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Abstract.We describe some special surfaces in pseudo-Galilean spaces such
as helical surfaces, ruled screw surfaces, surfaces of revolution and in particular
tori of revolution. We de�ne special surfaces and �nd their main properties.

1. Introduction

There has been a long history of studying special classes of surfaces, as
surfaces with particularly interesting properties, in Euclidean geometry. For
example ruled surfaces, surfaces of revolution, sphere, helical surfaces etc.

Even today there are open problems in the theory of surfaces in the Eu-
clidean geometry. Besides Euclidean geometry, a range of new types of ge-
ometries have been invented and developed in the last two centuries. They
can be introduced in a variety of manners. One possible way is through
projective manner, where one can express metric properties through projec-
tive relations. For this purpose a �xed conic (called absolute) in in�nity is
taken and all metric relations may be considered as projective relations with
respect to the absolute. This approach is due to A. Cayley and F. Klein.

Key words and phrases: pseudo-Galilean space, ruled surface, generalized screw surface, Gaus-
sian curvature, mean curvature.
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F. Klein noticed that due to the nature of the absolute, various geometries
are possible. Details on this development can be found in [8]. Among these
geometries there are also Galilean and pseudo-Galilean geometries. These are
the ambient geometries in which we investigate some special surfaces.

The main purpose of this article is to de�ne special surfaces, �nd their
main properties and compare them with the properties of corresponding sur-
faces in Euclidean and some other geometries and to open the �eld for further
investigation.

This paper is written from the pseudo-Galilean point of view. The results
can be easily transferred to the Galilean geometry.

We start with the helical surfaces as the most general case where a surface
is obtained by rigid screw motion of a given curve. According to the position
of a curve we have two classes of screw surfaces.

If a curve which is displaced in a rigid screw motion is a straight line we
get a ruled screw surface with constant surface invariants. There are open
and closed ruled screw surfaces according to the position of the displaced line
with respect to the axis of the screw motion. An interesting case of this class
is a helicoid, which happens to be a minimal surface (as in the Euclidean
space), but with constant Gaussian curvature (unlike the Euclidean space).

If a pseudo-Euclidean circle undergoes a screw motion, the obtained sur-
face has vanishing Gaussian curvature and constant mean curvature. There-
fore it can be related to a cylinder in the Euclidean case.

Separately we treat surfaces of revolution in the pseudo-Galilean space,
which are obtained by pseudo-Euclidean or isotropic rotations and also �nd
surfaces of revolution of constant Gaussian curvature.

Finally we describe a torus of revolution as a surface of revolution ob-
tained by revolving a circle around a coplanar axis. There are two di�erent
types of tori with respect to the performed rotations and three di�erent types
with respect to the existence of intersections of a rotating curve and the ro-
tation axes.

Ruled surfaces and surfaces of constant slope in the pseudo-Galilean space
are described in [2] and [3].

We furnish the theory presented here by pictures of some of the inves-
tigated surfaces for which we are grateful to Damir Horvat, assistant at the
University of Zagreb.

2. Preliminaries

The pseudo-Galilean geometry is one of the real Cayley�Klein geometries
(of projective signature (0, 0,+,−), explained in [4]). The absolute of the
pseudo-Galilean geometry is an ordered triple {ω, f, I} where ω is the ideal
(absolute) plane, f is a line in ω and I is the �xed hyperbolic involution of
points of f .
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SOME SPECIAL SURFACES IN THE PSEUDO-GALILEAN SPACE 211

In a�ne coordinates de�ned by (x0 : x1 : x2 : x3) = (1 : x : y : z), the dis-
tance between the points Pi = (xi, yi, zi), i = 1, 2, is de�ned by

(2.1) d(P1, P2) =




|x2 − x1|, if x1 6= x2,√∣∣(y2 − y1)

2 − (z2 − z1)
2
∣∣ , if x1 = x2.

The group of motions of G1
3 is a six-parameter group given (in a�ne

coordinates) by

x̄ = a + x, ȳ = b + cx + y coshϕ + z sinhϕ,

z̄ = d + ex + y sinhϕ + z coshϕ.

It leaves invariant the absolute �gure as well as the pseudo-Galilean distance
(2.1) of points.

