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Capturing Independencies in P 

•  P factorizes over G  G is an I-map for P: 
 
•  But not always vice versa: there can be 

independencies in I(P) that are not in I(G) 
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Want a Sparse Graph 
•  If the graph encodes more independencies 

–  it is sparser (has fewer parameters) 
– and more informative 

•  Want a graph that captures as much of 
the structure in P as possible 
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Minimal I-map 
•  Minimal I-map: I-map without redundant edges 

•  Minimal I-map may still not capture I(P) 
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Perfect Map 
•  Perfect map: I(G) = I(P) 

– G perfectly captures independencies in P 
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Perfect Map 
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Another imperfect map 

X2 X1 

Y XOR 

X1 X2 Y Prob 

0 0 0 0.25 

0 1 1 0.25 

1 0 1 0.25 

1 1 0 0.25 
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MN as a perfect map 
•  Perfect map: I(H) = I(P) 

– H perfectly captures independencies in P 
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Uniqueness of Perfect Map 
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I-equivalence 
Definition: Two graphs G1 and G2 over X1,

…,Xn are I-equivalent if I(G1)=I(G2) 
 
 
Most G’s have many I-equivalent variants  



Daphne Koller 

Summary 
•  Graphs that capture more of I(P) are more 

compact and provide more insight 
•  A minimal I-map may fail to capture a lot of 

structure even if present 
•  A perfect map is great, but may not exist 
•  Converting BNs ↔ MNs loses independencies 

– BN to MN: loses independencies in v-structures 
– MN to BN: must add triangulating edges to loops  


