Polinomi u SAGE-u

verzija: SageMath 9.4

In [1]:
load('MMZI.sage')
Dodatne funkcije za predmet 'Matematicke metode za informaticare'.
MMZI_naredbe je rjecnik u kojemu je po poglavljima dan popis svih dodatnih naredbi koje trenutno postoje.
In [2]:
%display latex

1. zadatak

Odredite polinom trećeg stupnja koji prolazi točkama $(1,3),\, (2,16),\, (-1,1)$ i $(3,45)$.

Rješenje

In [3]:
R.<x>=QQ[]
f=R.lagrange_polynomial([(1,3),(2,16),(-1,1),(3,45)])
f
Out[3]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}x^{3} + 2 x^{2}\]

grafički prikaz dobivenog polinoma i zadanih točaka

In [4]:
plot(f,-2,3.5)+point(((1,3),(2,16),(-1,1),(3,45)),rgbcolor=(1,0,0),pointsize=30,markeredgecolor='black',faceted=True)
Out[4]:
In [5]:
plot(f,-2,3.5)+point(((1,3),(2,16),(-1,1),(3,45)),rgbcolor=(0,0,1),pointsize=30)
Out[5]:

ili možemo koristiti moćan python modul matplotlib

In [6]:
import pylab
import numpy
In [7]:
x=numpy.arange(-2.0,3.5,0.01)
y=list(map(f,x))
In [8]:
tocke_x = [1,2,-1,3]
tocke_y = [3,16,1,45]
In [9]:
%display plain
pylab.figure(figsize=(8,6))
pylab.axis([-2,4, -10, 70])
pylab.grid(True)
pylab.plot(x,y,'b-',tocke_x,tocke_y,'ro',markersize=8,linewidth=2);
#pylab.savefig('lagrange.png')

2. zadatak

Uočite na grafu funkcije $y=3^x$ točke $\big(\!-\!1,\frac{1}{3}\big),\, (0,1)$ i $(1,3)$. Nađite polinom najmanjeg stupnja koji prolazi tim točkama i pomoću njega približno odredite $\sqrt[4]{3}$.

Rješenje

In [10]:
%display latex
R.<x>=QQ[]
g=R.lagrange_polynomial([(-1,1/3),(0,1),(1,3)])
g
Out[10]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\frac{2}{3} x^{2} + \frac{4}{3} x + 1\]

grafički prikaz zadane funkcije (crvena boja) i pronađenog polinoma (plava boja) sa istaknutim zadanim točkama

In [11]:
show(plot(lambda x: 3**x,(-1,1),rgbcolor=(1,0,0))+plot(g,-1,1)+
     point(((-1,1/3),(0,1),(1,3)),rgbcolor=(0,1,0),faceted=True,pointsize=30,markeredgecolor='black'),
     frame=True,gridlines=True,axes=False,ymin=-0.5,ymax=3.5,
     ticks=[[-1+0.25*i for i in range(0,9)],[-0.5+0.5*i for i in range(0,9)]])

aproksimacija broja $\sqrt[4]{3}$ pomoću dobivenog polinoma

In [12]:
vrijednost=n(3**(1/4),digits=50); vrijednost
Out[12]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}1.3160740129524924608192189017969990551600685902058\]
In [13]:
aproksimacija=n(g(1/4),digits=50); aproksimacija
Out[13]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}1.3750000000000000000000000000000000000000000000000\]

greška aproksimacije

In [14]:
vrijednost-aproksimacija
Out[14]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-0.058925987047507539180781098203000944839931409794178\]

3. zadatak

Odredite kvocijent i ostatak pri dijeljenju polinoma $f(x)=x^5-3x^3-5x$ s polinomom $g(x)=x^2-x+1$.

Rješenje

In [15]:
R.<x>=QQ[]
f=x^5-3*x^3-5*x
g=x^2-x+1

kvocijent

In [16]:
f//g
Out[16]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}x^{3} + x^{2} - 3 x - 4\]

ostatak

In [17]:
f%g
Out[17]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-6 x + 4\]

4. zadatak

Koliki je ostatak pri dijeljenju polinoma $f(x)=x^{1987}-2x+5$ s polinomom $g(x)=x-1$?

Rješenje

Već smo ranije s R.<x>=QQ[ ]  definirali prsten $R$ polinoma u varijabli $x$ nad poljem racionalnih brojeva pa ne trebamo to svaki puta ispočetka ponovo definirati.

In [18]:
f=x^1987-2*x+5
g=x-1

ostatak

In [19]:
f%g
Out[19]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}4\]

Kod ručnog dijeljenja polinoma $f$ i $g$ predugo bi trajalo određivanje kvocijenta tih dvaju polinoma, no u SAGE-u je to gotovo za manje od jedne sekunde 