A vector x(x, y, z) is said to be non-isotropic if x 6= 0. All unit non-
isotropic vectors are of the form (1, y, z). For isotropic vectors x = 0 holds.
There are four types of isotropic vectors: spacelike (y2 − z2 > 0), time-like
(y2 − z2 < 0) and two types of lightlike (y = ±z) vectors. A non-lightlike
isotropic vector is a unit vector if y2 − z2 = ±1.

A plane of the form x = const. is called a pseudo-Euclidean plane (since
its induced geometry is pseudo-Euclidean), otherwise it is called isotropic
(since its induced geometry is isotropic). An isotropic planeAx + By + Cz

+ D = 0 is called light-like if B2 − C2 = 0.
We shall treat a Cr-surface, r = 1, as a subset Φ ⊂ G1

3 for which there
exists an open subset D of R2 and a Cr-mapping x : D → G1

3 satisfying
Φ = x(D). A Cr-surface Φ ⊂ G1

3 is called regular if x is an immersion, and
simple if x is an embedding. It is admissible if it does not have either pseudo-
Euclidean or isotropic light-like tangent planes.

In a tangent plane of a surface parametrized by

x(u1, u2) =
(
x(u1, u2), y(u1, u2), z(u1, u2)

)

in a point P0, there is a unique isotropic direction de�ned by the condition
x1 du1 + x2 du2 = 0, where xi = ∂x

∂ui
, i = 1, 2. A side tangential vector σ =

1
W (x1x2 − x2x1) is a unit isotropic vector in a tangent plane. The function
W , W > 0, de�ned by

(2.2) W =
√∣∣(x1y2 − x2y1)

2 − (x1z2 − x2z1)
2
∣∣

is equal to the pseudo-Galilean norm of the side tangential vectorσ.
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The isotropic line in the tangent plane meets the absolute line f in a
point S, and we denote by S⊥ the point on f obtained from S by the hy-
perbolic involution I. The line connecting P0 and S⊥ is perpendicular to the
tangent plane. A unit surface normal �eld is de�ned by

N =
1
W

(0, x1z2 − x2z1, x1y2 − x2y1),

where yi = ∂y
∂ui

, zi = ∂z
∂ui

, i = 1, 2.
Since N ·N = ±1 = ε, we distinguish between two types of admissible

surfaces: space-like surfaces having time-like surface normals and time-like
surfaces having space-like normals. The pseudo-Euclidean scalar product
in the yz-plane is denoted by ·. A surface is space-like if (x1y2 − x2y1)

2 −
(x1z2 − x2z1)

2 > 0 in all of its points, time-like otherwise.
The �rst fundamental form of a surface is introduced in the following way

ds2 = (x1 du1 + x2 du2)
2 + δ(x̃1 du1 + x̃2 du2)

2,

where

δ =

{
0, if direction du : dv is non-isotropic,
1, if direction du : dv is isotropic.

By ˜ above, the projection of a vector on the pseudo-Euclidean yz-plane is
denoted.

The Gaussian curvature of a surface is de�ned by means of the coe�cients
of the second fundamental form

K = −ε
L11L22 − L2

12

W 2
,(2.3)

where N2 = ε = −1 for space-like surfaces and N2 = ε = 1 for time-like
surfaces. The second fundamental form II is given by II = L11 du2

1 +
2L12 du1 du2 + L22 du2

2, where Lij , i, j = 1, 2, are the normal components of
x11,x12,x22, respectively. It holds

Lij = ε
1
x1

(x1x̃ij − xijx̃1) · Ñ = ε
1
x2

(x2x̃ij − xijx̃2) · Ñ.

More about the notion of Gaussian curvature in the pseudo-Galilean space
can be found in [11].

The mean curvature of a surface is de�ned by

H = −ε
x2

2L11 − 2x1x2L12 + x2
1L22

2W 2
.

More about curves and surfaces inG1
3 can be found in [1].
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SOME SPECIAL SURFACES IN THE PSEUDO-GALILEAN SPACE 213

3. Helical surfaces

In Euclidean geometry helical (twisted, screw) surface is a natural gen-
eralization of both surfaces of revolution and helicoids. Here we distinguish
between two types of rotations and there is only one type of screw (helical)
motion.

