

Inference

Message Passing

Clique Tree and VE

Variable Elimination & Clique Trees

Variable elimination

- Each step creates a factor λ_i through factor product
- A variable is eliminated in λ_{i} to generate new factor τ_{i}
- $-\tau_i$ is used in computing other factors λ_i

Clique tree view

- Intermediate factors λ_i are cliques
- $-\tau_i$ are "messages" generated by clique λ_i and transmitted to another clique λ_i

Clique Tree from VE

- VE defines a graph
 - Cluster C_i for each factor λ_i used in the computation
 - Draw edge C_i — C_j if the factor generated from λ_i is used in the computation of λ_j

$$\bullet \quad C : \underline{\tau_1(D)} = \sum_{C} \phi_C(C) \phi_D(C, D)$$

Example
$$C: \underline{\tau}_{1}(D) = \sum_{C} \phi_{C}(C)\phi_{D}(C,D)$$

$$H: (\underline{\tau}_{4}(G,J)) = \sum_{H} \phi_{H}(H,G,J)$$

•
$$\mathbf{I}$$
: $(G,S) = \sum_{I} \underline{\phi_I(I)} \underline{\phi_S(S,I)} \tau_2(G,I)$

$$T: \tau_3(G,S) = \sum_{I} \phi_I(I) \phi_S(S,I) \tau_2(G,I) \quad \bullet \quad S: \quad \tau_6(J,L) = \sum_{S} \phi(J,L,S) \tau_5(J,L,S)$$

Remove redundant cliques:

those whose scope is a subset of adjacent clique's scope

Daphne Koller

Properties of Tree

- VE process induces a tree
 - In VE, each intermediate factor is used only once
 - Hence, each cluster "passes" a factor (message) to exactly one other cluster leves cluster has at not me
- - Each of the original factors must be used in some elimination step
 - And therefore contained in scope of associated ϕ_i

Properties of Tree

- Tree obeys running intersection property
 - If $X \in C_i$ and $X \in C_j$ then X is in each cluster in the (unique) path between C_i and C_j

Running Intersection Property

 Theorem: If T is a tree of clusters induced by VE, then T obeys RIP

Summary

- A run of variable elimination implicitly defines a correct clique tree
 - We can "simulate" a run of VE to define cliques and connections between them
- Cost of variable elimination is ~ the same as passing messages in one direction in tree
- Clique trees use dynamic programming (storing messages) to compute marginals over all variables at only twice the cost of VE