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Initial Graph 
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Elimination as Graph Operation 
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Elimination as Graph Operation 
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Elimination as Graph Operation 
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Elimination as Graph Operation 
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Elimination as Graph Operation 
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Elimination as Graph Operation 
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Elimination as Graph Operation 
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Induced Graph 
•  The induced graph IΦ,α over 

factors Φ and ordering α: 
– Undirected graph 
– Xi and Xj are connected if they 

appeared in the same factor in 
a run of the VE algorithm using 
α as the ordering 
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Cliques in the Induced Graph 
•  Theorem: Every factor produced during VE is 

a clique in the induced graph C 
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Cliques in the Induced Graph 
•  Theorem: Every (maximal) clique in the induced 

graph is a factor produced during VE C 
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Cliques in the Induced Graph 
•  Theorem: Every (maximal) clique in the induced 

graph is a factor produced during VE C 
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Induced Width 
•  The width of an induced graph is the number 

of nodes in the largest clique in the graph 
minus 1 

•  Minimal induced width of a graph K is 
minα(width(IK,α)) 

•  Provides a lower bound on best performance 
of VE to a model factorizing over K 
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Summary 
•  Variable elimination can be viewed as 

transformations on undirected graph 
– Elimination connects all node’s current 

neighbors 
 

•  Cliques in resulting induced graph directly 
correspond to algorithm’s complexity 


