
Expectation Maximization (EM)

The Expectation Maximization (EM) algorithm is one approach to unsuper-
vised, semi-supervised, or lightly supervised learning. In this kind of learning
either no labels are given (unsupervised), labels are given for only a small frac-
tion of the data (semi-supervised), or incomplete labels are given (lightly su-
pervised). Completely unsupervised learning is believed to take place in human
babies. Babies learn to divide continuous speech into words. There is significant
experiemental evidence that babies can do this simply by listening to tapes of
speech. Computer systems are not yet able to learn to do speech recognition
simply by listenting to speech sound. In practice the EM algorithm is most
effective for lightly supervised data. For example, the text in closed caption
television is a light labeling of the television speech sound. Although the se-
quence of words is given, the alignment between the words and the sound is not
given. The text-to-speech alignment can be infered by EM. Another example of
partially labeled data is translation pairs, for example English text paired with
a French translation. Translation pairs are used to train machine translation
systems. Although the translation is given, the alignment between the words is
not (and the word order is different in different languages). Word alignment can
be inferred by EM. Although EM is most useful in practice for lightly supervised
data, it is more easily formulated for the case of unsupervised learning.

1 Hard EM

Here we assume a model with parameters Θ defining probabilities of the form
PΘ(x1, . . . , xN , z1, . . . , zN).1 In a mixture of Gaussian model we have that each
xt is a point in RD and each zt is a class label with zt ∈ {1, . . . ,K}. Gaussian
mixture models are defined in the next section. In an HMM we have that x1, . . .,
xN is a sequence of observations and z1, . . . , zN is a sequence of hidden states.
Alternatively, for an HMM we could take each xt to be an observation sequence
(such as a protein amino acid sequence) and each zt a hidden state sequence
(such a sequence of secodary structure classifications). It is more common with
HMMs to consider one very long sequence where each xt is a single observation
of the underlying model. For a PCFG we typically have that x1, . . . , xN is a
sequence of strings and z1, . . . , zn is a sequence of parse trees where zt is a parse
tree for the string xt.

We now consider an arbitrary model defining PΘ(x1, . . . , xn, z1, . . . , zn). In
unsupervised training we are given only x1, . . . , xn and, given only this infor-
mation, we set the parameter values Θ of the model. Hard EM approximatey

1We view PΘ(x, z) as a special case with N = 1. Alterntatively, one can view
PΘ(x1, . . . , xN , z1, . . . , zN) as a special case of PΘ(x, z) where x is the sequence x1, . . . , xN

and z is the sequence z1, . . . , zN . All the examples we consider have the form
PΘ(x1, . . . , xN , z1, . . . , zN) and so it seems natural to keep sequences throughout the for-
mulation.

1

solves the following optimization problem.

Θ∗ = argmax
Θ

max
z1,...,zn

PΘ(x1, . . . , xn, z1, . . . , zn) (1)

A local optimum of (1) can be found by coordinate ascent. We wish to find values
of the two “coordinates” Θ and (z1, . . . , zn) maximizing PΘ(x1, . . . , xn, z1, . . . zn).
In coordinate ascent we alternately optimize each coordinate holding the other
coordinates fixed. Hard EM is the following coordinate ascent algorithmm.

1. Initialize Θ (the initiaization is important but application specific).

2. Repeat the following until PΘ(x1, . . . xn, z1, . . . zn) converges.

(a) (z1, . . . zN) := argmaxz1,...,zN
PΘ(x1, . . . , xN , z1, . . . , zN)

(b) Θ := argmaxΘ PΘ(x1, . . . , xN , z1, . . . , zN)

2 K-Means Clustering as an Example of Hard
EM

K-means clustering is a special case of hard EM. In K-means clustering we
consider sequences x1, . . . , xn and z1, . . . , zN with xt ∈ RD and zt ∈ {1, . . . ,K}.
In other words, zt is a class label, or cluster label, for the data point xt. We
can define a K-means probability model as follows where N (µ, I) denotes the
D-dimensional Gaussian distribution with mean µ ∈ RD and with the identity
covariance matrix.

Θ = 〈µ1, . . . , µK〉, µk ∈ RD

PΘ(x1, . . . , xn, z1, . . . zn) =
N∏

t=1

PΘ(zt)PΘ(xt|zt)

=
N∏

t=1

1
K
N (µzt , I)(xt)

We now consider the optimization problem defined by (1) for this model. For
this model one can show that (1) is equivalent to the following.

