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Capturing Ir}lgsgkendencies in P
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* P factorizes over G = G is an I-map for P:
ssepeien [(G) C I(P)
* But not always vice versa: there can be
independencies in I(P) that are not in I(G)




Want a Sparse Graph

* If the graph encodes more independencies
— it is sparser (has fewer parameters)
— and more informative

» Want a graph that captures as much of
the structure in P as possible




Minimal I-map

* Minimal I-map: I-map without redundant edges
@éé@ P(\)\v) P(V'v)

* Minimal I-map may still not capture I(P)
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Perfect Map
» Perfect map: I(6) = I(P)

— G perfectly captures independencies in P



Perfect Map
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Another imperfect map

X, X, Y Prob
0 0 0 0.25
0 1 1 0.25
1 0 1 0.25
1 1 0 0.25
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MN as a perfect map
* Perfect map: I(H) = I(P)

— H perfectly captures independencies in P
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Uniqueness of Perfect Map
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I-equivalence

Definition: Two graphs G, and G, over X,
.. X, are I-equivalent if I(G,)= I(GZ)
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Most G's have many I-equivalent variants




Summary

 Graphs that capture more of I(P) are more
compact and provide more insight

* A minimal I-map may fail to capture a lot of
structure even if present e«d zprqnklle < ol

A perfect map is great, but may not exist

 Converting BNs <= MNs loses independencies
é — BN to MN: loses independencies in v-structures
2° — MN to BN: must add triangulating edges to loops
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