In [20]:
%display plain
In [21]:
time f//g
CPU times: user 126 µs, sys: 10 µs, total: 136 µs
Wall time: 200 µs
Out[21]:
x^1986 + x^1985 + x^1984 + x^1983 + x^1982 + x^1981 + x^1980 + x^1979 + x^1978 + x^1977 + x^1976 + x^1975 + x^1974 + x^1973 + x^1972 + x^1971 + x^1970 + x^1969 + x^1968 + x^1967 + x^1966 + x^1965 + x^1964 + x^1963 + x^1962 + x^1961 + x^1960 + x^1959 + x^1958 + x^1957 + x^1956 + x^1955 + x^1954 + x^1953 + x^1952 + x^1951 + x^1950 + x^1949 + x^1948 + x^1947 + x^1946 + x^1945 + x^1944 + x^1943 + x^1942 + x^1941 + x^1940 + x^1939 + x^1938 + x^1937 + x^1936 + x^1935 + x^1934 + x^1933 + x^1932 + x^1931 + x^1930 + x^1929 + x^1928 + x^1927 + x^1926 + x^1925 + x^1924 + x^1923 + x^1922 + x^1921 + x^1920 + x^1919 + x^1918 + x^1917 + x^1916 + x^1915 + x^1914 + x^1913 + x^1912 + x^1911 + x^1910 + x^1909 + x^1908 + x^1907 + x^1906 + x^1905 + x^1904 + x^1903 + x^1902 + x^1901 + x^1900 + x^1899 + x^1898 + x^1897 + x^1896 + x^1895 + x^1894 + x^1893 + x^1892 + x^1891 + x^1890 + x^1889 + x^1888 + x^1887 + x^1886 + x^1885 + x^1884 + x^1883 + x^1882 + x^1881 + x^1880 + x^1879 + x^1878 + x^1877 + x^1876 + x^1875 + x^1874 + x^1873 + x^1872 + x^1871 + x^1870 + x^1869 + x^1868 + x^1867 + x^1866 + x^1865 + x^1864 + x^1863 + x^1862 + x^1861 + x^1860 + x^1859 + x^1858 + x^1857 + x^1856 + x^1855 + x^1854 + x^1853 + x^1852 + x^1851 + x^1850 + x^1849 + x^1848 + x^1847 + x^1846 + x^1845 + x^1844 + x^1843 + x^1842 + x^1841 + x^1840 + x^1839 + x^1838 + x^1837 + x^1836 + x^1835 + x^1834 + x^1833 + x^1832 + x^1831 + x^1830 + x^1829 + x^1828 + x^1827 + x^1826 + x^1825 + x^1824 + x^1823 + x^1822 + x^1821 + x^1820 + x^1819 + x^1818 + x^1817 + x^1816 + x^1815 + x^1814 + x^1813 + x^1812 + x^1811 + x^1810 + x^1809 + x^1808 + x^1807 + x^1806 + x^1805 + x^1804 + x^1803 + x^1802 + x^1801 + x^1800 + x^1799 + x^1798 + x^1797 + x^1796 + x^1795 + x^1794 + x^1793 + x^1792 + x^1791 + x^1790 + x^1789 + x^1788 + x^1787 + x^1786 + x^1785 + x^1784 + x^1783 + x^1782 + x^1781 + x^1780 + x^1779 + x^1778 + x^1777 + x^1776 + x^1775 + x^1774 + x^1773 + x^1772 + x^1771 + x^1770 + x^1769 + x^1768 + x^1767 + x^1766 + x^1765 + x^1764 + x^1763 + x^1762 + x^1761 + x^1760 + x^1759 + x^1758 + x^1757 + x^1756 + x^1755 + x^1754 + x^1753 + x^1752 + x^1751 + x^1750 + x^1749 + x^1748 + x^1747 + x^1746 + x^1745 + x^1744 + x^1743 + x^1742 + x^1741 + x^1740 + x^1739 + x^1738 + x^1737 + x^1736 + x^1735 + x^1734 + x^1733 + x^1732 + x^1731 + x^1730 + x^1729 + x^1728 + x^1727 + x^1726 + x^1725 + x^1724 + x^1723 + x^1722 + x^1721 + x^1720 + x^1719 + x^1718 + x^1717 + x^1716 + x^1715 + x^1714 + x^1713 + x^1712 + x^1711 + x^1710 + x^1709 + x^1708 + x^1707 + x^1706 + x^1705 + x^1704 + x^1703 + x^1702 + x^1701 + x^1700 + x^1699 + x^1698 + x^1697 + x^1696 + x^1695 + x^1694 + x^1693 + x^1692 + x^1691 + x^1690 + x^1689 + x^1688 + x^1687 + x^1686 + x^1685 + x^1684 + x^1683 + x^1682 + x^1681 + x^1680 + x^1679 + x^1678 + x^1677 + x^1676 + x^1675 + x^1674 + x^1673 + x^1672 + x^1671 + x^1670 + x^1669 + x^1668 + x^1667 + x^1666 + x^1665 + x^1664 + x^1663 + x^1662 + x^1661 + x^1660 + x^1659 + x^1658 + x^1657 + x^1656 + x^1655 + x^1654 + x^1653 + x^1652 + x^1651 + x^1650 + x^1649 + x^1648 + x^1647 + x^1646 + x^1645 + x^1644 + x^1643 + x^1642 + x^1641 + x^1640 + x^1639 + x^1638 + x^1637 + x^1636 + x^1635 + x^1634 + x^1633 + x^1632 + x^1631 + x^1630 + x^1629 + x^1628 + x^1627 + x^1626 + x^1625 + x^1624 + x^1623 + x^1622 + x^1621 + x^1620 + x^1619 + x^1618 + x^1617 + x^1616 + x^1615 + x^1614 + x^1613 + x^1612 + x^1611 + x^1610 + x^1609 + x^1608 + x^1607 + x^1606 + x^1605 + x^1604 + x^1603 + x^1602 + x^1601 + x^1600 + x^1599 + x^1598 + x^1597 + x^1596 + x^1595 + x^1594 + x^1593 + x^1592 + x^1591 + x^1590 + x^1589 + x^1588 + x^1587 + x^1586 + x^1585 + x^1584 + x^1583 + x^1582 + x^1581 + x^1580 + x^1579 + x^1578 + x^1577 + x^1576 + x^1575 + x^1574 + x^1573 + x^1572 + x^1571 + x^1570 + x^1569 + x^1568 + x^1567 + x^1566 + x^1565 + x^1564 + x^1563 + x^1562 + x^1561 + x^1560 + x^1559 + x^1558 + x^1557 + x^1556 + x^1555 + x^1554 + x^1553 + x^1552 + x^1551 + x^1550 + x^1549 + x^1548 + x^1547 + x^1546 + x^1545 + x^1544 + x^1543 + x^1542 + x^1541 + x^1540 + x^1539 + x^1538 + x^1537 + x^1536 + x^1535 + x^1534 + x^1533 + x^1532 + x^1531 + x^1530 + x^1529 + x^1528 + x^1527 + x^1526 + x^1525 + x^1524 + x^1523 + x^1522 + x^1521 + x^1520 + x^1519 + x^1518 + x^1517 + x^1516 + x^1515 + x^1514 + x^1513 + x^1512 + x^1511 + x^1510 + x^1509 + x^1508 + x^1507 + x^1506 + x^1505 + x^1504 + x^1503 + x^1502 + x^1501 + x^1500 + x^1499 + x^1498 + x^1497 + x^1496 + x^1495 + x^1494 + x^1493 + x^1492 + x^1491 + x^1490 + x^1489 + x^1488 + x^1487 + x^1486 + x^1485 + x^1484 + x^1483 + x^1482 + x^1481 + x^1480 + x^1479 + x^1478 + x^1477 + x^1476 + x^1475 + x^1474 + x^1473 + x^1472 + x^1471 + x^1470 + x^1469 + x^1468 + x^1467 + x^1466 + x^1465 + x^1464 + x^1463 + x^1462 + x^1461 + x^1460 + x^1459 + x^1458 + x^1457 + x^1456 + x^1455 + x^1454 + x^1453 + x^1452 + x^1451 + x^1450 + x^1449 + x^1448 + x^1447 + x^1446 + x^1445 + x^1444 + x^1443 + x^1442 + x^1441 + x^1440 + x^1439 + x^1438 + x^1437 + x^1436 + x^1435 + x^1434 + x^1433 + x^1432 + x^1431 + x^1430 + x^1429 + x^1428 + x^1427 + x^1426 + x^1425 + x^1424 + x^1423 + x^1422 + x^1421 + x^1420 + x^1419 + x^1418 + x^1417 + x^1416 + x^1415 + x^1414 + x^1413 + x^1412 + x^1411 + x^1410 + x^1409 + x^1408 + x^1407 + x^1406 + x^1405 + x^1404 + x^1403 + x^1402 + x^1401 + x^1400 + x^1399 + x^1398 + x^1397 + x^1396 + x^1395 + x^1394 + x^1393 + x^1392 + x^1391 + x^1390 + x^1389 + x^1388 + x^1387 + x^1386 + x^1385 + x^1384 + x^1383 + x^1382 + x^1381 + x^1380 + x^1379 + x^1378 + x^1377 + x^1376 + x^1375 + x^1374 + x^1373 + x^1372 + x^1371 + x^1370 + x^1369 + x^1368 + x^1367 + x^1366 + x^1365 + x^1364 + x^1363 + x^1362 + x^1361 + x^1360 + x^1359 + x^1358 + x^1357 + x^1356 + x^1355 + x^1354 + x^1353 + x^1352 + x^1351 + x^1350 + x^1349 + x^1348 + x^1347 + x^1346 + x^1345 + x^1344 + x^1343 + x^1342 + x^1341 + x^1340 + x^1339 + x^1338 + x^1337 + x^1336 + x^1335 + x^1334 + x^1333 + x^1332 + x^1331 + x^1330 + x^1329 + x^1328 + x^1327 + x^1326 + x^1325 + x^1324 + x^1323 + x^1322 + x^1321 + x^1320 + x^1319 + x^1318 + x^1317 + x^1316 + x^1315 + x^1314 + x^1313 + x^1312 + x^1311 + x^1310 + x^1309 + x^1308 + x^1307 + x^1306 + x^1305 + x^1304 + x^1303 + x^1302 + x^1301 + x^1300 + x^1299 + x^1298 + x^1297 + x^1296 + x^1295 + x^1294 + x^1293 + x^1292 + x^1291 + x^1290 + x^1289 + x^1288 + x^1287 + x^1286 + x^1285 + x^1284 + x^1283 + x^1282 + x^1281 + x^1280 + x^1279 + x^1278 + x^1277 + x^1276 + x^1275 + x^1274 + x^1273 + x^1272 + x^1271 + x^1270 + x^1269 + x^1268 + x^1267 + x^1266 + x^1265 + x^1264 + x^1263 + x^1262 + x^1261 + x^1260 + x^1259 + x^1258 + x^1257 + x^1256 + x^1255 + x^1254 + x^1253 + x^1252 + x^1251 + x^1250 + x^1249 + x^1248 + x^1247 + x^1246 + x^1245 + x^1244 + x^1243 + x^1242 + x^1241 + x^1240 + x^1239 + x^1238 + x^1237 + x^1236 + x^1235 + x^1234 + x^1233 + x^1232 + x^1231 + x^1230 + x^1229 + x^1228 + x^1227 + x^1226 + x^1225 + x^1224 + x^1223 + x^1222 + x^1221 + x^1220 + x^1219 + x^1218 + x^1217 + x^1216 + x^1215 + x^1214 + x^1213 + x^1212 + x^1211 + x^1210 + x^1209 + x^1208 + x^1207 + x^1206 + x^1205 + x^1204 + x^1203 + x^1202 + x^1201 + x^1200 + x^1199 + x^1198 + x^1197 + x^1196 + x^1195 + x^1194 + x^1193 + x^1192 + x^1191 + x^1190 + x^1189 + x^1188 + x^1187 + x^1186 + x^1185 + x^1184 + x^1183 + x^1182 + x^1181 + x^1180 + x^1179 + x^1178 + x^1177 + x^1176 + x^1175 + x^1174 + x^1173 + x^1172 + x^1171 + x^1170 + x^1169 + x^1168 + x^1167 + x^1166 + x^1165 + x^1164 + x^1163 + x^1162 + x^1161 + x^1160 + x^1159 + x^1158 + x^1157 + x^1156 + x^1155 + x^1154 + x^1153 + x^1152 + x^1151 + x^1150 + x^1149 + x^1148 + x^1147 + x^1146 + x^1145 + x^1144 + x^1143 + x^1142 + x^1141 + x^1140 + x^1139 + x^1138 + x^1137 + x^1136 + x^1135 + x^1134 + x^1133 + x^1132 + x^1131 + x^1130 + x^1129 + x^1128 + x^1127 + x^1126 + x^1125 + x^1124 + x^1123 + x^1122 + x^1121 + x^1120 + x^1119 + x^1118 + x^1117 + x^1116 + x^1115 + x^1114 + x^1113 + x^1112 + x^1111 + x^1110 + x^1109 + x^1108 + x^1107 + x^1106 + x^1105 + x^1104 + x^1103 + x^1102 + x^1101 + x^1100 + x^1099 + x^1098 + x^1097 + x^1096 + x^1095 + x^1094 + x^1093 + x^1092 + x^1091 + x^1090 + x^1089 + x^1088 + x^1087 + x^1086 + x^1085 + x^1084 + x^1083 + x^1082 + x^1081 + x^1080 + x^1079 + x^1078 + x^1077 + x^1076 + x^1075 + x^1074 + x^1073 + x^1072 + x^1071 + x^1070 + x^1069 + x^1068 + x^1067 + x^1066 + x^1065 + x^1064 + x^1063 + x^1062 + x^1061 + x^1060 + x^1059 + x^1058 + x^1057 + x^1056 + x^1055 + x^1054 + x^1053 + x^1052 + x^1051 + x^1050 + x^1049 + x^1048 + x^1047 + x^1046 + x^1045 + x^1044 + x^1043 + x^1042 + x^1041 + x^1040 + x^1039 + x^1038 + x^1037 + x^1036 + x^1035 + x^1034 + x^1033 + x^1032 + x^1031 + x^1030 + x^1029 + x^1028 + x^1027 + x^1026 + x^1025 + x^1024 + x^1023 + x^1022 + x^1021 + x^1020 + x^1019 + x^1018 + x^1017 + x^1016 + x^1015 + x^1014 + x^1013 + x^1012 + x^1011 + x^1010 + x^1009 + x^1008 + x^1007 + x^1006 + x^1005 + x^1004 + x^1003 + x^1002 + x^1001 + x^1000 + x^999 + x^998 + x^997 + x^996 + x^995 + x^994 + x^993 + x^992 + x^991 + x^990 + x^989 + x^988 + x^987 + x^986 + x^985 + x^984 + x^983 + x^982 + x^981 + x^980 + x^979 + x^978 + x^977 + x^976 + x^975 + x^974 + x^973 + x^972 + x^971 + x^970 + x^969 + x^968 + x^967 + x^966 + x^965 + x^964 + x^963 + x^962 + x^961 + x^960 + x^959 + x^958 + x^957 + x^956 + x^955 + x^954 + x^953 + x^952 + x^951 + x^950 + x^949 + x^948 + x^947 + x^946 + x^945 + x^944 + x^943 + x^942 + x^941 + x^940 + x^939 + x^938 + x^937 + x^936 + x^935 + x^934 + x^933 + x^932 + x^931 + x^930 + x^929 + x^928 + x^927 + x^926 + x^925 + x^924 + x^923 + x^922 + x^921 + x^920 + x^919 + x^918 + x^917 + x^916 + x^915 + x^914 + x^913 + x^912 + x^911 + x^910 + x^909 + x^908 + x^907 + x^906 + x^905 + x^904 + x^903 + x^902 + x^901 + x^900 + x^899 + x^898 + x^897 + x^896 + x^895 + x^894 + x^893 + x^892 + x^891 + x^890 + x^889 + x^888 + x^887 + x^886 + x^885 + x^884 + x^883 + x^882 + x^881 + x^880 + x^879 + x^878 + x^877 + x^876 + x^875 + x^874 + x^873 + x^872 + x^871 + x^870 + x^869 + x^868 + x^867 + x^866 + x^865 + x^864 + x^863 + x^862 + x^861 + x^860 + x^859 + x^858 + x^857 + x^856 + x^855 + x^854 + x^853 + x^852 + x^851 + x^850 + x^849 + x^848 + x^847 + x^846 + x^845 + x^844 + x^843 + x^842 + x^841 + x^840 + x^839 + x^838 + x^837 + x^836 + x^835 + x^834 + x^833 + x^832 + x^831 + x^830 + x^829 + x^828 + x^827 + x^826 + x^825 + x^824 + x^823 + x^822 + x^821 + x^820 + x^819 + x^818 + x^817 + x^816 + x^815 + x^814 + x^813 + x^812 + x^811 + x^810 + x^809 + x^808 + x^807 + x^806 + x^805 + x^804 + x^803 + x^802 + x^801 + x^800 + x^799 + x^798 + x^797 + x^796 + x^795 + x^794 + x^793 + x^792 + x^791 + x^790 + x^789 + x^788 + x^787 + x^786 + x^785 + x^784 + x^783 + x^782 + x^781 + x^780 + x^779 + x^778 + x^777 + x^776 + x^775 + x^774 + x^773 + x^772 + x^771 + x^770 + x^769 + x^768 + x^767 + x^766 + x^765 + x^764 + x^763 + x^762 + x^761 + x^760 + x^759 + x^758 + x^757 + x^756 + x^755 + x^754 + x^753 + x^752 + x^751 + x^750 + x^749 + x^748 + x^747 + x^746 + x^745 + x^744 + x^743 + x^742 + x^741 + x^740 + x^739 + x^738 + x^737 + x^736 + x^735 + x^734 + x^733 + x^732 + x^731 + x^730 + x^729 + x^728 + x^727 + x^726 + x^725 + x^724 + x^723 + x^722 + x^721 + x^720 + x^719 + x^718 + x^717 + x^716 + x^715 + x^714 + x^713 + x^712 + x^711 + x^710 + x^709 + x^708 + x^707 + x^706 + x^705 + x^704 + x^703 + x^702 + x^701 + x^700 + x^699 + x^698 + x^697 + x^696 + x^695 + x^694 + x^693 + x^692 + x^691 + x^690 + x^689 + x^688 + x^687 + x^686 + x^685 + x^684 + x^683 + x^682 + x^681 + x^680 + x^679 + x^678 + x^677 + x^676 + x^675 + x^674 + x^673 + x^672 + x^671 + x^670 + x^669 + x^668 + x^667 + x^666 + x^665 + x^664 + x^663 + x^662 + x^661 + x^660 + x^659 + x^658 + x^657 + x^656 + x^655 + x^654 + x^653 + x^652 + x^651 + x^650 + x^649 + x^648 + x^647 + x^646 + x^645 + x^644 + x^643 + x^642 + x^641 + x^640 + x^639 + x^638 + x^637 + x^636 + x^635 + x^634 + x^633 + x^632 + x^631 + x^630 + x^629 + x^628 + x^627 + x^626 + x^625 + x^624 + x^623 + x^622 + x^621 + x^620 + x^619 + x^618 + x^617 + x^616 + x^615 + x^614 + x^613 + x^612 + x^611 + x^610 + x^609 + x^608 + x^607 + x^606 + x^605 + x^604 + x^603 + x^602 + x^601 + x^600 + x^599 + x^598 + x^597 + x^596 + x^595 + x^594 + x^593 + x^592 + x^591 + x^590 + x^589 + x^588 + x^587 + x^586 + x^585 + x^584 + x^583 + x^582 + x^581 + x^580 + x^579 + x^578 + x^577 + x^576 + x^575 + x^574 + x^573 + x^572 + x^571 + x^570 + x^569 + x^568 + x^567 + x^566 + x^565 + x^564 + x^563 + x^562 + x^561 + x^560 + x^559 + x^558 + x^557 + x^556 + x^555 + x^554 + x^553 + x^552 + x^551 + x^550 + x^549 + x^548 + x^547 + x^546 + x^545 + x^544 + x^543 + x^542 + x^541 + x^540 + x^539 + x^538 + x^537 + x^536 + x^535 + x^534 + x^533 + x^532 + x^531 + x^530 + x^529 + x^528 + x^527 + x^526 + x^525 + x^524 + x^523 + x^522 + x^521 + x^520 + x^519 + x^518 + x^517 + x^516 + x^515 + x^514 + x^513 + x^512 + x^511 + x^510 + x^509 + x^508 + x^507 + x^506 + x^505 + x^504 + x^503 + x^502 + x^501 + x^500 + x^499 + x^498 + x^497 + x^496 + x^495 + x^494 + x^493 + x^492 + x^491 + x^490 + x^489 + x^488 + x^487 + x^486 + x^485 + x^484 + x^483 + x^482 + x^481 + x^480 + x^479 + x^478 + x^477 + x^476 + x^475 + x^474 + x^473 + x^472 + x^471 + x^470 + x^469 + x^468 + x^467 + x^466 + x^465 + x^464 + x^463 + x^462 + x^461 + x^460 + x^459 + x^458 + x^457 + x^456 + x^455 + x^454 + x^453 + x^452 + x^451 + x^450 + x^449 + x^448 + x^447 + x^446 + x^445 + x^444 + x^443 + x^442 + x^441 + x^440 + x^439 + x^438 + x^437 + x^436 + x^435 + x^434 + x^433 + x^432 + x^431 + x^430 + x^429 + x^428 + x^427 + x^426 + x^425 + x^424 + x^423 + x^422 + x^421 + x^420 + x^419 + x^418 + x^417 + x^416 + x^415 + x^414 + x^413 + x^412 + x^411 + x^410 + x^409 + x^408 + x^407 + x^406 + x^405 + x^404 + x^403 + x^402 + x^401 + x^400 + x^399 + x^398 + x^397 + x^396 + x^395 + x^394 + x^393 + x^392 + x^391 + x^390 + x^389 + x^388 + x^387 + x^386 + x^385 + x^384 + x^383 + x^382 + x^381 + x^380 + x^379 + x^378 + x^377 + x^376 + x^375 + x^374 + x^373 + x^372 + x^371 + x^370 + x^369 + x^368 + x^367 + x^366 + x^365 + x^364 + x^363 + x^362 + x^361 + x^360 + x^359 + x^358 + x^357 + x^356 + x^355 + x^354 + x^353 + x^352 + x^351 + x^350 + x^349 + x^348 + x^347 + x^346 + x^345 + x^344 + x^343 + x^342 + x^341 + x^340 + x^339 + x^338 + x^337 + x^336 + x^335 + x^334 + x^333 + x^332 + x^331 + x^330 + x^329 + x^328 + x^327 + x^326 + x^325 + x^324 + x^323 + x^322 + x^321 + x^320 + x^319 + x^318 + x^317 + x^316 + x^315 + x^314 + x^313 + x^312 + x^311 + x^310 + x^309 + x^308 + x^307 + x^306 + x^305 + x^304 + x^303 + x^302 + x^301 + x^300 + x^299 + x^298 + x^297 + x^296 + x^295 + x^294 + x^293 + x^292 + x^291 + x^290 + x^289 + x^288 + x^287 + x^286 + x^285 + x^284 + x^283 + x^282 + x^281 + x^280 + x^279 + x^278 + x^277 + x^276 + x^275 + x^274 + x^273 + x^272 + x^271 + x^270 + x^269 + x^268 + x^267 + x^266 + x^265 + x^264 + x^263 + x^262 + x^261 + x^260 + x^259 + x^258 + x^257 + x^256 + x^255 + x^254 + x^253 + x^252 + x^251 + x^250 + x^249 + x^248 + x^247 + x^246 + x^245 + x^244 + x^243 + x^242 + x^241 + x^240 + x^239 + x^238 + x^237 + x^236 + x^235 + x^234 + x^233 + x^232 + x^231 + x^230 + x^229 + x^228 + x^227 + x^226 + x^225 + x^224 + x^223 + x^222 + x^221 + x^220 + x^219 + x^218 + x^217 + x^216 + x^215 + x^214 + x^213 + x^212 + x^211 + x^210 + x^209 + x^208 + x^207 + x^206 + x^205 + x^204 + x^203 + x^202 + x^201 + x^200 + x^199 + x^198 + x^197 + x^196 + x^195 + x^194 + x^193 + x^192 + x^191 + x^190 + x^189 + x^188 + x^187 + x^186 + x^185 + x^184 + x^183 + x^182 + x^181 + x^180 + x^179 + x^178 + x^177 + x^176 + x^175 + x^174 + x^173 + x^172 + x^171 + x^170 + x^169 + x^168 + x^167 + x^166 + x^165 + x^164 + x^163 + x^162 + x^161 + x^160 + x^159 + x^158 + x^157 + x^156 + x^155 + x^154 + x^153 + x^152 + x^151 + x^150 + x^149 + x^148 + x^147 + x^146 + x^145 + x^144 + x^143 + x^142 + x^141 + x^140 + x^139 + x^138 + x^137 + x^136 + x^135 + x^134 + x^133 + x^132 + x^131 + x^130 + x^129 + x^128 + x^127 + x^126 + x^125 + x^124 + x^123 + x^122 + x^121 + x^120 + x^119 + x^118 + x^117 + x^116 + x^115 + x^114 + x^113 + x^112 + x^111 + x^110 + x^109 + x^108 + x^107 + x^106 + x^105 + x^104 + x^103 + x^102 + x^101 + x^100 + x^99 + x^98 + x^97 + x^96 + x^95 + x^94 + x^93 + x^92 + x^91 + x^90 + x^89 + x^88 + x^87 + x^86 + x^85 + x^84 + x^83 + x^82 + x^81 + x^80 + x^79 + x^78 + x^77 + x^76 + x^75 + x^74 + x^73 + x^72 + x^71 + x^70 + x^69 + x^68 + x^67 + x^66 + x^65 + x^64 + x^63 + x^62 + x^61 + x^60 + x^59 + x^58 + x^57 + x^56 + x^55 + x^54 + x^53 + x^52 + x^51 + x^50 + x^49 + x^48 + x^47 + x^46 + x^45 + x^44 + x^43 + x^42 + x^41 + x^40 + x^39 + x^38 + x^37 + x^36 + x^35 + x^34 + x^33 + x^32 + x^31 + x^30 + x^29 + x^28 + x^27 + x^26 + x^25 + x^24 + x^23 + x^22 + x^21 + x^20 + x^19 + x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1
In [22]:
%display latex

