
PA: Sampling Methods 1

PGM Programming Assignment:
Sampling Methods

1 Introduction

Last week, we focused on implementing exact inference methods. Unfortunately, sometimes
performing exact inference is intractable and cannot be done as performing exact inference
in general networks is NP-hard. Fortunately, there are a number of approximate inference
methods that one can use instead. In this programming assignment, we will investigate a class
of approximate inference methods based on Markov chain Monte Carlo (MCMC) sampling.

As you develop and test your code, you will run tests on a simple pairwise Markov network
that we have provided. This Markov net is a 4 x 4 grid network of binary variables, parameterized
by a set of singleton factors over each variable and a set of pairwise factors over each edge in
the grid. This network is created by the function ConstructToyNetwork.m, and in this
assignment, you will change some of its parameters and observe the effect this has on different
inference techniques.

2 MCMC

A Markov chain defines a transition model T (x → x′) between different states x and x′. The
chain is initialized to some initial assignment x0. At each iteration t, a new state, xt+1 is
sampled from the transition model. The chain is run for some number of iterations, over which
a subset of the samples is collected. The collected samples are then used to estimate statistics
such as the marginals of individual variables. In this assignment, you will implement Gibbs
and Metropolis-Hastings sampling, both of which are MCMC methods that sample from the
posterior of a probabilistic graphical model.

A critical issue in the utility of a Markov chain is the rate at which it mixes to the stationary
distribution. For example, if the stationary distribution has two modes that are far apart in the
state space and the MCMC transition probability only allows local moves in the state space, it is
likely that the state of the Markov chain will get stuck near one of the modes. This affects both
the number of samples required before the chain forgets its initial state, and the quality of the
estimates – unless many samples are collected, most samples are likely to come from one mode
or another. If samples are aggregated before a chain has mixed, then the distribution from which
they are drawn will be biased toward the initial state and thus will not be a good approximation
to the stationary distribution. In the starter code, we provide you with a visualization function,
VisualizeMCMCMarginals.m, that allows you to analyze a Markov chain to estimate prop-
erties such as mixing time and whether or not it is getting stuck in a local optimum. See the
description of the code infrastructure below for more details on this function.

2.1 Gibbs

Recall that the Gibbs chain is a Markov chain where the transition probability T (x → x′) is
defined as follows. We iterate over the variables in some fixed order, say X1, ..., Xn. For the
variable Xi, we sample a new value from P (Xi|x−i) (which is just P (Xi|MarkovBlanket(Xi))),
and update its new value. Note that the terms on the right-hand-side of the conditioning bar
use the newly sampled assignment to the variables X1, ..., Xi−1. Once we sample a new value

PA: Sampling Methods 2

for each of X1, ..., Xn, the result is our new sample x′. Our first task for the MCMC task is
thus to implement a function that computes and samples from P (Xi|MarkovBlanket(Xi)) as
well as a helper function to produce sampling distributions. You will then use this function as
a transition probability for MCMC sampling. (Recall that a Markov Blanket of a node X is the
set of nodes Y such that Xi is independent of all other nodes given Y , thus it consists of X’s
parents, children, and children’s parents.)

• BlockLogDistribution.m: (5 points) – This is the function that produces the sampling
distribution used in Gibbs sampling and (possibly) versions of Metropolis- Hastings. It
takes as input a set of variables XI and an assignment x to all variables in the network,
and returns the distribution associated with sampling XI as a block (i.e. the variables are
constrained to take on the same value) given the joint assignment to all other variables
in the network. That is, for each value l, we compute the (unnormalized) probability
P̃ (XI = l|x−I) where XI = l is shorthand for the statement“Xi = l for all Xi ∈ XI”
and x−I is the assignment to all other variables in the network. Your solution should only
contain one for-loop (because for-loops are slow in Matlab). Note that the distribution will
be returned in log-space to avoid underflow issues.

• GibbsTrans.m (5 points) – This function defines the transition process in the Gibbs
chain as described above (ie. we iteratively resample Xi from P (Xi|MarkovBlanket(Xi))
for each i) . It should call BlockLogDistribution to sample a value for each variable in the
network.

2.1.1 Running Gibbs Sampling and Questions

Now that our first transition process has been defined, we need to enact a general framework for
running our variants of MCMC.

• MCMCInference.m PART 1 (3 points)– This function defines the general framework
for conducting MCMC inference. It takes as input a probabilistic graphical model (a
redundant but convenient data structure), a set of factors, a list of evidence, the name
of the MCMC transition to use, and other MCMC parameters such as the target burn-in
time and number of samples to collect. As a first step, you only need to implement the
logic that transitions the Markov chain to its next state and records the sample.

With the inference engine, let’s try to understand the behavior of Gibbs sampling (answer
online):

1. (5 points) – Let’s run an experiment using our Gibbs sampling method. As before, use the
toy image network and set the on-diagonal weight of the pairwise factor (in Construct-
ToyNetwork.m) to be 1.0 and the off-diagonal weight to be 0.1. Now run Gibbs sampling
a few times, first initializing the state to be all 1’s and then initializing the state to be all
2’s. What effect does the initial assignment have on the accuracy of Gibbs sampling? Why
does this effect occur?