(
µ1, . . . , µK

)∗
= argmin

µ1,...,µk

min
z1,...,zn

N∑
t=1

||µzt − xt||2 (2)

The optimization problem (2) defines K-means clustering (under quadratic dis-
tortion). This problem is nonconvex and in fact is NP-hard (worse than non-
convex). The K means algorithm is coordinate descent applied to this objective

2

and is equivalent to hard EM under tha above probability model. The K-means
clustering algorithm can be written as follows where we specify a typical initial-
ization step.

1. Initialize µz to be equal to a randomly selected point xt.

2. Repeat the following until (z1, . . . zn) stops changing.

(a) zt := argminz ||µz − xt||2

(b) Nz := |{t : zt = z}|
(c) µz := 1

Nz

∑
t: zt=z xt

In words, the K-means algorithm first assigns a class center µz for each class
z. It then repeatedly classifies each point xt as belonging to the class whose
center is nearest xt and then recomputes the class centers to be the mean of
the point placed in that class. Because it is a coordinate descent algorithm for
(2), the sum of squares of the difference between each point and its class center
is reduced by each update. This implies that the classification must eventually
stabilize. The procedure terminates when the class labels stop changing.

3 Hard EM for Mixtures of Gaussians

Again we consider sequences x1, . . . , xn and z1, . . . , zN with xt ∈ RD and zt ∈
{1, . . . ,K}. Now however we consider a probability model that is a mixture of
Gaussians including mixture weights and covariance matrices.

Θ = 〈π1, . . . , πK , µ1, . . . , µK ,Σ1, . . . ,ΣK〉

PΘ(x1, . . . , xn, z1, . . . zn) =
N∏

t=1

PΘ(zt)PΘ(xt|zt)

=
N∏

t=1

πztN (µzt ,Σzt)(xt)

3

Again we can consider the optimization problem defined by (1) for this model.
It can now be shown that step 2b of the hard EM is equivalent to the following.

Nk = |{t : zt = k}|

πk = Nk/N

µk =
1

Nk

∑
t: z∗t =k

xt

Σk =
1

Nk

∑
t: z∗t =k

(xt − µk)(xt − µk)T (3)

4 An Informal Statement of General Soft EM

Again we assume a model with parameters Θ defining probabilities of the form
PΘ(x1, . . . , xN , z1, . . . , zN). Again we are given only x1, . . . , xn and, given only
this information, we set the parameter values Θ of the model. Soft EM approx-
imatey solves the following optimization problem.

Θ∗ = argmax
Θ

∑
z1,...,zn

PΘ(x1, . . . , xn, z1, . . . , zn) (4)

= PΘ(x1, . . . , xN) (5)

One should compare (4) with (1) and note that the objective in hard EM is
different from the objective in soft EM. Which objective is more appropriate can
depend on how the model is to be used. If the model is used to infer the most
likely value of z1, . . . , zN , as in speech recognition, then (1) seems more appro-
priate than (4). But if the model is to be used for computing PΘ(x1, . . . , xN)
then (4) seems more appropriate. Soft EM can be described informally as the
following iterative improvement algorithmm for the objective given in (4).

1. Initialize Θ (the initiaization is important but application specific).

2. Repeat the following until PΘ(x1, . . . xn, z1, . . . zn) converges.

(a) ρ(z1, . . . , zN) := PΘ(z1, . . . , zN | x1, . . . , xN) (The E step.)

(b) Θ := The best fit of Θ to x1, . . . , xN and the distribution ρ on
z1, . . . , zN . (The M step.)

4

5 Soft EM for Mixtures of Gaussians

Again consider the mixture of Gaussian model defined in section 3. We can
implement step 2a (the E step) by computing probabilities (or weights) pk

t as
follows.

pk = PΘw
(zt = k|xt)

=
πk

wN
(
µk

w,Σk
w

)
(xt)∑K

k=1 πk
wN (µk

w,Σk
w) (xt)

Given the numbers (the matrix) pk
t , step 2b is then implemented as follows.

Nk =
N∑

t=1

pk
t

πk =
Nk

N

µk
w+1 =

1
Nk

N∑
t=1

pk
t xt

Σk
w+1 =

1
Nk

N∑
t=1

pk
t (xt − µk)(xt − µk)T

It is instructive to compare these update equations with the update equations
of section 3.

