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Separation in MNs

Definition:
X and Y are separated in H given Z
if there is no active ‘rrailninmlj .
between X and Y given Z S
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Factorization = Independence: MNS
Theorem: If P factorizes over H, and sepy(X, ¥ | Z2)

then P satisfies (X LY | Z) A
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Factorization = Independence: MNs

I(H) = {(X LY | 2Z) :[sepy(X.Y | Z)}

If P satisfies I(H), we say that H is an I-map
(independency map) of P

Theorem: If P factorizes over H, then H is an I-map of P
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Independence = Factorization

* Theorem (Hammersley Clifford):

For a positive distribution P, if H is an
I-map for P, then P factorizes over H
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Summary

Two equivalent™ views of graph structure:
 Factorization: H allows P to be represented
« I-map: Independencies encoded by H hold in P

If P factorizes over a graph H, we can read from the graph
independencies that must hold in P (an independency map)

* for positive distributions
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