2.2 Metropolis-Hastings

Metropolis-Hastings is a general framework (within the even more general framework of MCMC)
that defines the Markov chain transition in terms of a proposal distribution Q(x → x′) and an
acceptance probability A(x → x′). The proposal distribution and acceptance probability must
satisfy the detailed balance equation in order to generate the correct stationary distribution. It

PA: Sampling Methods 3

turns out that a satisfying acceptance probability is given as follows (where π is the stationary
distribution):

A(x→ x′) = min

[
1,
π(x′)Q(x′ → x)

π(x)Q(x→ x′)

]
In this section of the assignment, you will implement a general Metropolis-Hastings framework
that is capable of utilizing different proposal distributions, specifically the uniform distribution
and the Swendsen-Wang distribution (described later). We will provide you with the imple-
mentations of these proposal distributions and you will need to compute the correct acceptance
probability. Furthermore, you will study the relative merits of each proposal type. To start, let’s
implement the uniform proposal distribution:

• MHUniformTrans.m (5 points)– This function defines the transition process associated
with the uniform proposal distribution in Metropolis-Hastings. You should fill in the code
to compute the correct acceptance probability.

Now that we have that baseline, let’s move on to Swendsen-Wang. Swendsen-Wang was
designed to propose more global moves in the context of MCMC for pairwise Markov networks
of the type used for image segmentation or Ising models, where adjacent variables like to take
the same value. At its core, it is a graph node clustering algorithm. Given a pairwise Markov
network and a current joint assignment x to all variables, it generates clusters as follows: first
it eliminates all edges in the Markov network between variables that have different values in x.
Then, for each remaining edge {i, j}, it activates the edge with some probability qi,j (which can
depend on the variables i and j but not on their values in x). It then computes the connected
components of the graph over the activated edges. Finally, it selects one connected component,
Y, uniformly at random from all connected components. Note that all nodes in Y will have the
same label l. We then (randomly) choose a new value l′ that will be taken by all nodes in this
connected component. These variables are then updated in the joint assignment to produce the
new assignment x′. In other words, the new assignment x′ is the same as x, except that the
variables in Y are all labeled l′ instead of l. Note that this proposed move flips a large number
of variables at the same time, and thus it takes much larger steps in the space than a local Gibbs
or Metropolis-Hastings sampler for this Markov network.

Let q(Y |x) be the probability that a set Y is selected to be updated using this procedure. It
is possible to show that

q(Y|x′)
q(Y|x)

=

∏
(i,j)∈E(Y,(X′

l′
−Y))(1− qi,j)∏

(i,j)∈E(Y,(Xl−Y))(1− qi,j)
(1)

where: Xl is the set of vertices with label l in x, X′l′ is the set of vertices with label l′ in x′;
and where E(Y,Z) (between two disjoint sets Y,Z) is the set of edges connecting nodes in Y to
nodes in Z. (NOTE: The log of the quotient in equation 1 is called log QY ratio in the code.)
Then we have that

T Q(x′ → x)

T Q(x→ x′)
=
q(Y|x′)
q(Y|x)

R(Y = l|x′−Y)

R(Y = l′|x−Y)
(2)

where: R(Y = l′|x−Y) is a distribution specified by you for choosing the label l′ for Y given x−Y
(the assignment to all variables outside of Y). Note that x−Y = x′−Y. In this assignment, the
code for generating a Swendsen-Wang proposal is given to you, but you will have to compute the
acceptance probability and use that to define the sampling process for the Markov chain. You will

PA: Sampling Methods 4

Figure 1: Visualization of Swendsen-Wang Procedure

implement 2 variants that experiment with different parameters for the proposal distribution.
In particular, you will change the value of the qi,j ’s and R(Y = l|x−Y). The two variants are as
follows:

1. Set the qi,j ’s to be uniformly 0.5, and set the distribution R to be uniform.

2. Set R to be the block-sampling distribution (as defined in BlockLogDistribution.m) for
sampling a new label and make qi,j dependent on the pairwise factor Fi,j between i and j.
In particular, set

qi,j :=

∑
u Fi,j(u, u)∑
u,v Fi,j(u, v)

• MHSWTrans.m (Variant 1) (3 points) – This function defines the transition process
associated with the Swendsen-Wang proposal distribution in Metropolis-Hastings. You
should fill in the code to compute the proposal distribution values and then use these to
compute the acceptance probability. Implement the first variant for this test.

• MHSWTrans.m (Variant 2) (3 points) – Now implement the second variant of SW.
Note: the first variant should still function after the second variant has been implemented.

With Swendsen-Wang, we will need to compute the values of our qi,j ’s, so we must update our
inference engine:

PA: Sampling Methods 5

• MCMCInference.m PART 2 (4 points)– Flesh this function out to run our Swendsen-
Wang variants in addition to Gibbs. Your task here is to implement the calculations of the
qi,j ’s for both variants of Swendsen-Wang in this function. (The reason that this is done
here and not in MHSWTrans.m is to improve efficiency.)