6 Soft EM for HMMs

EM for HMMs is called the Baum-Welch algorithm. The Baum-Welch algorithm
predates the general formlation of EM — most special cases of EM predate the
general formulation. Recall that in an HMM we have xt ∈ {1, . . . , O} and
zt ∈ {1, . . . , S}. An HMM is defined as follows where π is a S-dimensional
vector, A is a S × S hidden state transition probability matrix, and C is an
O × S emission probability matrix.

Θ = 〈π,A, C〉

PΘ(z1, . . . , zN , x1, . . . , xN) = πz1

(
N−1∏
t=1

Azt+1,zt

)(
N∏

t=1

Cxt,zt

)

5

Here we will use superscript indeces for model generation so that we are
computng Θw+1 from Θw. Given a model Θw, and a sequence x1, . . . , xn, we
can use the forward-backward procedure to compute the following two matrices.

Fi,t = PΘw(x1, . . . , xt−1, zt = i)
Bi,t = PΘw(xt, . . . , xN | zt = i)

We will also use the following matrix computable from F and B.

Pi,t = PΘw(zt = i | xt, . . . , xN)

=
Fi,tBi,t

P (x1, . . . , xN)

P (x1, . . . xn) =
S∑

i=1

Fi,tBi,t

The model Θw+1 is then computed as follows.

πw+1
i = Pi,1

Cw+1
k,i =

∑
t: xt=k Pi,t∑N

t=1 Pi,t

Aw+1
i,j =

∑N−1
t=1 PΘw(zt = j ∧ zt+1 = i | x1, . . . , xN)∑N−1

t=1 Pj,t

=

∑N−1
t=1 Fj,tC

w
xt,j

Aw
i,jBj,t

P (x1, . . . , xN)
∑N−1

t=1 Pj,t

Intuition into these equations can be gained by thinking about the distribution
over z1, . . . , zN as training data. Each entry in the model Θw+1 can be viewed
as a conditional probability P (Φ|Ψ) which is being set to a “count” of Φ ∧ Ψ
divided by a “count” of Ψ. In each case the count is an expected number of
occurances. Hence the term “expectation” for the E-step of EM.

7 A Formal Treatment of General Soft EM

Here we let x abbreviate (x1, . . . , xn) and let z abbreviate (z1, . . . , zn). More
generally we can consider any model PΘ(x, z) on a pair of variables x and z.
Soft EM is the following iterative improvement algorithmm for the objective
given in (4).

6

1. Initialize Θ (the initiaization is important but application specific).

2. Repeat the following until PΘ(x, z) converges.

(a) ρ(z) := PΘ(z | x)

(b) Θ := argmaxΘ Ez∼ρ [lnPΘ(x, z)]

First we given an intuition as to why step 2b in the formal soft EM algorithm
corresponds to step 2b in the informal version. Step 2b of the informal version
can now be stated as “fit Θ to x and ρ”. Intuitively, we can think of fitting Θ
to x and ρ as fitting Θ to a very large sample (x, z1), . . . , (x, zM) where each zi

is drawn at random from ρ. For such a sample we have the following.

PΘ((x, z1), . . . , (x, zM)) =
m∏

i=1

PΘ(x, zi)

lnPΘ((x, z1), . . . , (x, zM)) =
m∑

i=1

lnPΘ(x, zi)

=
∑

z

count(z) lnP (x, z)

1
M

lnPΘ((x, z1), . . . , (x, zM)) =
count(z)

M
lnP (x, z)

≈
∑

z

ρ(z) ln P (x, z)

= Ez∼ρ [lnP (x, z)]

argmax
Θ

PΘ((x, z1), . . . , (x, zM)) ≈ argmax
Θ

E [z ∼ ρ] lnPΘ(x, z)

So we should think of the distribution ρ as providing a “viritual sample” to
which we fit Θ in step 2b.

We now show that the update 2b improves the objective function (4) unless
we are already at a local optimum. Here we consider an update starting at the
parameter vector Θ and ending in the parameter vector Θ + ε. Step 2b can be
defined as follows.