Let c be a plane curve and e a given line. It is convenient, but not neces-
sary, to start with a plane curve c. A helical surface (or generalized helicoid)
H is a surface obtained when c is displaced in a rigid screw motion about e.
The normal form of the 1-parameter group of motions called the screw mo-
tions is given by

x̄ = pt + x, ȳ = y cosh t + z sinh t, z̄ = y sinh t + z cosh t,(3.1)

where p ∈ R. By substituting p = 0, the pseudo-Euclidean rotations about
the x-axis are described, and the obtained surface is a surface of revolution.
Surfaces of revolution are presented in one of the following sections.

Since a plane curve c can lie in a pseudo-Euclidean or in an isotropic
plane, we treat these two cases separately.

Let a plane curve c, given by r(v) =
(
0, f(v), g(v)

)
, where f, g ∈ C2, be

an admissible curve in a pseudo-Euclidean plane. If c undergoes the screw
motion, the helical surface Hp with parametrization is obtained by

(3.2) x(u, v) =
(
pu, f(v) cosh u + g(v) sinhu, f(v) sinhu + g(v) coshu

)
.

Its �rst fundamental form is given by

(3.3) ds2 = (pdu)2 + δ
[
(g2− f2) du2 + 2(f ′g− fg′) dudv + (f ′2− g′2) dv2

]
.

It is convenient to assume that the curvec is parametrized by the pseudo-
Euclidean arc length, that is, f ′2 − g′2 = ε, where ε = ±1. Then the surface
normal vector �eld is

N = sgn (p)(0, f ′ sinhu + g′ coshu, f ′ coshu + g′ sinhu)

and also the �rst fundamental form (3.3) can be simpli�ed.
From the above expression and the de�nition of a space-like (time-like)

curve as a curve with space-like (time-like) tangent �eld, the following propo-
sition can easily be obtained.

Proposition 1. If c is a space-like curve in a pseudo-Euclidean plane
then the surface obtained by a rigid screw motion is a space-like surface. On
the other hand, if a time-like curve from a pseudo-Euclidean plane is displaced
by a screw motion, then a time-like surface is obtained.
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214 B. DIVJAK and �. MILIN �IPU�

Fig. 1: The helical surface Hp, p = 1, f(v) = sin v, g(v) = cos v

For the Gaussian and the mean curvature we get

K = −ε
(fg′ − gf ′)(f ′′g′ − g′′f ′)− 1

p2
, H = −1

2
ε sgn (p)(f ′′g′ − g′′f ′).

Since c is parametrized by the arc length (which implies f ′f ′′ = g′g′′), the
expression for K and H can be written also as

K =
(fg′ − gf ′)g′′ + εf ′

p2f ′
, H = −1

2
ε sgn (p)

g′′

f ′

or equivalently

(3.4) K =
(fg′ − gf ′)f ′′ + εg′

p2g′
, H = −1

2
ε sgn (p)

f ′′

g′
.

Now we can �nd minimal surfaces among helical surfaces of the �rst type.
Minimal surfaces are characterized byH = 0. According to (3.4) the starting
curve has to be a straight line which can be parametrized byr(v) = (0, av + b,

±v
√

a2 − ε + c), where a, b, c are real constants. For ε = 1 we get a minimal
time-like ruled surface and for ε = −1 a minimal space-like ruled surface.

Theorem 1. There are two classes of minimal surfaces among helical
surfaces Hp : space-like and time-like surfaces. These surfaces are ruled sur-
faces with isotropic generator �eld.
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SOME SPECIAL SURFACES IN THE PSEUDO-GALILEAN SPACE 215

Now, let a plane curve c be an admissible curve in an isotropic plane.
We can treat two cases: the �rst one when the curve c is parametrized by
r(v) =

(
g(v), f(v), 0

)
and the second when the curve c is parametrized by

r(v) =
(
g(v), 0, f(v)

)
. Then the helical surface Hi is given by

(3.5) x(u, v) =
(
pu + g(v), f(v) cosh u, f(v) sinh u

)

and

(3.6) x(u, v) =
(
pu + g(v), f(v) sinh u, f(v) cosh u

)

respectively. When the expression f2g′2− p2f ′2 > 0, the �rst surface is time-
like and the second is space-like and vice versa.