Now that we’ve finished implementing all of these functions, let’s compare these inference
algorithms.

1. (10 points) – For this question, repeat the experiment for LBP where we ran our Toy
Network while changing the on and off-diagonal network. Again, we will consider the cases
where the on-diagonal weights are much larger, much smaller, and about equal to the off-
diagonal weights. While running this, use VisualizeMCMCMarginals.m to visualize
the distribution of the Markov chain for multiple runs of MCMC (see TestToy.m for how
to do this). We will examine how the mixing behavior and final marginals for each chain
change in response to the change in the pairwise factor.

(a) (5 points) – Set the on-diagonal weight of our toy image network to 1 and off-
diagonal weight to .2. Now visualize multiple runs with each of Gibbs, MHUniform,
Swendsen-Wang variant 1, and Swendsen-Wang variant 2 using VisualizeMCMC-
Marginals.m (see TestToy.m for how to do this). How do the mixing times of these
chains compare? How do the final marginals compare to the exact marginals? Why?

(b) (5 points) – Set the on-diagonal weight of our toy image network to .5 and off-
diagonal weight to .5. Now visualize multiple runs with each of Gibbs, MHUniform,
Swendsen-Wang variant 1, and Swendsen-Wang variant 2 using VisualizeMCMC-
Marginals.m (see TestToy.m for how to do this). How do the mixing times of these
chains compare? How do the final marginals compare to the exact marginals? Why?

2. (3 points) When creating our proposal distribution for Swendsen-Wang, if you set all
the qi,j ’s to zero, what does Swendsen-Wang reduce to?

3 Conclusion

Congratulations! You’ve now implemented a full suite of inference engines for exact and approx-
imate inference. These methods are useful for making predictions and gaining understanding of
the world around us. Of course, one underlying assumption has been that we already know the
basic facts of which variables influence one another – an assumption that is certainly not always
the case! So stay tuned, we’ll look into how to eliminate more of our assumptions later in the
course.

4 Infrastructure Reference

A few methods you may find useful:

1. exampleIOPA5.mat: Mat-file containing example input and output corresponding to
the 7 preliminary tests for this programming assignment. For argument j of the function
call in part i, you should use exampleINPUT.t#i+6a#j (replacing the #i with i). If
there are multiple function calls in one test (for example, we iterate over multiple inputs)
then for iteration k you should reference exampleINPUT.t#i+6a#j .{#k}. For output,
look at exampleOUTPUT.t#i+6 for the output to part i. If there are multiple outputs

PA: Sampling Methods 6

or iterations, the functionality is the same as for the input example. (You have to add 6
to i; the original version of this programming assignment had 6 extra parts at the start,
which we have since removed.)

2. ConstructToyNetwork.m: Function that constructs a toy pairwise Markov Network
that you will use in some of the questions. This function accepts two arguments, an “on-
diagonal” weight and an “off-diagonal” weight. These refer to the weights in our image
network’s pairwise factors, where on-diagonal refers to the weight associated with adjacent
nodes agreeing and off-diagonal corresponds to having different assignments. The output
network will be a 4 x 4 grid.

3. ConstructRandNetwork.m: Function that constructs a randomized pairwise Markov
Network that you will use in some of the questions. The functionality is essentially the
same as ConstructToyNetwork.m.

4. VisualizeMCMCMarginals.m: This displays two things. First, it displays a plot of the
log-likelihood of each sample over time. Recall that in quickly mixing chains, this value
should increase until it roughly converges to some constant log-likelihood, where it should
remain (with some occasional jumps down). This function also visualizes the estimate of
the marginal distributions of specified variables in the network as estimated by a string of
samples obtained from MCMC over time. In particular, it takes a fixed-window subset of
the samples around a given iteration t and uses these to compute a sliding-window average
of the estimated marginal(s). It then plots the sliding-window average of each value in
the marginal as its estimate progresses over time. The function also can accept samples
from more than one MCMC run, in which case the marginal values that correspond to
one another are plotted in the same color, allowing you to determine whether the different
MCMC runs are converging to the same result. This is particularly helpful if you are trying
to identify whether the chain is susceptible to local optima (in which case, different runs
will converge to different marginals) or whether the chain has mixed by a given iteration.

5. TestToy.m: This function constructs a toy image network where each variable is a binary
pixel that can take on a value of 1 or 2. This network is a pairwise Markov net structured
as a 4 x 4 grid. The parameterization for this network can be found in TestToy.m and you
will tune the parameters of the pairwise factors to study the corresponding behavior of
different inference techniques. You can visualize the marginal strengths of this toy image
by calling the function VisualizeToyImageMarginals.m, which will display the marginals as
a gray-scale image, where the intensity of each pixel represents the probability that that
pixel has the label 2.

6. VisualizeToyImageMarginals.m: Visualizes the marginals of the variables in the toy
network on a 4x4 grid. We have provided a lot of the infrastructure code for you so that
you can concentrate on the details of the inference algorithms.

	Introduction
	MCMC
	Gibbs
	Running Gibbs Sampling and Questions

	Metropolis-Hastings

	Conclusion
	Infrastructure Reference