ε = argmax
ε

Q(Θ + ε) (6)

Q(Ψ) = Ez∼ρ [lnPΨ(x, z)] (7)

ρ(z) = PΘ(z|x) (8)

7

We now write PΘ(· | x) for the distribution on z defined by PΘ(z|x) and
show the following.

lnPΘ+ε(x) = ln PΘ(x) + Q(Θ + ε)−Q(Θ) + KL(PΘ(·|x), PΘ+ε(·|x)) (9)

≥ lnPΘ(x) + Q(Θ + ε)−Q(Θ) (10)

Proof:

Q(Θ + ε)−Q(Θ) = Ez∼ρ

[
ln

PΘ+ε(x, z)
PΘ(x, z)

]
= Ez∼ρ

[
ln

PΘ+ε(x)PΘ+ε(z|x)
PΘ(x)PΘ(z|x)

]
= Ez∼ρ

[
ln

PΘ+ε(X)
PΘ(x)

]
+ Ez∼ρ

[
ln

PΘ+ε(z|x)
PΘ(z|x)

]
= ln

PΘ+ε(x)
PΘ(x)

−KL(PΘ(·|x), PΘ+ε(·|x))

Formula (10) gives a differentiable lower bound on an differentiable objective
function to be maximized. Furthermore, the lower bound equals the objective
function at the “current point” Θ. We can now make a very general observation.
For any differentiable lower bound on a differentiable objective function where
the bound equals the objective at the current point, and where the gradient of
the objective is nonzero at the current point, maximizing the lower bound will
strictly improve the objective. To see this note that at the current point the
gradient of the bound must equal the gradient of the objective. Hence the lower
bound itself can be strictly improved. At any point where the lower bound
is larger, the objective must also be larger. The EM update corresponds to
maximizing the lower bound in (10).

8 Problems

1. Suppose that we want to classify x ∈ X into one of K classes using a single
feature vector Φ(x) where each feature is either 0 or 1, i.e., for each feature i
and x ∈ X we have Φi(x) ∈ {0, 1}. The naive Bayes model is a generative model
for generating pairs 〈x, y〉 with x ∈ X and z a class label, i.e., z ∈ {1, . . . ,K}.
The naive Bayes model can be defined by the following equations.

βj = P (z = j)
βi,j = P (Φi(x) = 1 | z = j)

Pβ(x, z) = βz

∏
i

{
βi,z if Φi(x) = 1
(1− βi,z) if Φi(x) = 0

8

Suppose that we have a sample S of unlabeled values x1, . . ., xT from X .

a. Give equations for Pβ(zt = z|xt).

b. Specify the hard EM algorithm for this model. Give an initialization that
you think is reasable.

c. Specify the soft EM algorithm for this model. Again given an intialization
that you think is reasonable.

2. Consider a Bayesian network with structure X ← Y → Z where each
of X, Y , and Z take values from the finite sets X , Y and Z respectively. This
network has the following parameters where x ∈ X , y ∈ Y and z ∈ Z.

Πy = P (Y = y)

Rx,y = P (X = x | Y = y)

Lz,y = P (Z = z | Y = y)

Give both the hard and soft EM algorithms for this model.

3. Give the hard EM algorithm for PCFGs (using the Viterbi parsing algorithm)
and the soft EM algorithm fr PCFS (using the inside-outside algorithm).

4. Suppose we initialize the PCFG to be deterministic in the sense that for any
word string there is at most one parse of that string with nonzero probability
and suppose that each xh does have a parse under the initial grammar. How
rapidly does EM converge in this case? What does it converge to? Justify your
answer.

5. Let γ be a distribution on {1, . . . , S}. In other words we have the following.

γi ≥ 0
S∑

i=1

γi = 1 (11)

Suppose that we want to fit a distribution (or model) π to the distribution γ.
Intuitively, the best fit is π = γ. But the general EM update fits using a formula
similar to the following.

π∗ = argmax
π

Ej∼γ [lnπj]

Show that π∗ = γ. Hint: express the problem as a minimization of cross
entropy and use the fact that cross entropy is minimized when the distributions

9

are equal, or perhaps better known, that KL(P,Q) ≥ 0 and KL(P,Q) = 0 only
if P = Q. Alternatively, you can use Lagrange multipliers and KKT conditions.

6. Let ρ be a distribution (density) on the real numbers R. Suppose that we
want to fit a Gaussian with mean µ and standard deviation σ to the distribution
ρ using the following “distribution fit equation”.

µ∗,Σ∗ = argmax
µ,Σ

Ex∼ρ [lnN (µ, σ)(x)]

N (µ, σ)(x) =
1√
2πσ

exp
(
−(x− µ)2

2σ2

)
Show that µ∗ = µρ = Ex∼ρ [x] and σ∗2 = σ2

ρ = Ex∼ρ

[
(x− µρ)2

]
.

10

