

Inference

Variable Elimination

Graph-Based Perspective

Initial Graph

$\phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)\phi_D(C,D)\phi_C(C)$

 $\phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)\phi_D(C,D)\phi_C(C)$

• Eliminate: C

 $\underline{\tau_1(D)} = \sum_C \phi_C(C)\phi_D(C,D)$

Induced Markov network for the current set of factors

 $\phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_G(G,I,D)\phi_H(H,G,J)\phi_I(I)\tau_1(D)$

• Eliminate: D

$$\tau_2(G,I) = \sum_D \phi_G(G,I,D)\tau_1(D)$$

Induced Markov network for the current set of factors

 $\phi_J(J,L,S)\phi_L(L,G)\phi_S(S,I)\phi_I(I)\phi_H(H,G,J)\tau_2(G,I)$

• Eliminate: I

$$\tau_3(S,G) = \sum_I \phi_S(S,I)\phi_I(I)\tau_2(G,I)$$

all variables connected to I become
-connected directly

Induced Markov network for the current set of factors

 $\phi_J(J,L,S)\phi_L(L,G)\phi_H(H,G,J)\tau_3(S,G)$

• Eliminate: H

$$\tau_4(G,J) = \sum_H \phi_H(H,G,J)$$

Induced Markov network for the current set of factors

 $\phi_J(J,L,S)\phi_L(L,G)\tau_3(S,G)\tau_4(G,J)$

• Eliminate: G

$$\tau_5(L,J) = \sum_G \phi_L(L,G) \tau_3(S,G) \tau_4(G,J)$$

Induced Markov network for the current set of factors

 $\phi_J(J,L,S)\tau_5(L,J)$

• Eliminate: L,S

Induced Markov network for the current set of factors

 $\phi_J(J,L,S)\tau_5(L,J)$

• Eliminate: L,S

Induced Markov network for the current set of factors

Induced Graph

- The induced graph $I_{\Phi,\alpha}$ over factors Φ and ordering α :
 - Undirected graph
 - $-X_i$ and X_j are connected if they appeared in the same factor in a run of the VE algorithm using α as the ordering

Cliques in the Induced Graph

• Theorem: Every factor produced during VE is a clique in the induced graph

$$\begin{split} \tau_{1}(D) &= \sum_{C} \phi_{C}(C) \phi_{D}(C, D) \\ \tau_{2}(G, I) &= \sum_{D} \phi_{G}(G, I, D) \tau_{1}(D) \\ \tau_{3}(S, G) &= \sum_{I} \phi_{S}(S, I) \phi_{I}(I) \tau_{2}(G, I) \\ \tau_{4}(G, J) &= \sum_{H} \phi_{H}(H, G, J) \\ \tau_{5}(L, J) &= \sum_{G} \phi_{L}(L, G) \tau_{3}(S, G) \tau_{4}(G, J) \\ \tau_{6} &= \sum_{L,S} \phi_{J}(J, L, S) \tau_{5}(L, J) \end{split}$$

Daphne Koller

Cliques in the Induced Graph

• Theorem: Every (maximal) clique in the induced graph is a factor produced during VE

$$\begin{split} \tau_1(D) &= \sum_C \phi_C(C) \phi_D(C,D) \\ \tau_2(G,I) &= \sum_D \phi_G(G,I,D) \tau_1(D) \\ \tau_3(S,G) &= \sum_T \phi_S(S,I) \phi_I(I) \tau_2(G,I) \\ \tau_4(G,J) &= \sum_H \phi_H(H,G,J) \\ \tau_5(L,J) &= \sum_G \phi_L(L,G) \tau_3(S,G) \tau_4(G,J) \\ \tau_6 &= \sum_{L,S} \phi_J(J,L,S) \tau_5(L,J) \end{split}$$

Cliques in the Induced Graph

• Theorem: Every (maximal) clique in the induced graph is a factor produced during VE

Consider a max clique -Some variable is first to be eliminated D once a variable is eliminated - no new neighborg are added to it) when eliminated it alree dy had all the clique members as neighbors) penticipated in factor with all there other variables) when multiplied together, we have a factor over all of them H

Daphne Koller

S

Induced Width

- The width of an induced graph is the number of nodes in the largest clique in the graph minus 1
- <u>Minimal induced width</u> of a graph K is $min_{\alpha}(width(I_{K,\alpha}))$
- Provides a lower bound on best performance of VE to a model factorizing over K

Summary

- Variable elimination can be viewed as transformations on undirected graph
 - Elimination connects all node's current
 neighbors
- <u>Cliques</u> in resulting <u>induced</u> graph directly correspond to algorithm's complexity