5. zadatak

Odredite ostatak pri dijeljenju polinoma $f(x)=x^{77}+x^{55}+x^{33}+x^{11}+1$ s polinomom $g(x)=x^2-1$.

Rješenje

In [23]:
f=x^77+x^55+x^33+x^11+1
g=x^2-1

ostatak

In [24]:
f%g
Out[24]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}4 x + 1\]

nije problem odrediti i kvocijent

In [25]:
f//g
Out[25]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}x^{75} + x^{73} + x^{71} + x^{69} + x^{67} + x^{65} + x^{63} + x^{61} + x^{59} + x^{57} + x^{55} + 2 x^{53} + 2 x^{51} + 2 x^{49} + 2 x^{47} + 2 x^{45} + 2 x^{43} + 2 x^{41} + 2 x^{39} + 2 x^{37} + 2 x^{35} + 2 x^{33} + 3 x^{31} + 3 x^{29} + 3 x^{27} + 3 x^{25} + 3 x^{23} + 3 x^{21} + 3 x^{19} + 3 x^{17} + 3 x^{15} + 3 x^{13} + 3 x^{11} + 4 x^{9} + 4 x^{7} + 4 x^{5} + 4 x^{3} + 4 x\]

6. zadatak

Izračunajte vrijednost polinoma $f(x)=4x^4+2x^2+1$ u točki $2$.

Rješenje

In [26]:
f=4*x^4+2*x^2+1
In [27]:
f(2)
Out[27]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}73\]

Možemo koristiti funkciju iz datoteke MMZI.sage. Funkcija rucni_Horner(p,x0) računa vrijednost polinoma $p$ u točki $x_0$ i na izlazu vraća tablicu koju dobivamo ručnim izvođenjem Hornerovog algoritma. Pazite, varijabla p mora biti tipa "SAGE polinom".

In [28]:
rucni_Horner(f,2)
Out[28]:
\(4\) \(2\) \(1\)
\(2\) \(4\) \(10\) \(21\)

7. zadatak

Polinom $P(x)=x^4-8x^3+5x^2+2x-7$ razvijte po potencijama od $x+2$.

Rješenje

In [29]:
x=var('x')
P=x^4-8*x^3+5*x^2+2*x-7
In [30]:
P.series(x==-2,5)
Out[30]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}89 + {(-146)} {(x + 2)} + 77 {(x + 2)}^{2} + {(-16)} {(x + 2)}^{3} + 1 {(x + 2)}^{4} + \mathcal{O}\left({\left(x + 2\right)}^{5}\right)\]

Možemo koristiti funkciju iz datoteke MMZI.sage. Funkcija razvoj_Horner(p,x0) daje razvoj polinoma $p$ po potencijama od $x-x_0$, tj. daje nam tablicu koju dobivamo ručnim rješavanjem zadatka. Pazite, varijabla p mora biti tipa "SAGE polinom".

In [31]:
R.<x>=QQ[]
razvoj_Horner(x^4-8*x^3+5*x^2+2*x-7,-2)
Out[31]:
\(1\) \(-8\) \(5\) \(2\) \(-7\)
\(-2\) \(1\) \(-10\) \(25\) \(-48\) \(89\)
\(-2\) \(1\) \(-12\) \(49\) \(-146\)
\(-2\) \(1\) \(-14\) \(77\)
\(-2\) \(1\) \(-16\)
\(-2\) \(1\)

8. zadatak

Za polinome $A(x)=x^4+6x^3+17x^2+24x+12$ i $B(x)=x^3-2x^2-13x-10$ odredite polinome $P$ i $Q$ tako da vrijedi $AP+BQ=M(A,B)$.

Rješenje

In [32]:
R.<x>=QQ[]
A=x^4+6*x^3+17*x^2+24*x+12
B=x^3-2*x^2-13*x-10

ako nas zanima samo najveća zajednička mjera

In [33]:
A.gcd(B)
Out[33]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}x^{2} + 3 x + 2\]
In [34]:
gcd(A,B)
Out[34]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}x^{2} + 3 x + 2\]

ako nas zanima sve: $M(A,B),\, P,\ Q$

In [35]:
A.xgcd(B)
Out[35]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(x^{2} + 3 x + 2, \frac{1}{46}, -\frac{1}{46} x - \frac{4}{23}\right)\]
In [36]:
xgcd(A,B)
Out[36]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(x^{2} + 3 x + 2, \frac{1}{46}, -\frac{1}{46} x - \frac{4}{23}\right)\]

Možemo koristiti funkciju iz datoteke MMZI.sage. Funkcija polinomi_gcd(f,g) daje svaki korak Euklidovog algoritma prilikom određivanja najveće zajedničke mjere polinoma f i g, tj. u svakom koraku daje kvocijent i ostatak koji se dobiju dijeljenjem odgovarajućih polinoma, baš onako kako dobivamo ručnim određivanjem najveće zajedničke mjere dva polinoma. Pazite, varijable f i g moraju biti tipa "SAGE polinom".

In [37]:
polinomi_gcd(A,B)
Out[37]:
korak ------------------- kvocijent ------------------- ------------------- ostatak -------------------
1. \(x + 8\) \(46 x^{2} + 138 x + 92\)
2. \(\frac{1}{46} x - \frac{5}{46}\) \(0\)

9. zadatak

Za polinome $A(x)=4x^5-x^4-4x^3+13x^2-3x$ i $B(x)=3x^4-x^3-3x^2+10x-3$ odredite polinome $P$ i $Q$ tako da vrijedi $AP+BQ=M(A,B)$.

Rješenje

In [38]:
A=4*x^5-x^4-4*x^3+13*x^2-3*x
B=3*x^4-x^3-3*x^2+10*x-3

najveća zajednička mjera

In [39]:
gcd(A,B)
Out[39]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}x^{3} - x + 3\]

ako nas sve zanima: $M(A,B),\, P,\, Q$

In [40]:
xgcd(A,B)
Out[40]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(x^{3} - x + 3, 9, -12 x - 1\right)\]

pojedini koraci Euklidovog algoritma

In [41]:
polinomi_gcd(A,B)
Out[41]:
korak ------------------- kvocijent ------------------- ------------------- ostatak -------------------
1. \(\frac{4}{3} x + \frac{1}{9}\) \(\frac{1}{9} x^{3} - \frac{1}{9} x + \frac{1}{3}\)
2. \(27 x - 9\) \(0\)

10. zadatak

Dokažite da se razlomak $\dfrac{x^4+x^3+1}{x^5+x+1}$ ne može više skratiti.

Rješenje

Razlomak se ne može više skratiti zato jer je najveća zajednička mjera brojnika i nazivnika jednaka 1.

In [42]:
gcd(x^5+x+1,x^4+x^3+1)
Out[42]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}1\]

pojedini koraci Euklidovog algoritma

In [43]:
polinomi_gcd(x^5+x+1,x^4+x^3+1)
Out[43]:
korak ------------------- kvocijent ------------------- ------------------- ostatak -------------------
1. \(x - 1\) \(x^{3} + 2\)
2. \(x + 1\) \(-2 x - 1\)
3. \(-\frac{1}{2} x^{2} + \frac{1}{4} x - \frac{1}{8}\) \(\frac{15}{8}\)
4. \(-\frac{16}{15} x - \frac{8}{15}\) \(0\)

11. zadatak

Riješite jednadžbu $5x^3-9x^2-x-2=0$.

Rješenje

In [44]:
f=5*x^3-9*x^2-x-2

Možemo dobiti listu intervala unutar kojih se nalaze realne nultočke. Konkretno ovdje, naš polinom ima samo jednu realnu nultočku unutar intervala $\big\langle\frac{3}{2},\frac{11}{4}\big\rangle$.

In [45]:
f.real_root_intervals()
Out[45]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\left(\frac{3}{2}, \frac{11}{4}\right), 1\right)\right]\]

Sa slike bismo mogli očitati da bi ta realna nultočka bila $x=2$, što i direktnim provjeravanjem zaista jest.

In [46]:
plot(f,-1,3)
Out[46]:

Daje samo racionalne nultočke polinoma $f$ jer je polinom $f$ definiran kao polinom s racionalnim koeficijentima. Sjetimo se da smo ranije definirali R.<x>=QQ[ ]. $x=2$ je jednostruka nultočka.

In [47]:
f.roots()
Out[47]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(2, 1\right)\right]\]

Daje sve realne nultočke od $f$. Uočavamo da $f$ ima samo jednu realnu jednostruku nultočku.

In [48]:
f.roots(RR)
Out[48]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(2.00000000000000, 1\right)\right]\]
In [49]:
f.roots(RealField(200))
Out[49]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(2.0000000000000000000000000000000000000000000000000000000000, 1\right)\right]\]

Daje sve kompleksne nultočke

In [50]:
f.roots(CC)
Out[50]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(2.00000000000000, 1\right), \left(-0.100000000000000 - 0.435889894354067i, 1\right), \left(-0.100000000000000 + 0.435889894354067i, 1\right)\right]\]
In [51]:
f.roots(ComplexField(200))
Out[51]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(2.0000000000000000000000000000000000000000000000000000000000, 1\right), \left(-0.10000000000000000000000000000000000000000000000000000000000 - 0.43588989435406735522369819838596156591370039252324449368903i, 1\right), \left(-0.10000000000000000000000000000000000000000000000000000000000 + 0.43588989435406735522369819838596156591370039252324449368903i, 1\right)\right]\]

možemo koristiti i naredbu solve

In [52]:
u=var('u')
solve(5*u^3-9*u^2-u-2,u)
Out[52]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{10} i \, \sqrt{19} - \frac{1}{10}, u = \frac{1}{10} i \, \sqrt{19} - \frac{1}{10}, u = 2\right]\]

ili

In [53]:
solve([5*u^3-9*u^2-u-2==0],u)
Out[53]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{10} i \, \sqrt{19} - \frac{1}{10}, u = \frac{1}{10} i \, \sqrt{19} - \frac{1}{10}, u = 2\right]\]

Napomena. Ako promatramo polinom $g(x)=x^2-2$, tada je dolje polinom $g$ definiran kao polinom s racionalnim koeficijentima jer smo već ranije definirali R.<x>=QQ[ ].

