

Representation

Markov Networks

General Gibbs Distribution

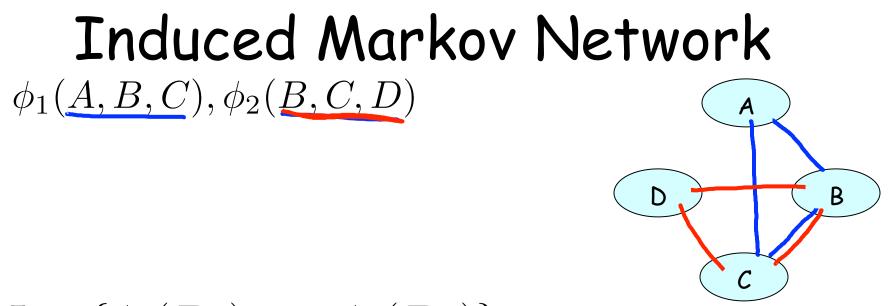
Gibbs Distribution

• Parameters:

General factors ϕ_i (D_i)

 $\Phi = \{\phi_i (D_i)\}$

-			-	-
۵۱	b1	c1	0.25	
۵¹	b1	C2	0.35	
۵۱	b²	C1	0.08	
۵۱	b²	c²	0.16	
۵²	b1	C1	0.05	
۵²	b1	c²	0.07	
۵²	b²	c1	0	
۵²	b²	c²	0	
۵³	b1	C1	0.15	
۵³	b1	c²	0.21	
۵³	b²	c1	0.09	
۵³	b²	c²	0.18	ıphne Koller
				•

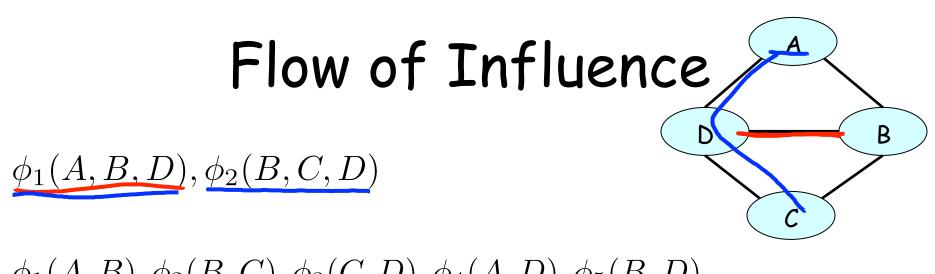

Gibbs Distribution

$$\underline{\Phi} = \{\phi_1(D_1), \dots, \phi_k(D_k)\}$$

$$\tilde{P}_{\Phi}(X_1, \dots, X_n) = \prod_{i=1}^{i=1} \underline{\phi_i(D_i)} \text{ factor product}$$

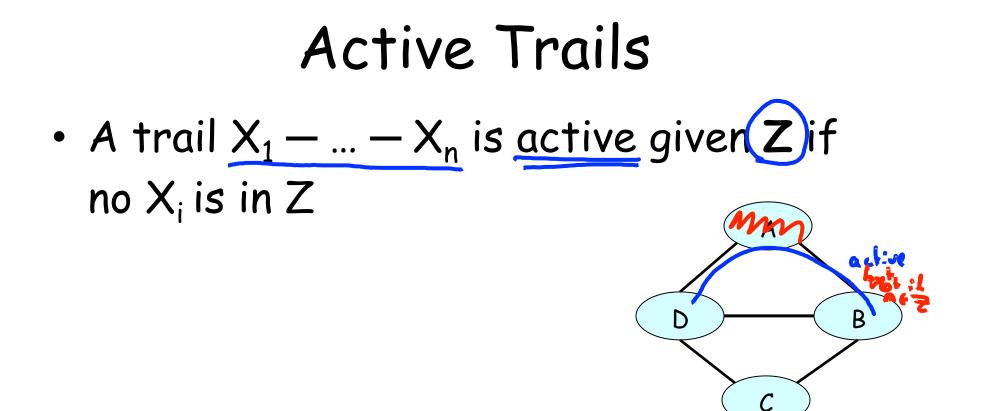
$$Z_{\Phi} = \sum_{X_1, \dots, X_n} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$

$$\tilde{P}_{\Phi}(X_1, \dots, X_n) = \frac{1}{Z_{\Phi}} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$


$$\Phi = \{\phi_1(\boldsymbol{D}_1), \dots, \phi_k(\boldsymbol{D}_k)\}$$

Induced Markov network \underline{H}_{Φ} has an edge $X_i - X_j$ whenever there exists $4 \notin \Phi$ s.t. $X_i, x_j \in \Phi_m$

Factorization


P factorizes over H if there exist $\underline{\Phi} = \{\phi_1(D_1), \dots, \phi_k(D_k)\}$

such that $P = P_{\Phi} \qquad \text{formalized} \\ H \text{ is the induced graph for } \Phi$

 $\phi_1(A,B), \phi_2(B,C), \phi_3(C,D), \phi_4(A,D), \phi_5(B,D)$

• Influence can flow along any trail, regardless of the form of the factors

Summary

- Gibbs distribution represents distribution as a product of factors
- Induced Markov network connects every pair of nodes that are in the same factor
- Markov network structure <u>doesn't</u> fully specify the factorization of P
- But active trails depend only on graph structure