

Inference

Variable Elimination

Finding Elimination Orderings

Finding Elimination Orderings

- Theorem: For a graph H, determining whether there exists an elimination ordering for H with induced width
 < K is NP-complete
- Note: This NP-hardness result is distinct from the NP-hardness result of inference
 - Even given the optimal ordering, inference may still be exponential

Finding Elimination Orderings

- Greedy search using heuristic cost function

 At each point, eliminate node with smallest cost
- Possible cost functions:
 - <u>min-neighbors</u>: # neighbors in current graph
 - min-weight: weight (# values) of factor formed
 - min-fill: number of new fill edges
 - weighted min-fill: total weight of new fill edges (edge weight = product of weights of the 2 nodes)

Finding Elimination Orderings

- Theorem: The induced graph is triangulated

 No loops of length > 3 without a "bridge"
 I adde nucl be added
 I adde nucl be added
- Can find elimination ordering by finding a low-width triangulation of original graph ${\rm H}_{\Phi}$

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006 Eliminate Poses then Landmarks

Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006 Eliminate Landmarks then Poses

Summary

- Finding the optimal elimination ordering is NP-hard
- Simple heuristics that try to keep induced graph small often provide reasonable performance