In [54]:
g=x^2-2

polinom $g$ nema racionalnih nultočaka

In [55]:
g.roots()
Out[55]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\right]\]
In [56]:
g.roots(QQ)
Out[56]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\right]\]

polinom $g$ ima dvije jednostruke realne nultočke

In [57]:
g.roots(RR)
Out[57]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-1.41421356237310, 1\right), \left(1.41421356237310, 1\right)\right]\]
In [58]:
g.roots(RealField(300))
Out[58]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753, 1\right), \left(1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753, 1\right)\right]\]

12. zadatak

Riješite jednadžbu $2x^4+13x^3+25x^2+15x+9=0$.

Rješenje

In [59]:
f=2*x^4+13*x^3+25*x^2+15*x+9

Pogledajmo intervale u kojima se nalaze realne nultočke

In [60]:
f.real_root_intervals()
Out[60]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\left(-\frac{965829028745320677378189160381}{321943009581773547211778324968}, -\frac{1931658057490640389699315312795}{643886019163547094423556649936}\right), 2\right)\right]\]
In [61]:
f.real_root_intervals()[0][0]
Out[61]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(-\frac{965829028745320677378189160381}{321943009581773547211778324968}, -\frac{1931658057490640389699315312795}{643886019163547094423556649936}\right)\]

pogledajmo numerički koji je to zapravo interval

In [62]:
[n(i,digits=50) for i in f.real_root_intervals()[0][0]]
Out[62]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[-3.0000000000000001110223024625055960658215989396981, -2.9999999999999986122212192185433790254004733833419\right]\]

Dakle, unutar gornjeg intervala imamo dvije realne nultočke, a kako je taj interval jako mali već predosjećamo da bi $x=-3$ mogla biti dvostruka nultočka (naravno, to je samo naša slutnja, što ne znači da mora biti i istinita). Pogledajmo i graf koji će nas još više u to uvjeriti (uočite kako graf "dodiruje" u točki $(-3,0)$ $x$-os, što zapravo znači da je $-3$ dvostruka nultočka).

In [63]:
plot(f,-5,1)
Out[63]:

potvrdimo konačno naše slutnje

In [64]:
f.roots(RR)
Out[64]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-3.00000000000000, 2\right)\right]\]
In [65]:
f.roots(CC)
Out[65]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-3.00000000000000, 2\right), \left(-0.250000000000000 - 0.661437827766148i, 1\right), \left(-0.250000000000000 + 0.661437827766148i, 1\right)\right]\]
In [66]:
solve(2*u^4+13*u^3+25*u^2+15*u+9,u)
Out[66]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{4} i \, \sqrt{7} - \frac{1}{4}, u = \frac{1}{4} i \, \sqrt{7} - \frac{1}{4}, u = \left(-3\right)\right]\]

faktorizacija polinoma $f$

In [67]:
factor(f)
Out[67]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(2\right) \cdot (x + 3)^{2} \cdot (x^{2} + \frac{1}{2} x + \frac{1}{2})\]

13. zadatak

Riješite jednadžbu $x^3+3x^2-9x-20=0$.

Rješenje

In [68]:
f=x^3+3*x^2-9*x-20

Idemo se opet malo igrati. Pogledajmo prvo intervale u kojima se nalaze realne nultočke.

In [69]:
f.real_root_intervals()
Out[69]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\left(-\frac{35}{8}, -\frac{63}{16}\right), 1\right), \left(\left(-\frac{7}{2}, -\frac{7}{4}\right), 1\right), \left(\left(0, \frac{7}{2}\right), 1\right)\right]\]

Dakle, naš polinom ima tri realne nultočke, što možemo vidjeti i sa grafa.

In [70]:
plot(f,-5,4)
Out[70]:

sve realne nultočke

In [71]:
f.roots(RR)
Out[71]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-4.00000000000000, 1\right), \left(-1.79128784747792, 1\right), \left(2.79128784747792, 1\right)\right]\]
In [72]:
solve(u^3+3*u^2-9*u-20,u)
Out[72]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{2} \, \sqrt{21} + \frac{1}{2}, u = \frac{1}{2} \, \sqrt{21} + \frac{1}{2}, u = \left(-4\right)\right]\]

14. zadatak

Riješite jednadžbu $x^4-4x^3+11x^2-14x+10=0$.

Rješenje

In [73]:
f=x^4-4*x^3+11*x^2-14*x+10

$f$ nema realnih nultočaka

In [74]:
f.real_root_intervals()
Out[74]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\right]\]
In [75]:
plot(f,-2,4)
Out[75]:
In [76]:
f.roots(CC)
Out[76]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(1.00000000000000 - 2.00000000000000i, 1\right), \left(1.00000000000000 - 1.00000000000000i, 1\right), \left(1.00000000000000 + 1.00000000000000i, 1\right), \left(1.00000000000000 + 2.00000000000000i, 1\right)\right]\]
In [77]:
solve(u^4-4*u^3+11*u^2-14*u+10,u)
Out[77]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = \left(-2 i + 1\right), u = \left(2 i + 1\right), u = \left(-i + 1\right), u = \left(i + 1\right)\right]\]

15. zadatak

Izračunajte $\big(i-\sqrt{3}\big)^{13}$.

Rješenje

In [78]:
expand((I-sqrt(3))^13)
Out[78]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-4096 \, \sqrt{3} + 4096 i\]

16. zadatak

Riješite jednadžbu $8x^5-4x^4+2x^3-7x^2+5x-1=0$.

Rješenje

In [79]:
f=8*x^5-4*x^4+2*x^3-7*x^2+5*x-1

postoje tri realne nultočke

In [80]:
f.real_root_intervals()
Out[80]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(\left(\frac{461168601842739593}{922337203685479424}, \frac{922337203685479817}{1844674407370958848}\right), 3\right)\right]\]
In [81]:
[n(k,digits=50) for k in f.real_root_intervals()[0][0]]
Out[81]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[0.49999999999999987097994147422523018698442153716151, 0.50000000000000021304572689340119553157614426846860\right]\]

naslućujemo da bi $\frac{1}{2}$ mogla biti trostruka nultočka

In [82]:
plot(f,-1,1.8)
Out[82]:

sve nultočke

In [83]:
f.roots(CC)
Out[83]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(0.500000000000000, 3\right), \left(-0.500000000000000 - 0.866025403784439i, 1\right), \left(-0.500000000000000 + 0.866025403784439i, 1\right)\right]\]
In [84]:
solve(8*u^5-4*u^4+2*u^3-7*u^2+5*u-1,u)
Out[84]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, u = \frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, u = \left(\frac{1}{2}\right)\right]\]
In [85]:
solve(8*u^5-4*u^4+2*u^3-7*u^2+5*u-1,u,multiplicities=True)
Out[85]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(\left[u = -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, u = \frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, u = \left(\frac{1}{2}\right)\right], \left[1, 1, 3\right]\right)\]

faktorizacija polinoma $f$

In [86]:
factor(f)
Out[86]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(8\right) \cdot (x - \frac{1}{2})^{3} \cdot (x^{2} + x + 1)\]

17. zadatak

Riješite jednadžbu $x^3-3x^2+3=0$.

Rješenje

S naredbom solve nećemo baš nešto pametno dobiti.

In [87]:
solve(u^3-3*u^2+3,u)
Out[87]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{2} \, {\left(i \, \sqrt{3} + 1\right)} {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}} + {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{2}{3}} + 1, u = {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{4}{3}} - \frac{i \, \sqrt{3} + 1}{2 \, {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}}} + 1, u = {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}} + \frac{1}{{\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}}} + 1\right]\]

Preko metode roots dobivamo numerička rješenja i uočavamo da zadana jednadžba ima tri različita realna rješenja.

In [88]:
f=x^3-3*x^2+3
In [89]:
f.roots(CC)
Out[89]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-0.879385241571817, 1\right), \left(1.34729635533386, 1\right), \left(2.53208888623796, 1\right)\right]\]

18. zadatak

Riješite jednadžbu $z^3+i=0$.

Rješenje

U ovom slučaju solve i roots ne daju ono što bismo željeli.

In [90]:
solve(u^3+I,u)
Out[90]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = \frac{1}{2} i \, \sqrt{3} \left(-i\right)^{\frac{1}{3}} - \frac{1}{2} \, \left(-i\right)^{\frac{1}{3}}, u = -\frac{1}{2} i \, \sqrt{3} \left(-i\right)^{\frac{1}{3}} - \frac{1}{2} \, \left(-i\right)^{\frac{1}{3}}, u = \left(-i\right)^{\frac{1}{3}}\right]\]
In [91]:
R1.<c>=CC[]
f=c^3+I
In [92]:
f.roots()
Out[92]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-0.866025403784439 - 0.500000000000000i, 1\right), \left(1.00000000000000i, 1\right), \left(0.866025403784439 - 0.500000000000000i, 1\right)\right]\]

Međutim, SAGE ima naredbu complex_roots koja će obaviti posao kako treba

In [93]:
from sage.rings.polynomial.complex_roots import *
In [94]:
R.<x>=QQ[]
K.<i>=NumberField(x^2+1)
In [95]:
complex_roots(x^3+i)
Out[95]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-0.866025403784439? - 0.500000000000000?i, 1\right), \left(1i, 1\right), \left(0.866025403784439? - 0.500000000000000?i, 1\right)\right]\]

ili možemo koristiti metodu nth_root za vađenje $n$-tog korijena iz kompleksnog broja. Ovdje zapravo treba izračunati $\sqrt[3]{-i}$.

