (as + b, s, t) or
r(s, t) = (s, as+ b, t).”

Next, we give a characterization of Weingarten surfaces of type
r(u, v) =

(

x(u), y(u), v
)

in Sol geometry.

Theorem 3.3. A ruled surface r(u, v) =
(

x(u), y(u), v
)

in Sol space

is a Weingarten surface if it is either

(1) a plane parallel to the z axis

(2) a cylindrical surface r(u, v) = (aeku, beku, v), a, b, k ∈ R.

Proof. Using Proposition 3.1 we have:

Ku =
8xuyu

W 6
(xuuyu − xuyuu)(x

2
ue

2v − y2ue
−2v),

Kv =
16x2

uy
2
u

W 6
(x2

ue
2v − y2ue

−2v),

Hu =
1

2W 5

[

W 2(xuuuyu − xuyuuu)− 3(xuuyu − xuyuu)(xuxuue
2v + yuyuue

−2v)
]

,

Hv =
−3

2W 5
(xuuyu − xuyuu)(x

2
ue

2v − y2ue
−2v).

¿From the condition KuHv −KvHu = 0, it follows

8xuyu(x
4

ue
4v − y4ue

−4v)
[

3(x2

uy
2

uu − x2

uuy
2

u) + 2xuyu(xuuuyu − xuyuuu)
]

= 0. (3.5)

Further, from the equation (3.5) we have two cases:

Case 1. Suppose xuyu = 0. Hence x(u) = c1 or y(u) = c2, c1, c2 ∈ R.

Corresponding surfaces are planes parallel to the xz-plane and yz-
plane with equations

r(u, v) =
(

c1, y(u), v
)

and r(u, v) =
(

x(u), c2, v
)

, respectively.

These planes represent minimal totally geodesics surfaces in Sol space
(K = 0 and H = 0).

Case 2. Suppose xuyu 6= 0.
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Since xuyu 6= 0 it follows (x4
ue

4v − y4ue
−4v) 6= 0 (∀v 6= 0) and hence

must be

3(x2
uy

2
uu − x2

uuy
2
u) + 2xuyu(xuuuyu − xuyuuu) = 0 (3.6)

or equivalently

3(xuyuu − xuuyu)(xuyuu + xuuyu) + 2xuyu(xuuyu − xuyuu)
′ = 0 (3.7)

This equation is obviously satisfied for xuyuu − xuuyu = 0.

¿From xuyuu − xuuyu = 0 we have yuu
yu

= xuu

xu

which after integra-

tion give ln yu = ln(axu). After some manipulations and the second
integration we obtain

y(u) = ax(u) + b, a, b ∈ R. (3.8)

The obtained surface is a plain parallel to the z axis

r(u, v) =
(

x(u), ax(u) + b, v
)

,

and represents a ruled minimal surface for which hold H = 0 and
K = −4a2e4v

(a2+e4v)2
6= const.

Further, we could say that the equation (3.6) is satisfied for

(x2
uy

2
uu − x2

uuy
2
u) = 0 and (xuuuyu − xuyuuu) = 0,

or equivalently

(xuyuu − xuuyu)(xuyuu + xuuyu) = 0 (3.9)

and
∂

∂u
(xuyuu − xuuyu) = 0. (3.10)

Remark 3.4. We point out that we don’t have a classification of given
type of surfaces because we didn’t prove equivalence of the equation
(3.6) with equations (3.9) and (3.10).

¿From the equation (3.9) we again have two cases:

Case 2a.

We have already examined the case when the equation
xuyuu − xuuyu = 0 implies the condition (3.10). Remember that we
have obtained planes parallel to the z axis.
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Case 2b.

¿From xuyuu+xuuyu = 0 we have yuu
yu

= −xuu

xu

which after integration
give

xuyu = const. (3.11)

On the other hand, if we insert xuyuu = −xuuyu in
∂
∂u
(xuyuu − xuuyu) = 0, we have

xuuyu = const (3.12)

Combining the equations (3.11) and (3.12), it follows xuu = kxu, k ∈ R.

Solving this differential equation we obtain x(u) = aeku.

Hence y(u) = be−ku and finally

r(u, v) =
(

aeku, be−ku, v
)

, a, b, k ∈ R. (3.13)

�

Figure 1 shows ruled Weingarten surface (3.13) for a = b = k = 1.

Figure 1. r(u, v) =
(

eu, e−u, v
)

Corollary 3.5. Planes parallel to the xz-plane or yz-plane are only

linear Weingarten surfaces of type r(u, v) =
(

x(u), y(u), v
)

in Sol

space.
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