Fig. 2: The helical surface Hi, p = 1, f(v) = sin v, g(v) = cos v

The �rst fundamental form of a helical surfaceHi obtained in this way
is given by

(3.7) ds2 =
(
pdu + g′(v) dv

)2 + λδ
(
f ′2(v) dv2 − f2(v) du2

)
,

where λ = 1 for the surface (3.5) and λ = −1 for the surface (3.6).
If the curve c is parametrized by the isotropic arc length, that is if

g(v) = v, then the above form can be simpli�ed and the Gaussian and mean
curvature are given by

(3.8) K = −ε
f3f ′′ − f ′4p2

(
f2 − f ′2p2

)2 , H = −ε
f2 − 2p2f ′2 + p2ff ′′

2
√(

f2 − f ′2p2
)3

.
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Two interesting consequences of the above formulae will be presented in
the following subsections.

3.1. Ruled screw surfaces in G1
3. Ruled screw surfaces are special

cases of helical surfaces. The starting curve c is a straight line. We remind
the reader that in the pseudo-Galilean space, similar to the Euclidean space,
there are three invariants de�ned for the most general type of ruled surfaces
of type I. These invariants are the curvature κ, the torsion τ and the stric-
tion σ of the surface. Details on their de�nition and properties can be found
in [3]. It turns out that ruled screw surfaces are ruled surfaces with constant
invariants. Our main goal in this section is to determine the invariants.

We distinguish between open and closed ruled screw surfaces according
to the position of the line c with respect to the axis e. If a line c intersects the
axis e, a closed ruled screw surface is obtained, otherwise we have an open
ruled screw surface.

1.Open ruled screw surfaces. The straight line v 7→ (bv, v, a), a 6= 0, b 6= 0,
which does not intersect the x-axis is displaced under the screw motion and
the surface

(3.9) x(t, v) = (pt, a sinh t, a cosh t) + v(b, cosh t, sinh t)

is obtained. This is a ruled surface with the striction curves(t) = (pt, a sinh t,
a cosh t). The striction curve lies in a pseudo-Euclidean plane and the ob-
tained surface is a ruled surface of the type I. The arc length parametrization
of the striction curve is

s(u) =
(

u, a sinh
u

p
, a cosh

u

p

)
.

The unit generator vector �eld is given bye(u) = (1, 1
b cosh u

p , 1
b sinh u

p). The
invariants of this ruled surfaces inG1

3 are

κ =
1
p

= const., τ = − b

p
= const., σ =

ab− p

pb
= const.

As in the Euclidean and isotropic case ([5], [7]), notice that this surface is a
tangent ruled surface of a helix if and only if p = ab.

2. Closed ruled screw surfaces. If a = 0, b 6= 0 in the expressions above,
the straight line v 7→ (bv, v, 0) meets the screw-axis (x-axis) and the obtained
surface is a closed ruled screw surface

(3.10) x(u, v) = (u, 0, 0) + v

(
1,

1
b

cosh
u

p
,
1
b

sinh
u

p

)
.
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SOME SPECIAL SURFACES IN THE PSEUDO-GALILEAN SPACE 217

It is a ruled surface of type I with the invariants

κ =
1
p

= const., τ = − b

p
= const., σ = −1

b
= const.

All space-like ruled surfaces in the pseudo-Galilean space have negative
Gaussian curvature. Specially for closed ruled screw surfaces which are space-
like, we deduce from (3.8) thatK = − p2

(p2−b2v2)2
, where p = −db and d is the

parameter of distribution of this surface.
3. Helicoids. If c is a straight line orthogonal to the axis of the screw

motion (x-axis), the obtained surface is a helicoid. A helicoid is therefore
obtained by putting a = 0, b = 0 in the parametrization of the straight line.
It is a ruled surface of type III (according to [3]) since it is a conoidal surface
whose direction straight line in in�nity is the absolute line.