In [96]:
a = CC(-I)
a.nth_root(3,all=True)
Out[96]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[0.866025403784439 - 0.500000000000000i, 6.12323399573677 \times 10^{-17} + 1.00000000000000i, -0.866025403784439 - 0.500000000000000i\right]\]

Možemo koristiti funkciju iz datoteke MMZI.sage. Funkcija kompleksni_korijen(z,n,sredi=False) daje sve $n$-te korijene kompleksnog broja $z$. Varijabla sredi po defaultu je stavljena na False, što znači da se neće sređivati kosinusi i sinusi "lijepih" kutova. Ako želimo da se srede kosinusi i sinusi "lijepih" kutova, tada treba staviti sredi=True.

primjena funkcije kompleksni_korijen na računanje $\sqrt[3]{-i}$

In [97]:
kompleksni_korijen(-I,3)
Out[97]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\cos\left(\frac{1}{2} \, \pi\right) + i \, \sin\left(\frac{1}{2} \, \pi\right), \cos\left(\frac{7}{6} \, \pi\right) + i \, \sin\left(\frac{7}{6} \, \pi\right), \cos\left(\frac{11}{6} \, \pi\right) + i \, \sin\left(\frac{11}{6} \, \pi\right)\right]\]
In [98]:
kompleksni_korijen(-I,3,sredi=True)
Out[98]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\cos\left(\frac{1}{2} \, \pi\right) + i \, \sin\left(\frac{1}{2} \, \pi\right), -\frac{1}{2} \, \sqrt{3} - \frac{1}{2} i, \frac{1}{2} \, \sqrt{3} - \frac{1}{2} i\right]\]

Još nekoliko primjera korištenja funkcije kompleksni_korijen

   $\sqrt[5]{9}$

In [99]:
kompleksni_korijen(9,5)
Out[99]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[9^{\frac{1}{5}} {\left(\cos\left(0\right) + i \, \sin\left(0\right)\right)}, 9^{\frac{1}{5}} {\left(\cos\left(\frac{2}{5} \, \pi\right) + i \, \sin\left(\frac{2}{5} \, \pi\right)\right)}, 9^{\frac{1}{5}} {\left(\cos\left(\frac{4}{5} \, \pi\right) + i \, \sin\left(\frac{4}{5} \, \pi\right)\right)}, 9^{\frac{1}{5}} {\left(\cos\left(\frac{6}{5} \, \pi\right) + i \, \sin\left(\frac{6}{5} \, \pi\right)\right)}, 9^{\frac{1}{5}} {\left(\cos\left(\frac{8}{5} \, \pi\right) + i \, \sin\left(\frac{8}{5} \, \pi\right)\right)}\right]\]
In [100]:
kompleksni_korijen(9,5,sredi=True)
Out[100]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[9^{\frac{1}{5}} {\left(\cos\left(0\right) + i \, \sin\left(0\right)\right)}, \frac{1}{4} \cdot 9^{\frac{1}{5}} {\left(\sqrt{5} + i \, \sqrt{2 \, \sqrt{5} + 10} - 1\right)}, -\frac{1}{4} \cdot 9^{\frac{1}{5}} {\left(\sqrt{5} - i \, \sqrt{-2 \, \sqrt{5} + 10} + 1\right)}, -\frac{1}{4} \cdot 9^{\frac{1}{5}} {\left(\sqrt{5} + i \, \sqrt{-2 \, \sqrt{5} + 10} + 1\right)}, \frac{1}{4} \cdot 9^{\frac{1}{5}} {\left(\sqrt{5} - i \, \sqrt{2 \, \sqrt{5} + 10} - 1\right)}\right]\]

   $\sqrt[3]{-\frac{1}{2}+\frac{\sqrt{3}}{2}i}$

In [101]:
kompleksni_korijen(-1/2+sqrt(3)/2*I,3)
Out[101]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\cos\left(\frac{2}{9} \, \pi\right) + i \, \sin\left(\frac{2}{9} \, \pi\right), \cos\left(\frac{8}{9} \, \pi\right) + i \, \sin\left(\frac{8}{9} \, \pi\right), \cos\left(\frac{14}{9} \, \pi\right) + i \, \sin\left(\frac{14}{9} \, \pi\right)\right]\]
In [102]:
kompleksni_korijen(-1/2+sqrt(3)/2*I,3,sredi=True)
Out[102]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\cos\left(\frac{2}{9} \, \pi\right) + i \, \sin\left(\frac{2}{9} \, \pi\right), -\cos\left(\frac{1}{9} \, \pi\right) + i \, \sin\left(\frac{1}{9} \, \pi\right), \cos\left(\frac{4}{9} \, \pi\right) - i \, \sin\left(\frac{4}{9} \, \pi\right)\right]\]

   $\sqrt[7]{-2-2i}$

In [103]:
kompleksni_korijen(-2-2*I,7)
Out[103]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[2^{\frac{3}{14}} {\left(\cos\left(\frac{5}{28} \, \pi\right) + i \, \sin\left(\frac{5}{28} \, \pi\right)\right)}, 2^{\frac{3}{14}} {\left(\cos\left(\frac{13}{28} \, \pi\right) + i \, \sin\left(\frac{13}{28} \, \pi\right)\right)}, 2^{\frac{3}{14}} {\left(\cos\left(\frac{3}{4} \, \pi\right) + i \, \sin\left(\frac{3}{4} \, \pi\right)\right)}, 2^{\frac{3}{14}} {\left(\cos\left(\frac{29}{28} \, \pi\right) + i \, \sin\left(\frac{29}{28} \, \pi\right)\right)}, 2^{\frac{3}{14}} {\left(\cos\left(\frac{37}{28} \, \pi\right) + i \, \sin\left(\frac{37}{28} \, \pi\right)\right)}, 2^{\frac{3}{14}} {\left(\cos\left(\frac{45}{28} \, \pi\right) + i \, \sin\left(\frac{45}{28} \, \pi\right)\right)}, 2^{\frac{3}{14}} {\left(\cos\left(\frac{53}{28} \, \pi\right) + i \, \sin\left(\frac{53}{28} \, \pi\right)\right)}\right]\]

   $\sqrt[4]{1-5i}$

In [104]:
kompleksni_korijen(1-5*I,4)
Out[104]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[26^{\frac{1}{8}} {\left(\cos\left(\frac{1}{2} \, \pi - \frac{1}{4} \, \arctan\left(5\right)\right) + i \, \sin\left(\frac{1}{2} \, \pi - \frac{1}{4} \, \arctan\left(5\right)\right)\right)}, 26^{\frac{1}{8}} {\left(\cos\left(\pi - \frac{1}{4} \, \arctan\left(5\right)\right) + i \, \sin\left(\pi - \frac{1}{4} \, \arctan\left(5\right)\right)\right)}, 26^{\frac{1}{8}} {\left(\cos\left(\frac{3}{2} \, \pi - \frac{1}{4} \, \arctan\left(5\right)\right) + i \, \sin\left(\frac{3}{2} \, \pi - \frac{1}{4} \, \arctan\left(5\right)\right)\right)}, 26^{\frac{1}{8}} {\left(\cos\left(2 \, \pi - \frac{1}{4} \, \arctan\left(5\right)\right) + i \, \sin\left(2 \, \pi - \frac{1}{4} \, \arctan\left(5\right)\right)\right)}\right]\]

19. zadatak

Riješite jednadžbu $(1+i)x^4-(1-i)x=0$.

Rješenje

In [105]:
complex_roots((1+i)*x^4-(1-i)*x)
Out[105]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(0, 1\right), \left(-0.866025403784439? - 0.500000000000000?i, 1\right), \left(1i, 1\right), \left(0.866025403784439? - 0.500000000000000?i, 1\right)\right]\]
In [106]:
solve((1+I)*u^4-(1-I)*u,u)
Out[106]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = \frac{1}{2} i \, \sqrt{3} \left(-i\right)^{\frac{1}{3}} - \frac{1}{2} \, \left(-i\right)^{\frac{1}{3}}, u = -\frac{1}{2} i \, \sqrt{3} \left(-i\right)^{\frac{1}{3}} - \frac{1}{2} \, \left(-i\right)^{\frac{1}{3}}, u = \left(-i\right)^{\frac{1}{3}}, u = 0\right]\]

Možemo primijeniti funkciju kompleksni_korijen. Naime, jedno rješenje jednadžbe je $x=0$ pa ostaje još riješiti jednadžbu $x^3=\frac{1-i}{1+i}$, tj. treba izračunati $\sqrt[3]{\frac{1-i}{1+i}}$.

In [107]:
solve((1+I)*u^3-(1-I),u^3)
Out[107]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u^{3} = \left(-i\right)\right]\]
In [108]:
kompleksni_korijen(-I,3,sredi=True)
Out[108]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\cos\left(\frac{1}{2} \, \pi\right) + i \, \sin\left(\frac{1}{2} \, \pi\right), -\frac{1}{2} \, \sqrt{3} - \frac{1}{2} i, \frac{1}{2} \, \sqrt{3} - \frac{1}{2} i\right]\]

20. zadatak

Riješite jednadžbu $x^6-16x^4-30x^3-16x^2+1=0$.

Rješenje

In [109]:
solve(u^6-16*u^4-30*u^3-16*u^2+1,u)
Out[109]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{2} \, \sqrt{5} - \frac{3}{2}, u = \frac{1}{2} \, \sqrt{5} - \frac{3}{2}, u = -\frac{1}{2} \, \sqrt{21} + \frac{5}{2}, u = \frac{1}{2} \, \sqrt{21} + \frac{5}{2}, u = \left(-1\right)\right]\]
In [110]:
solve(u^6-16*u^4-30*u^3-16*u^2+1,u,multiplicities=True)
Out[110]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left(\left[u = -\frac{1}{2} \, \sqrt{5} - \frac{3}{2}, u = \frac{1}{2} \, \sqrt{5} - \frac{3}{2}, u = -\frac{1}{2} \, \sqrt{21} + \frac{5}{2}, u = \frac{1}{2} \, \sqrt{21} + \frac{5}{2}, u = \left(-1\right)\right], \left[1, 1, 1, 1, 2\right]\right)\]
In [111]:
f=x^6-16*x^4-30*x^3-16*x^2+1

  $-1$ je dvostruko rješenje

In [112]:
f.roots()
Out[112]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-1, 2\right)\right]\]
In [113]:
f.roots(CC)
Out[113]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-2.61803398874989, 1\right), \left(-1.00000000000000, 2\right), \left(-0.381966011250105, 1\right), \left(0.208712152522080, 1\right), \left(4.79128784747792, 1\right)\right]\]

21. zadatak

Riješite jednadžbu $x^4+3x^2+2x+3=0$.

Rješenje

In [114]:
solve(u^4+3*u^2+2*u+3,u)
Out[114]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[u = -\frac{1}{2} i \, \sqrt{11} + \frac{1}{2}, u = \frac{1}{2} i \, \sqrt{11} + \frac{1}{2}, u = -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, u = \frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right]\]

22. zadatak

Riješite jednadžbu $x^8+3x^4+2x^2+3=0$.

