
PA: Simple BN Knowledge Engineering 1

PGM Programming Assignment:
Simple BN Knowledge Engineering

1 Overview
Welcome to the course! The goal of this first assignment is for you to gain familiarity with
Bayesian networks and to understand how we might compute probability queries in these net-
works. As such, this assignment has two parts. In the first part of the assignment, you will use
the SAMIAM package to design a small Bayesian network for evaluating credit-worthiness. Then,
in the second part of the assignment, you will replicate some of the functionality in SAMIAM
for answering probability queries in the network using the factor operations discussed in the
lectures. You will test your implementation on the network you designed in the first part of the
assignment.

2 Engineering a network for credit-worthiness
In the first part of the assignment, you will use the SAMIAM software package to design a
Bayesian network for the purpose of predicting credit-worthiness.

2.1 Using SAMIAM
SAMIAM was developed by the Automated Reasoning Group at UCLA to provide a graphical
interface for manipulating probabilistic networks on Windows, Linux, or Mac OS. It has extensive
functionality for learning and inference in probabilistic networks; however, we will use it only to
manipulate a network and view marginals. Please download the program at:

http://reasoning.cs.ucla.edu/samiam/index.php

There are separate files for each operating system (Linux, Windows, and Mac), so just use
whichever is appropriate for the machine you are on. SAMIAM relies on Java and needs both the
Java Runtime Environment (JRE) and the Java Development Kit (JDK). If you do not already
have these installed on your machine (or you receive errors that no java executable is found, or
the program does not start), you should download them from:

JRE: http://java.com/en/download/manual.jsp
JDK: http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.

html#javasejdk

The network we will use is an example network for evaluating credit-worthiness. Load this
into the program by going to File, Open, and then opening Credit_net.net.

When constructing your network, you will be using Edit Mode to add edges to your network.
To engage Edit Mode, go to the Mode menu and simply select Edit Mode; if the option is
greyed out, SAMIAM is already in this mode. To add an edge, go to Edit, Add Edge, click on
whichever node you want to be the parent, and then click on the node you want to be the child.
To change the node’s properties, double click on it. You should only change the CPDs for

http://reasoning.cs.ucla.edu/samiam/index.php
http://java.com/en/download/manual.jsp
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html#javasejdk
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html#javasejdk

PA: Simple BN Knowledge Engineering 2

the nodes; all other properties should be left the same, as changing any of the other
properties will cause problems with the automatic grading system. You can edit the
CPD for the selected node by clicking on the Probabilities tab, double clicking on any of the
values, and simply inputting your own value. Remember that you should edit the CPD for the
child node whenever you add an edge.

In the latter part of the assignment, you may wish to use Query Mode to monitor the
marginals of nodes in this network. Go to the Mode menu and select Query Mode. On the
left you should have a list of nodes. Clicking on one will reveal the values that node can take on.
Clicking one of these values will assign it to have that observed value. Clicking again will free
the node to be unobserved. To view a node’s marginal, right click and select Monitor. You can
also display all marginals by going to the Query menu, then Show monitors, and selecting
Show All.

2.2 Constructing the network
Your friend at the bank, hearing of your newfound expertise in probabilistic graphical models,
asks you to help him develop a predictor for whether a person will make timely payments on
his/her debt obligations, like credit card bills and loan payments. In short, your friend wants
you to develop a predictor for credit-worthiness. He tells you that the bank is able to observe
a customer’s income, the amount of assets the person has, the person’s ratio of debts to
income, the person’s payment history, as well as the person’s age. He also thinks that the
credit-worthiness of a person is ultimately dependent on how reliable a person is, the person’s
future income, as well as the person’s ratio of debts to income. As such, he has created
a skeleton Bayesian network containing the 8 relevant variables he has mentioned, and defined
the possible values they can take in Credit_net.net. However he has trouble defining the
connections between these variables and their CPDs, so he has asked you to help him.

He hopes that you can help him encode into the network the following observations he has
made from his experience in evaluating people’s credit-worthiness:

1. The better a person’s payment history, the more likely the person is to be reliable.

2. The older a person is, the more likely the person is to be reliable.

3. Older people are more likely to have an excellent payment history.

4. People who have a high ratio of debts to income are likely to be in financial hardship and
hence less likely to have a good payment history.

5. The higher a person’s income, the more likely it is for the person to have many assets.

6. The more assets a person has and the higher the person’s income, the more likely the
person is to have a promising future income.

7. All other things being equal, reliable people are more likely to be credit-worthy than
unreliable people. Likewise, people who have promising future incomes, or who have low
ratios of debts to income, are more likely to be credit-worthy than people who do not.