Fig. 3: The helicoid

As a consequence of the formulas for curvature and torsion, from the pre-
vious section we can derive that helicoid is minimal surface (H = 0) and that
its Gaussian curvatureK = ε 1

p2 is constant and di�erent from zero. One class
of helicoids consists of space-like surfaces

x(u, v) = (pu, v coshu, v sinhu)

and another of time-like surfaces

x(u, v) = (pu, v sinhu, v coshu).
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Notice that a general characteristic of ruled surfaces of type III in Galilean
[6] and pseudo-Galilean space [1] is that they are all minimal.

3.2. Circular screw surfaces in G1
3. Circular screw surfaces are ob-

tained by displacing a circle under a screw motion. We distinguish between
two types of circles: pseudo-Euclidean circles and isotropic circles. If a time-
like pseudo-Euclidean circle

r(v) = (0,m + R cosh v,R sinh v)

undergoes the screw motion, the obtained surface is
x(v, t) =

(
pv, (m + R cosh v) cosh t + R sinh v sinh t,

(m + R cosh v) sinh t + R sinh v cosh t
)
.

It is a time-like surface with curvatures

K = −m cosh v

p2R
, H = −sgn (p)

2R2
(m cosh v + R).

Analogously, if a space-like pseudo-Euclidean circle
r(v) = (0,m + R sinh v, R cosh v)

undergoes the screw motion, the obtained surface is a space-like surface hav-
ing

K =
m cosh v

p2R
, H =

sgn (p)
2R2

(m cosh v + R).

We get a specially interesting case if we putm = 0 (it means that the center
of the starting circle is positioned on the screw axis). Then the obtained
time-like surface can be written as
(3.11) x(u, v) = (pu,R cosh v, R sinh v)

if we put v = u− t. Similarly, the obtained space-like surface is
(3.12) x(u, v) = (pu,R sinh v,R cosh v).

Their �rst fundamental forms are given by
ds2 = (p du)2 − εδR2 dv2.

The Gaussian and the mean curvature of the surfaces (3.11), (3.12) are
given respectively by

K = 0, H = −ε
sgn (p)

2R
.

Furthermore, from the equation (3.11) we can notice that this kind of
circular screw surface is a special case of ruled surfaces of type II inG1

3.
Types of ruled surfaces are described in [3].
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SOME SPECIAL SURFACES IN THE PSEUDO-GALILEAN SPACE 219

Corollary 1.A circular screw surface obtained from a pseudo-Euclidean
circle, whose center is on the screw axis, is a surface of vanishing Gaussian
curvature and non-vanishing constant mean curvature.

These surfaces are analogous to cylinders in Euclidean space since they
also have vanishing Gaussian curvature and non-vanishing constant mean
curvature.

Fig. 4: A circular screw surface obtained from a pseudo-Euclidean circle

Fig. 5: A circular screw surface obtained from an isotropic circle

If an isotropic circle r(v) = (v, 2bv2 −A, 0), b 6= 0, is displaced, the ob-
tained surface is

x(u, v) =
(
pu + v, (2bv2 −A) coshu, (2bv2 −A) sinhu

)
.

Its �rst fundamental form is

ds2 = (p du + dv)2 + δ
( − (2bv2 −A) du2 + 16b2v2 dv2

)
.
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These surfaces are a special case of general screw surfacesHi and from
(3.8) it follows that the Gaussian curvature never vanishes. We get analogous
results when an isotropic circle r(v) = (v, 0, 2bv2 −A), b 6= 0, is displaced.

4. Surfaces of revolution in G1
3

4.1. Rotations in G1
3. In the pseudo-Galilean space we distinguish be-

tween two types of circles and between two types of surfaces of revolution.
The �rst type occurs as the result of a pseudo-Euclidean rotation and the
second as the result of the isotropic rotation. We already mentioned that
pseudo-Euclidean rotations inG1

3 are obtained by substituting p = 0 in (3.1).
Besides them there are isotropic rotations. Their normal form is the follow-
ing:

x̄(t) = x + bt, ȳ(t) = y + xt + b
t2

2
, z̄(t) = z,(4.1)

where t ∈ R and b > 0. The trajectory of a single point is an isotropic circle,
whose normal form is

(4.2) z = const., y =
x2

2b
.

The invariant b is the radius of the circle. The �xed line of the isotropic
rotations (4.1) is the absolute line f . The trajectory of a point under a
pseudo-Euclidean rotation is a pseudo-Euclidean circle with the normal form

(4.3) x = const., y2 − z2 = R2, R ∈ R.

The invariant R is the radius of the circle. Pseudo-Euclidean circles intersect
the absolute line f in the �xed points of the hyperbolic involution (F1, F2),
F1(0 : 0 : 1 : 1), F2(0 : 0 : 1 : −1). There are three kinds of pseudo-Euclidean
circles: circles of real radius, of imaginary radius and of radius zero. Cir-
cles of real radius are time-like curves (having time-like tangent �eld) and of
imaginary radius space-like curves (having space-like tangent �eld).

4.2. Surfaces of revolution in G1
3. Let c be an admissible plane curve

in G1
3 and let a be a coplanar line that does not meet c. When the pro�le

curve c is revolved around the axis a, it sweeps out a surface of revolution.
Let c be an admissible plane curve with the parametrization

r(v) =
(
g(v), h(v), 0

)
or r(v) =

(
g(v), 0, h(v)

)
,

where h(v) > 0.
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SOME SPECIAL SURFACES IN THE PSEUDO-GALILEAN SPACE 221

The curve c is rotated under the pseudo-Euclidean rotation about thex-
axis. Two types of surfaces of revolution Sp are obtained parametrized by
(3.5) and (3.6) with p = 0.

If we take h(v) = R we get circular screw surface obtained from a pseudo-
Euclidean circle.

The Gaussian curvature ofSp is K = −ε(h′
g′ )

′ 1
g′h and the mean curvature

is H = ε sgn (g′) 1
h .

Let us take K = const. 6= 0 and parametrize the curve c by the arc length
i.e. g(v) = v. We can prove (see [11]) that by a pseudo-Euclidean rotation of
a curve of the form

r(v) =
(
v,

(
A cosh (

√
|K|v) + B sinh (

√
|K|v)

)
, 0

)

or of the form

r(v) =
(
v,

(
A cos (

√
|K|v) + B sin (

√
|K|v)

)
, 0

)

we get the surface which has constant Gaussian curvature equal toK. Note
that if K = 0, then the pro�le curve is a line h(v) = Av + B, A,B ∈ R, and
among these surfaces obtained by rotation of a line there are also the hyper-
bolic spheres y2 − z2 = ±R2.

Now let c be an admissible plane curve with the parametrization

(4.4) r(u) =
(
0, g(u), h(u)

)
,

where g(u) > 0. The curve c is rotated under the isotropic rotation (4.1)
around the z-axis. The surface of revolution Si with parametrization

(4.5) x(u, v) =
(

bv, g(u) + b
v2

2
, h(u)

)

is obtained.
The �rst fundamental form of a surface of revolutionSi is given by

(4.6) ds2 = b2 dv2 + δ
(
(g′2 − h′2) du2 + 2g′bv dudv + b2v2 dv2

)
.

When c is parametrized by the arc length e.i. g′2−h′2 = ε, where ε = ±1,
we get the Gaussian curvatureK = ε1

b (h
′)3( g′

h′ )
′ and the mean curvature

(4.7) H = ε sgn (b)
(

g′

h′

)′
(h′2).

Then we can easily �nd surfaces with constant Gaussian curvature (see [11]),
�at and minimal surfaces of revolution. From the expressions for the Gaus-
sian and mean curvatures of Si the next theorem follows.

Acta Mathematica Hungarica 118, 2008

Unauthenticated | Downloaded 07/01/20 11:18 AM UTC



222 B. DIVJAK and �. MILIN �IPU�

Theorem 2. Surfaces of revolution Si in G1
3 are �at (K ≡ 0) if and only

if they are minimal (H ≡ 0).
In the Euclidean space there are no �at minimal surfaces of revolution.
Notice �nally, that a parabolic sphere in the pseudo-Galilean space (with

the normal equation x2 = 2z) can be obtained by the isotropic rotation (4.1)
of an isotropic circle r(u) = (u, 0, 2pu2−A). The obtained surface admits the
parametrization

x(u, t) =
(

u + bt, ut +
bt2

2
, 2pu2 −A

)
.