Rješenje

SAGE nema automatiziran postupak korjenovanja kompleksnih brojeva, što se dolje vidi iz danih rješenja na izlazu.

In [115]:
var('x')
jednadzba=x^8+3*x^4+2*x^2+3==0
solve(jednadzba,x)
Out[115]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[x = -\sqrt{\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}}, x = \sqrt{\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}}, x = -\sqrt{-\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}}, x = \sqrt{-\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}}, x = -\sqrt{\frac{1}{2} i \, \sqrt{11} + \frac{1}{2}}, x = \sqrt{\frac{1}{2} i \, \sqrt{11} + \frac{1}{2}}, x = -\sqrt{-\frac{1}{2} i \, \sqrt{11} + \frac{1}{2}}, x = \sqrt{-\frac{1}{2} i \, \sqrt{11} + \frac{1}{2}}\right]\]

Stoga ćemo uvesti najprije supstituciju $x^2=t$ i riješiti dobivenu jednadžbu za $t$. Nakon toga ćemo pomoću naše funkcije kompleksni_korijen izvaditi kvadratne korijene iz dobivenih $t$-ova.

In [116]:
var('t')
nova=jednadzba.substitute(x=sqrt(t)); nova
Out[116]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}t^{4} + 3 \, t^{2} + 2 \, t + 3 = 0\]
In [117]:
rj=solve(nova,t); rj
Out[117]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[t = -\frac{1}{2} i \, \sqrt{11} + \frac{1}{2}, t = \frac{1}{2} i \, \sqrt{11} + \frac{1}{2}, t = -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, t = \frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right]\]
In [118]:
rj=list(map(lambda y:y.rhs(),rj)); rj
Out[118]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{1}{2} i \, \sqrt{11} + \frac{1}{2}, \frac{1}{2} i \, \sqrt{11} + \frac{1}{2}, -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, \frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right]\]

Primijenimo sada kompleksni_korijen na dobivene $t$-ove kako bismo dobili rješenja za $x$-ove. Naime, $x=\sqrt{t}$. Radi preglednosti primjenjivat ćemo funkciju kompleksni_korijen korak po korak, zasebno za svaki dobiveni $t$.

In [119]:
kompleksni_korijen(rj[0],2,sredi=True)
Out[119]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[3^{\frac{1}{4}} {\left(\cos\left(\pi - \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(\pi - \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}, 3^{\frac{1}{4}} {\left(\cos\left(-\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(-\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}\right]\]
In [120]:
kompleksni_korijen(rj[1],2,sredi=True)
Out[120]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[3^{\frac{1}{4}} {\left(\cos\left(\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}, 3^{\frac{1}{4}} {\left(\cos\left(\pi + \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(\pi + \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}\right]\]
In [121]:
kompleksni_korijen(rj[2],2,sredi=True)
Out[121]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, -\frac{1}{2} i \, \sqrt{3} + \frac{1}{2}\right]\]
In [122]:
kompleksni_korijen(rj[3],2,sredi=True)
Out[122]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\frac{1}{2} i \, \sqrt{3} + \frac{1}{2}, -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right]\]

Možemo odjedanput primijeniti funkciju kompleksni_korijen na cijelu listu rj. Usput možemo primijeniti i funkciju flatten kako bismo izbacili sve unutarnje zagrade (koje stvara funkcija kompleksni_korijen) u listi rješenja za $x$-ove.

In [123]:
flatten(list(map(lambda y: kompleksni_korijen(y,2,sredi=True),rj)))
Out[123]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[3^{\frac{1}{4}} {\left(\cos\left(\pi - \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(\pi - \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}, 3^{\frac{1}{4}} {\left(\cos\left(-\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(-\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}, 3^{\frac{1}{4}} {\left(\cos\left(\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(\frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}, 3^{\frac{1}{4}} {\left(\cos\left(\pi + \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right) + i \, \sin\left(\pi + \frac{1}{2} \, \arctan\left(\sqrt{11}\right)\right)\right)}, \frac{1}{2} i \, \sqrt{3} - \frac{1}{2}, -\frac{1}{2} i \, \sqrt{3} + \frac{1}{2}, \frac{1}{2} i \, \sqrt{3} + \frac{1}{2}, -\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right]\]

Naravno, mogli smo zadanu jednadžbu riješiti numerički pomoću roots metode.

In [124]:
R.<x>=QQ[]
f=x^8+3*x^4+2*x^2+3
f.roots(CC)
Out[124]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-1.05642103528112 - 0.784872858356332i, 1\right), \left(-1.05642103528112 + 0.784872858356332i, 1\right), \left(-0.500000000000000 - 0.866025403784439i, 1\right), \left(-0.500000000000000 + 0.866025403784439i, 1\right), \left(0.500000000000000 - 0.866025403784439i, 1\right), \left(0.500000000000000 + 0.866025403784439i, 1\right), \left(1.05642103528112 - 0.784872858356332i, 1\right), \left(1.05642103528112 + 0.784872858356332i, 1\right)\right]\]

Želimo li veću preciznost, moramo to posebno naglasiti.

In [125]:
f.roots(ComplexField(200))
Out[125]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(-1.0564210352811224890484565734267760947266453651249083333236 - 0.78487285835633190582107678365331843903329111193828163920018i, 1\right), \left(-1.0564210352811224890484565734267760947266453651249083333236 + 0.78487285835633190582107678365331843903329111193828163920018i, 1\right), \left(-0.50000000000000000000000000000000000000000000000000000000000 - 0.86602540378443864676372317075293618347140262690519031402790i, 1\right), \left(-0.50000000000000000000000000000000000000000000000000000000000 + 0.86602540378443864676372317075293618347140262690519031402790i, 1\right), \left(0.50000000000000000000000000000000000000000000000000000000000 - 0.86602540378443864676372317075293618347140262690519031402790i, 1\right), \left(0.50000000000000000000000000000000000000000000000000000000000 + 0.86602540378443864676372317075293618347140262690519031402790i, 1\right), \left(1.0564210352811224890484565734267760947266453651249083333236 - 0.78487285835633190582107678365331843903329111193828163920018i, 1\right), \left(1.0564210352811224890484565734267760947266453651249083333236 + 0.78487285835633190582107678365331843903329111193828163920018i, 1\right)\right]\]

Ferrarijeva rezolventa

Kod ručnog rješavanja jednadžbe $a_4x^4+a_3x^3+a_2x^2+a_1x+a_0=0$ Ferrarijevom metodom, najprije treba pronaći Ferrarijevu rezolventu. Ovdje je implementirana funkcija Ferrari_rezolventa koja obavlja taj posao. Pazite, varijabla p mora biti tipa "SAGE polinom" i naravno mora biti polinom 4. stupnja. Na izlazu se vraća Ferrarijeva rezolventa u varijabli $y$.

Evo i nekoliko konkretnih primjera korištenja funkcije Ferrari_rezolventa.

1. primjer

Pronađite Ferrarijevu rezolventu jednadžbe $x^4+3x^2+2x+3=0$.

In [126]:
R.<x>=QQ[]
Ferrari_rezolventa(x^4+3*x^2+2*x+3)
Out[126]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-8 \, y^{3} + 12 \, y^{2} + 24 \, y - 32 = 0\]

možemo i dodatno pomnožiti rezolventu nekim brojem ukoliko želimo manje brojeve u jednadžbi

In [127]:
1/gcd([8,12,24,32])*Ferrari_rezolventa(x^4+3*x^2+2*x+3)
Out[127]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-2 \, y^{3} + 3 \, y^{2} + 6 \, y - 8 = 0\]

2. primjer

Pronađite Ferrarijevu rezolventu jednadžbe $x^4+x^3+x^2+x+1=0$.

In [128]:
Ferrari_rezolventa(x^4+x^3+x^2+x+1)
Out[128]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-8 \, y^{3} + 4 \, y^{2} + 6 \, y - 2 = 0\]
In [129]:
1/gcd([8,4,6,2])*Ferrari_rezolventa(x^4+x^3+x^2+x+1)
Out[129]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-4 \, y^{3} + 2 \, y^{2} + 3 \, y - 1 = 0\]

3. primjer

Pronađite Ferrarijevu rezolventu jednadžbe $x^4-x^3+8x^2-12x+15=0$.

In [130]:
Ferrari_rezolventa(x^4-x^3+8*x^2-12*x+15)
Out[130]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-8 \, y^{3} + 32 \, y^{2} + 96 \, y - 321 = 0\]
In [131]:
1/gcd([8,32,96,321])*Ferrari_rezolventa(x^4-x^3+8*x^2-12*x+15)
Out[131]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-8 \, y^{3} + 32 \, y^{2} + 96 \, y - 321 = 0\]

4. primjer

Pronađite Ferrarijevu rezolventu jednadžbe $-3x^4+5x+2=0$.

In [132]:
Ferrari_rezolventa(-3*x^4+5*x+2)
Out[132]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}-8 \, y^{3} - \frac{16}{3} \, y + \frac{25}{9} = 0\]
In [133]:
-9*Ferrari_rezolventa(-3*x^4+5*x+2)
Out[133]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}72 \, y^{3} + 48 \, y - 25 = 0\]

Cardanova formula

U ovom dijelu implementirana je funkcija Cardan(p,q) koja daje egzaktna rješenja jednadžbe $x^3+px+q=0$ koristeći Cardanovu formulu.

Evo i nekoliko konkretnih primjera korištenja funkcije Cardan.

1. primjer

Pomoću Cardanove formule riješite jednadžbu $x^3+15x+124=0$.

In [134]:
Cardan(15,124)
Out[134]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[-4, -3 i \, \sqrt{3} + 2, 3 i \, \sqrt{3} + 2\right]\]

U ovom slučaju i funkcija solve daje rješenja

In [135]:
var('x')
solve(x^3+15*x+124==0,x)
Out[135]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[x = -3 i \, \sqrt{3} + 2, x = 3 i \, \sqrt{3} + 2, x = \left(-4\right)\right]\]

2. primjer

Pomoću Cardanove formule riješite jednadžbu $x^3-2x-2=0$.

