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Finding Elimination Orderings

« Theorem: For a graph H, determining whether
there exists an elimination ordering for H with
induced width = K is NP-complete

* Note: This NP-hardness result is distinct from
the NP-hardness result of inference

— Even given the optimal ordering, inference may still
be exponential
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Finding Elimination Orderings

* Greedy search using heuristic cost function
— At each point, eliminate node with smallest cost

* Possible cost functions: Y
— min-neighbors: # neighbors in current graph
— min-weight: weight (# values) of factor formed
— min-fill: number of new fill edges

— weighted min-fill: total weight of new fill edges
(edge weight = product of weights of the 2 nodes)
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Finding Elimination Orderings

* Theorem: The induced graph is triangulated
— No loops of length > 3 without a "bridge” ;
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* Can find elimination ordering by finding a

low-width triangulation of original graph H,,
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Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006

Robot Localization & Mapping




Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006

inate Poses then Landmarks
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Square Root SAM, F. Dellaert and M. Kaess, IJRR, 2006

Eliminate Landmarks then Poses
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Summary

* Finding the optimal elimination ordering is
NP-hard

» Simple heuristics that try to keep induced
graph small often provide reasonable
performance