Its Gaussian, as well as mean curvature is equal to 0, and it satis�es the
equation x2 = z+A

2p + 2by.

5. Torus of revolution in G1
3

The torus of revolution is a surface of revolution obtained by revolving
a pseudo-Euclidean circle around a coplanar axis. Tori in the Galilean and
the double isotropic case have been described in [12] and [13]. Similarly to
the Galilean case, in the pseudo-Galilean case there are two types of tori
according to the performed rotation.

I. An isotropic circle is rotated under pseudo-Euclidean rotations.We can
suppose that the isotropic circle is of the form

(5.1) r(v) = (v, 2pv2 −A, 0), v ∈ R

where p 6= 0 and A are real constants. Under a pseudo-Euclidean rotation
around the x-axis we obtain the torus Ti parametrized by

(5.2) x(v, t) =
(
v, (2pv2 −A) cosh t, (2pv2 −A) sinh t

)
.

It is a time-like surface and a special case of surfaces of revolutionSp. It
satis�es the algebraic equation

(5.3) y2 − z2 = (2px2 −A)2

and therefore it is an algebraic surface of order 4.
Analogously, by rotating (under pseudo-Euclidean rotations around the

x-axis) the isotropic circle of the form

(5.4) r(v) = (v, 0, 2pv2 −A), v ∈ R,
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the obtained torus

(5.5) x(v, t) =
(
v, (2pv2 −A) sinh t, (2pv2 −A) cosh t

)

is a space-like surface. It satis�es the algebraic equation

(5.6) z2 − y2 = (2px2 −A)2

of order 4.
With respect to the position of the meridianm (i.e. various positions of

the rotating curve) of Ti and the rotation axis we distinguish among three
types of torus surfaces Ti.

1. A
p > 0. The meridian m intersects the rotation axis in two real points

and the spindle torus is obtained.
2. A = 0. The meridian m intersects the rotation axis in one real point.

We call such a surface the horn torus.
3. A

p < 0. The meridian m intersects the rotation axis in two imaginary
points. We call such a surface the ring torus.

Fig. 6: The spindle torus

A surface Ti contains the absolute line f and the horn torus contains all
lightlike lines in the absolute (pseudo-Euclidean) plane.

As in the Euclidean case the intersection of torus with a plane is a curve
of order 4. The curves which are intersections of the torus surface and a plane
parallel to the rotation axis are called spiral curves. Let us suppose that the
plane is an isotropic plane z = k = const. The equation of the spiral curve is

(5.7) y2 = (2px2 −A)2 + k2.
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Fig. 7: The horn torus Fig. 8: The ring torus

II. A pseudo-Euclidean circle is rotated under isotropic rotations. Let
us suppose that the rotating pseudo-Euclidean circle has real or imaginary
radius, so it is given by

r(u) = (0, R coshu,R sinhu) or r(u) = (0, R sinhu, R coshu),

where u ∈ R, R ∈ R\{0}. Under the isotropic rotation (4.1) around the z-
axis we obtain the torus Tp with the parametrization

x(u, t) =
(

bt, R coshu + b
t2

2
, R sinhu

)

or
x(u, t) =

(
bt, R sinhu + b

t2

2
, R coshu

)
.

They can be written in implicit form as

(5.8)
(

y − x2

2b

)2

= z2 −R2

or

(5.9)
(

y − x2

2b

)2

= z2 + R2.

Both surfaces are algebraic surfaces of order 4.
The surface (5.8) intersects the axis of rotation in two real points and it is

called spindle torus of type II. Contrary to that, the surface (5.9) intersects
the axis of rotation in two imaginary points and it is called ring torus of
type II. Spiral curves are hyperbolas.
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Fig. 9: The torus Tp of the form (5.8) Fig. 10: The torus Tp of the form (5.9)

Theorem 3. The torus surfaces Tp of type II are the surfaces with con-
stant mean curvature.

Proof. From (4.7) we have H = ε sgn (b) 1
R .

Remark 1. In [3] the following theorem was proved: Every helicoid is
locally isometric to a torus Tp obtained by rotating a unit pseudo-Euclidean
circle by isotropic rotation.
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