

Representation

Independencies

Bayesian Networks

Independence & Factorization

P(X,Y) = P(X) P(Y)X,Y independent $P(X,Y,Z) \propto \phi_1(X,Z) \phi_2(Y,Z)$ $(X \perp Y \mid Z)$

- Factorization of a distribution P implies independencies that hold in P
- If <u>P</u> factorizes over G, can we read these independencies from the structure of G?

Flow of influence & d-separation

Definition: X and Y are <u>d-separated</u> in G given Z if there is no active trail in G between X and Y given Z

Notation: $d-sep_G(X, Y | Z)$

Daphne Koller

S

Factorization \Rightarrow Independence: BNs **Theorem:** If P factorizes over G, and d-sep_G($X, Y \mid Z$) then P satisfies (X \perp Y | Z) PEDIS $P(D, I, G, S, L) = P(D)P(I)P(G \mid D, I)P(S \mid I)P(L \mid G)$ D $P(D,S) = \sum P(D)P(I)P(G \mid D,I)P(S \mid I)P(L \mid G)$ S G, \mathbf{L}, I $=\sum_{I} P(D)P(I)P(S \mid I) \sum_{G} (P(G \mid D, I) \sum_{L} P(L \mid G))$ = P(D)($P(I)P(S \mid I))$ Daphne Koller

I-maps

d-separation in G ⇒ P satisfies
corresponding independence statement

$$I(G) = \{ (X \perp Y \mid Z) : d-sep_G(X, Y \mid Z) \}$$

 Definition: If P satisfies I(G), we say that G is an I-map (independency map) of P

Factorization ⇒ Independence: BNs Theorem: If <u>P</u> factorizes over G, then G is an I-map for P

> Car read from G independencies in P regardless of parameters

 $P(D, I, G, S, L) = P(D)P(I)P(G \mid D, I)P(S \mid I)P(L \mid G)$

Summary

Two equivalent views of graph structure:

- Factorization: G allows P to be represented
- I-map: Independencies encoded by G hold in P

If P factorizes over a graph G, we can read from the graph independencies that must hold in P (an independency map)