Add the appropriate edges and define the CPDs so that your network captures the behavior that
your friend expects. Your network will be evaluated solely on whether it produces marginals that
are consistent with the desired behavior and not on the actual values of the CPDs in the network.
As an example, here is the condition that your network should satisfy for it to be considered

PA: Simple BN Knowledge Engineering 3

consistent with observation 1: if we let R denote the random variable for the reliability variable,
and let H denote the random variable for payment history, then your network should satisfy

P(R = Reliable|H = Excellent) > P(R = Reliable|H = Acceptable) > P(R = Reliable|H = Unacceptable).

You may wish to use Query Mode to check your network before calling submit1 in MAT-
LAB/Octave to submit your network for grading. Ensure that the inference algorithm used by
SAMIAM is “hugin” in order to obtain correct marginals; you may change this option using the
left-most drop-down textbox on the toolbar. You may submit your network as many times as
you wish, but only your most recent submission will be graded. In addition, you will not receive
feedback until after the deadline (and grace period) has passed. This part of the assignment is
worth 40 points.

3 Computing probability queries in a Bayesian network
Inspired by what SAMIAM can do, you decide to replicate some of its functionality in answering
probability queries. In this part of the assignment, you will write code to compute (conditional)
probabilities by first computing the full joint distribution over the variables in a network, and
then marginalizing out irrelevant variables.

3.1 Basic factor operations
Recall that we use factors to represent the CPDs in the Bayesian network. As such, the core
functionality, which you will now implement, are the factor product, factor marginalization and
factor reduction operations.

• FactorProduct.m [10 points] - This function should compute the product of two factors.

• FactorMarginalization.m [10 points] - This function should sum over the given vari-
ables in a given factor and return the resulting factor.

• ObserveEvidence.m [10 points] - This function should modify a set of factors given
the observed values of some of the variables, so that assignments not consistent with the
observed values are set to zero (in effect, reducing them). These factors do not need to be
re-normalized.

We will be using MATLAB/Octave structures to implement the factor datatype. A tutorial on
the factor datatype and the associated functions that we have provided to manipulate factors is
provided in FactorTutorial.m. In addition, FactorTutorial.m also contains sample factors
and expected outputs to help you debug your code. We recommend that you test your code
using these inputs as well as on other inputs before submitting your code by calling submit.

3.2 Computing the joint distribution
You can now complete the function ComputeJointDistribution.m, which computes the joint
distribution over a Bayesian network using the factor product operation that you implemented

1The submit function will not work if your computer is unable to establish a connection to the class servers
in MATLAB/Octave. In such cases, we have provided an alternate submission mechanism via the course website.
We have provided a function, submitWeb that will package the output of your code into a file that you can then
submit to the course servers using the “Web Submission” button on the Programming Assignments page on the
course website. If submit works for you, we recommend using it.

PA: Simple BN Knowledge Engineering 4

and the chain rule for Bayesian networks. As a reminder, the chain rule states that for a Bayesian
network G over variables X1, . . . , Xn and a distribution P (X1, . . . , Xn) that factorizes over G,

P (X1, . . . , Xn) =
∏
i

P (Xi|ParentsG(Xi)).

• ComputeJointDistribution.m [10 points] - This function should return a factor rep-
resenting the joint distribution given a set of factors that define a Bayesian network. You
may assume that you will only be given factors defining valid CPDs, so no input validation
is required.

We have provided a simple test case for this function in FactorTutorial.m that you may wish
to check your implementation with. Call the submit function to submit your code.

3.3 Computing marginals
Having computed the joint distribution, we can compute marginal probabilities over sets of vari-
ables in the network by marginalizing out the irrelevant variables from the joint distribution.
However, this procedure is missing a key step when we have observed evidence – if we had evi-
dence, we would need to first reduce the factor representing the joint distribution by the evidence
before marginalizing out the irrelevant variables. In addition, in this case, the factor we obtain is
now un-normalized (because ObserveEvidence.m does not re-normalize factors), so be sure to
normalize the result after calling ObserveEvidence. Complete ComputeMarginal.m with
your implementation.

• ComputeMarginal.m [20 points] - This function should return the marginals over input
variables (the input variables are those that remain in the marginal), given a set of factors
that define a Bayesian network, and, optionally, evidence.

We have provided a simple test case for this function in FactorTutorial.m that you may wish
to use for checking your implementation. Then, submit your code using the provided submit
function.

3.4 Performing queries on the credit-worthiness network
Congratulations! You have now implemented a rudimentary inference engine for Bayesian net-
works. You can use your implementation to experiment with the network for credit-worthiness
that you constructed in the earlier part of the assignment. We have provided a function Con-
vertNetwork.m that reads in files in the .net format of SAMIAM into a vector (struct array)
of factors. You may wish to check the correctness of your implementation by computing various
marginals in the network and seeing if the results match those in SAMIAM; make sure that the
inference algorithm used by SAMIAM is “hugin” so that it returns exact marginals.

	Overview
	Engineering a network for credit-worthiness
	Using SAMIAM
	Constructing the network

	Computing probability queries in a Bayesian network
	Basic factor operations
	Computing the joint distribution
	Computing marginals
	Performing queries on the credit-worthiness network