In [136]:
Cardan(-2,-2)
Out[136]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[{\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}} + \frac{2}{3 \, {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}}}, -\frac{1}{2} i \, \sqrt{3} {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}} - \frac{1}{2} \, {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}} + \frac{i \, \sqrt{3}}{3 \, {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}}} - \frac{1}{3 \, {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}}}, \frac{1}{2} i \, \sqrt{3} {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}} - \frac{1}{2} \, {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}} - \frac{i \, \sqrt{3}}{3 \, {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}}} - \frac{1}{3 \, {\left(\frac{1}{3} \, \sqrt{\frac{19}{3}} + 1\right)}^{\frac{1}{3}}}\right]\]

Funkcija solve također daje rješenja

In [137]:
solve(x^3-2*x-2==0,x)
Out[137]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[x = -\frac{1}{2} \, {\left(\frac{1}{9} \, \sqrt{19} \sqrt{3} + 1\right)}^{\frac{1}{3}} {\left(i \, \sqrt{3} + 1\right)} + \frac{i \, \sqrt{3} - 1}{3 \, {\left(\frac{1}{9} \, \sqrt{19} \sqrt{3} + 1\right)}^{\frac{1}{3}}}, x = -\frac{1}{2} \, {\left(\frac{1}{9} \, \sqrt{19} \sqrt{3} + 1\right)}^{\frac{1}{3}} {\left(-i \, \sqrt{3} + 1\right)} + \frac{-i \, \sqrt{3} - 1}{3 \, {\left(\frac{1}{9} \, \sqrt{19} \sqrt{3} + 1\right)}^{\frac{1}{3}}}, x = {\left(\frac{1}{9} \, \sqrt{19} \sqrt{3} + 1\right)}^{\frac{1}{3}} + \frac{2}{3 \, {\left(\frac{1}{9} \, \sqrt{19} \sqrt{3} + 1\right)}^{\frac{1}{3}}}\right]\]

Kako egzaktna rješenja nisu previše "lijepa", uvijek možemo jednadžbu riješiti i numerički pomoću metode roots.

In [138]:
R.<x>=QQ[]
f=x^3-2*x-2
f.roots(CC)
Out[138]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[\left(1.76929235423863, 1\right), \left(-0.884646177119316 - 0.589742805022206i, 1\right), \left(-0.884646177119316 + 0.589742805022206i, 1\right)\right]\]

3. primjer

Pomoću Cardanove formule riješite jednadžbu $x^3-3x+1=0$.

In [139]:
Cardan(-3,1)
Out[139]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[2 \, \cos\left(\frac{2}{9} \, \pi\right), \sqrt{3} \sin\left(\frac{2}{9} \, \pi\right) - \cos\left(\frac{2}{9} \, \pi\right), -\sqrt{3} \sin\left(\frac{2}{9} \, \pi\right) - \cos\left(\frac{2}{9} \, \pi\right)\right]\]

Ovaj put se funkcija solve nije proslavila. Uočite da ona ne zna računati korijene iz kompleksnih brojeva, dok naša funkcija Cardan to zna.

In [140]:
var('x')
solve(x^3-3*x+1==0,x)
Out[140]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[x = -\frac{1}{2} \, {\left(i \, \sqrt{3} + 1\right)} {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}} + {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{2}{3}}, x = {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{4}{3}} - \frac{i \, \sqrt{3} + 1}{2 \, {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}}}, x = {\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}} + \frac{1}{{\left(\frac{1}{2} i \, \sqrt{3} - \frac{1}{2}\right)}^{\frac{1}{3}}}\right]\]

4. primjer

Pomoću Cardanove formule riješite jednadžbu $x^3+6x-2=0$.

In [141]:
Cardan(6,-2)
Out[141]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{1}{2} \cdot 4^{\frac{2}{3}} + 4^{\frac{1}{3}}, -\frac{1}{4} i \cdot 4^{\frac{2}{3}} \sqrt{3} - \frac{1}{2} i \cdot 4^{\frac{1}{3}} \sqrt{3} + \frac{1}{4} \cdot 4^{\frac{2}{3}} - \frac{1}{2} \cdot 4^{\frac{1}{3}}, \frac{1}{4} i \cdot 4^{\frac{2}{3}} \sqrt{3} + \frac{1}{2} i \cdot 4^{\frac{1}{3}} \sqrt{3} + \frac{1}{4} \cdot 4^{\frac{2}{3}} - \frac{1}{2} \cdot 4^{\frac{1}{3}}\right]\]

Funkcija solve daje također rješenja jer u ovom slučaju nije bilo potrebno vaditi korijen iz kompleksnog broja.

In [142]:
solve(x^3+6*x-2==0,x)
Out[142]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[x = -\frac{1}{4} \cdot 4^{\frac{2}{3}} {\left(i \, \sqrt{3} - 1\right)} - \frac{1}{2} \cdot 4^{\frac{1}{3}} {\left(i \, \sqrt{3} + 1\right)}, x = -\frac{1}{4} \cdot 4^{\frac{2}{3}} {\left(-i \, \sqrt{3} - 1\right)} - \frac{1}{2} \cdot 4^{\frac{1}{3}} {\left(-i \, \sqrt{3} + 1\right)}, x = -\frac{1}{2} \cdot 4^{\frac{2}{3}} + 4^{\frac{1}{3}}\right]\]

5. primjer

Pomoću Cardanove formule riješite jednadžbu $x^3-12x-8=0$.

In [143]:
Cardan(-12,-8)
Out[143]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[4 \, \cos\left(\frac{1}{9} \, \pi\right), 2 \, \sqrt{3} \sin\left(\frac{1}{9} \, \pi\right) - 2 \, \cos\left(\frac{1}{9} \, \pi\right), -2 \, \sqrt{3} \sin\left(\frac{1}{9} \, \pi\right) - 2 \, \cos\left(\frac{1}{9} \, \pi\right)\right]\]

U ovom slučaju funkcija solve ima problema s vađenjem korijena iz kompleksnog broja.

In [144]:
solve(x^3-12*x-8==0,x)
Out[144]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[x = -\frac{1}{2} \, {\left(4 i \, \sqrt{3} + 4\right)}^{\frac{1}{3}} {\left(i \, \sqrt{3} + 1\right)} - \frac{2 \, {\left(-i \, \sqrt{3} + 1\right)}}{{\left(4 i \, \sqrt{3} + 4\right)}^{\frac{1}{3}}}, x = -\frac{1}{2} \, {\left(4 i \, \sqrt{3} + 4\right)}^{\frac{1}{3}} {\left(-i \, \sqrt{3} + 1\right)} - \frac{2 \, {\left(i \, \sqrt{3} + 1\right)}}{{\left(4 i \, \sqrt{3} + 4\right)}^{\frac{1}{3}}}, x = {\left(4 i \, \sqrt{3} + 4\right)}^{\frac{1}{3}} + \frac{4}{{\left(4 i \, \sqrt{3} + 4\right)}^{\frac{1}{3}}}\right]\]

6. primjer

Pomoću Cardanove formule riješite jednadžbu $x^3-2x^2-x+2=0$.

Ova jednadžba ima sva rješenja cjelobrojna.

In [145]:
var('x y')
solve(x^3-2*x^2-x+2==0,x)
Out[145]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[x = 2, x = \left(-1\right), x = 1\right]\]

Međutim, Cardanova formula će dati vrlo komplicirane zapise tih rješenja. Da bismo mogli primijeniti Cardanovu formulu, moramo se prvo riješiti kvadratnog člana. U jednadžbi $x^3+ax^2+bx+c=0$ kvadratnog člana se rješavamo pomoću supstitucije $x=y-\frac{a}{3}$.

In [146]:
jed=x^3-2*x^2-x+2==0
jed.substitute(x=y+2/3)
Out[146]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{27} \, {\left(3 \, y + 2\right)}^{3} - \frac{2}{9} \, {\left(3 \, y + 2\right)}^{2} - y + \frac{4}{3} = 0\]
In [147]:
expand(jed.substitute(x=y+2/3))
Out[147]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}y^{3} - \frac{7}{3} \, y + \frac{20}{27} = 0\]

Sada rješavamo jednadžbu $y^3-\frac{7}{3}y+\frac{20}{27}=0$ pomoću Cardanove formule.

In [148]:
rj=Cardan(-7/3,20/27); rj
Out[148]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{3} \, \sqrt{7} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{3} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right), -\frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right), \frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{3} \, \sqrt{7} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{3} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right)\right]\]

Sva rješenja početne jednadžbe su

In [149]:
rj2=list(map(lambda h:h+2/3,rj)); rj2
Out[149]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[-\frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{3} \, \sqrt{7} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{3} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{2}{3}, -\frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{2}{3}, \frac{1}{6} i \, \sqrt{7} \sqrt{3} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \sqrt{3} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} \, \sqrt{7} \cos\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{3} \, \sqrt{7} \cos\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{6} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \pi - \frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) - \frac{1}{3} i \, \sqrt{7} \sin\left(\frac{1}{3} \, \arctan\left(\frac{9}{10} \, \sqrt{3}\right)\right) + \frac{2}{3}\right]\]

Dakle, užasno komplicirani zapisi rješenja početne jednadžbe, a znamo da su ta rješenja jako lijepa i cjelobrojna kao što smo i na početku vidjeli. No, možemo se numerički uvjeriti da su ovi komplicirani zapisi zaista jednaki $2,\, 1$ i $-1$.

In [150]:
list(map(lambda h:n(h,digits=20),rj2))
Out[150]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[2.0000000000000000000, 1.0000000000000000000 + 8.4703294725430033907 \times 10^{-22}i, -0.99999999999999999999 - 8.4703294725430033907 \times 10^{-22}i\right]\]
In [151]:
list(map(lambda h:n(h,digits=80),rj2))
Out[151]:
\[\newcommand{\Bold}[1]{\mathbf{#1}}\left[2.0000000000000000000000000000000000000000000000000000000000000000000000000000000, 1.0000000000000000000000000000000000000000000000000000000000000000000000000000000, -0.99999999999999999999999999999999999999999999999999999999999999999999999999999999 - 5.2710989716152616121742870256350095038549806911842537750388815125540721454848798 \times 10^{-82}i\right]\]

Možemo zaključiti da nije pametno odmah koristiti Cardanovu formulu kod algebarske jednadžbe trećeg stupnja. Najbolje je prvo probati jednadžbu riješiti nekim drugim metodama, a tek kad nam potonu sve lađe, onda krenemo koristiti Cardanovu formulu i probamo pomoću nje doznati da li se egzaktna rješenja mogu napisati u nekom lijepom obliku. Jasno, u praksi se koriste razne numeričke metode za rješavanje jednadžbi, a ovdje smo pokazali metodu roots koja numerički traži nultočke polinoma i može ih dati na unaprijed zadanu preciznost.

In [ ]: