Informacije

Column 1

Opis varijabli

Opis varijabli
varijabla opis
UTAUT_1 UTAUT: BDP will help me improve my work performance
UTAUT_2 UTAUT: BDP will increase my productivity
UTAUT_3 UTAUT: BDP will make my job easier
UTAUT_4 UTAUT: fully utilizing the BDP will require a significant amount of effort on my part
UTAUT_5 UTAUT: using the BDP is easy for me
UTAUT_6 UTAUT: My colleagues think that I should use the BDP learning design.
UTAUT_7 UTAUT: most of my colleagues will use the BDP
UTAUT_8 UTAUT: creating a LD with the BDP is increasingly becoming the standard
UTAUT_9 UTAUT: BDP is very easy to use in my HE context
UTAUT_10 UTAUT: there are good instructions available for using the BDP
UTAUT_11 UTAUT: BDP will be available to me when I need it
LDBDP_1 LD BDP: LD based on WEIGHTED learning outcomes improves the quality of my work
LDBDP_2 LD BDP: planning TLA based on LOs contributes to the quality of my
LDBDP_3 LD BDP: planning of assessment based on LOs contributes to the quality of my work
LDBDP_4 LD BDP: choice of analysis available in the BDP Analysis contributes to the quality of my work
LDBDP_5 LD BDP: planning of TLA in the BDP tool useful
LDBDP_6 LD BDP: data presentation and visualization in the BDP Analysis understandable
LDBDP_7 LD BDP: data presentation and visualization in the BDP Analysis useful
LDBDP_8 LD BDP: export possibilitiesuseful for productivity of my work
Q1 What institution are you affiliated with?
Q2 Which user group(s) do you belong to? Choose at least one.
Q3 How many years of work do you have in the primary area of expertise?
Q4 Choose your gender
Q5 How old are you?
Q6 How did you train yourself to use the BDP tool?
Q7 How many learning designs have you prepared in the BDP tool?
Q8 How many hours did you spend working in the BDP tool?

Column 2

Likert skala

Kodiranje Likertove skale
Opis Numerički.kod
I do not know 0
Strongly disagree 1
Disagree 2
Neither agree nor disagree 3
Agree 4
Strongly agree 5

Zvjezdica oznake za p-vrijednosti

Oznake za p-vrijednosti ako je \(\alpha=0.05\)
interval oznaka
[0, 0.001) ***
[0.001, 0.01) **
[0.01, 0.05) *

UTAUT, LDBDP frekvencije

Column

Frekvencije varijabli UTAUT

Frekvencije varijabli LDBDP

Q1, Q8, Q4, Q5 frekvencije

Column 1

Frekvencije varijable Q1

Frekvencije varijable Q4

Column 2

Frekvencije varijable Q8

Frekvencije varijable Q5

Q3, Q7 frekvencije

Column 1

Frekvencije varijable Q3

Column 2

Frekvencije varijable Q7

Q2, Q6 frekvencije

Column

Frekvencije varijable Q2

Frekvencije varijable Q6

Korelacije

Column

Korelacije (Kendall)

Column

Značajnost (Holm korekcija)

Značajnost (bez korekcije)

p-vrijednosti (tablica)

p-vrijednosti: tablica je sortirana silazno s obzirom na apsolutne vrijednosti korelacija
parovi varijabli korelacija p-value (Holm) p-value (bez korekcije)
UTAUT_1-LDBDP_5 0.6782270 0.0000041 0.0000000
UTAUT_5-UTAUT_9 0.6465094 0.0000289 0.0000002
UTAUT_1-UTAUT_2 0.6196939 0.0001269 0.0000008
LDBDP_6-LDBDP_7 0.5550229 0.0027046 0.0000161
LDBDP_4-LDBDP_7 0.5482336 0.0035771 0.0000214
LDBDP_5-LDBDP_7 0.5380780 0.0053888 0.0000325
UTAUT_3-UTAUT_5 0.5030076 0.0204071 0.0001237
UTAUT_4-UTAUT_5 -0.4900453 0.0320854 0.0001956
LDBDP_2-LDBDP_3 0.4888348 0.0332543 0.0002040
UTAUT_2-LDBDP_5 0.4772695 0.0489395 0.0003021
UTAUT_5-LDBDP_7 0.4748567 0.0526965 0.0003273
LDBDP_4-LDBDP_5 0.4732476 0.0552268 0.0003452
UTAUT_11-LDBDP_1 0.4702208 0.0606071 0.0003812
UTAUT_5-UTAUT_10 0.4623872 0.0775337 0.0004907
UTAUT_9-LDBDP_5 0.4519870 0.1067579 0.0006800
UTAUT_1-LDBDP_4 0.4407151 0.1493466 0.0009573
UTAUT_5-LDBDP_5 0.4373046 0.1641958 0.0010593
UTAUT_11-LDBDP_5 0.4215915 0.2566376 0.0016665
UTAUT_1-UTAUT_3 0.4199608 0.2669188 0.0017446
UTAUT_3-LDBDP_5 0.4180176 0.2799651 0.0018419
UTAUT_2-UTAUT_3 0.4171188 0.2851634 0.0018885
UTAUT_8-UTAUT_9 0.4138951 0.3096737 0.0020645
LDBDP_1-LDBDP_7 0.4067997 0.3731195 0.0025042
UTAUT_1-LDBDP_3 0.4065920 0.3731195 0.0025182
UTAUT_10-UTAUT_11 0.4028828 0.4087903 0.0027809
LDBDP_5-LDBDP_8 0.4003241 0.4344913 0.0029760
LDBDP_4-LDBDP_6 0.3997307 0.4383208 0.0030229
LDBDP_1-LDBDP_4 0.3994955 0.4383208 0.0030417
UTAUT_11-LDBDP_6 0.3986348 0.4449171 0.0031113
UTAUT_3-UTAUT_9 0.3973518 0.4569151 0.0032177
UTAUT_5-LDBDP_6 0.3953085 0.4785268 0.0033938
UTAUT_1-UTAUT_9 0.3940024 0.4915103 0.0035108
UTAUT_2-LDBDP_4 0.3933248 0.4966282 0.0035729
UTAUT_10-LDBDP_6 0.3933036 0.4966282 0.0035748
UTAUT_11-LDBDP_7 0.3891346 0.5450811 0.0039787
LDBDP_7-LDBDP_8 0.3886706 0.5475419 0.0040260
UTAUT_10-LDBDP_5 0.3881116 0.5513050 0.0040837
UTAUT_4-UTAUT_9 -0.3745135 0.7678794 0.0057304
UTAUT_1-UTAUT_11 0.3733249 0.7845363 0.0058988
UTAUT_10-LDBDP_7 0.3696646 0.8506813 0.0064446
UTAUT_1-UTAUT_5 0.3693059 0.8515448 0.0065003
UTAUT_8-UTAUT_11 0.3635776 0.9685047 0.0074500
UTAUT_5-LDBDP_4 0.3632640 0.9685047 0.0075054
UTAUT_1-LDBDP_7 0.3609671 1.0000000 0.0079215
UTAUT_1-UTAUT_10 0.3591718 1.0000000 0.0082605
UTAUT_9-LDBDP_4 0.3587544 1.0000000 0.0083411
UTAUT_2-LDBDP_3 0.3545318 1.0000000 0.0091957
UTAUT_8-LDBDP_5 0.3536403 1.0000000 0.0093855
UTAUT_7-UTAUT_11 0.3474183 1.0000000 0.0108072
UTAUT_11-LDBDP_8 0.3467736 1.0000000 0.0109646
UTAUT_9-LDBDP_7 0.3441692 1.0000000 0.0116208
UTAUT_9-UTAUT_10 0.3320856 1.0000000 0.0151258
UTAUT_3-UTAUT_10 0.3302520 1.0000000 0.0157296
UTAUT_7-LDBDP_7 0.3277903 1.0000000 0.0165725
UTAUT_1-UTAUT_8 0.3127763 1.0000000 0.0225904
UTAUT_10-LDBDP_8 0.3107866 1.0000000 0.0235114
UTAUT_3-UTAUT_11 0.3087269 1.0000000 0.0244980
UTAUT_3-LDBDP_7 0.3085320 1.0000000 0.0245932
UTAUT_11-LDBDP_4 0.3070998 1.0000000 0.0253018
UTAUT_7-UTAUT_8 0.3053823 1.0000000 0.0261742
UTAUT_3-LDBDP_4 0.3038247 1.0000000 0.0269870
UTAUT_7-LDBDP_5 0.2980298 1.0000000 0.0301988
UTAUT_1-LDBDP_8 0.2965167 1.0000000 0.0310881
UTAUT_6-UTAUT_7 0.2951944 1.0000000 0.0318829
UTAUT_9-UTAUT_11 0.2951886 1.0000000 0.0318864
UTAUT_2-LDBDP_7 0.2886119 1.0000000 0.0360954
UTAUT_2-UTAUT_9 0.2881700 1.0000000 0.0363939
LDBDP_5-LDBDP_6 0.2863617 1.0000000 0.0376369
LDBDP_3-LDBDP_8 0.2857920 1.0000000 0.0380357
UTAUT_3-LDBDP_3 0.2835225 1.0000000 0.0396591
UTAUT_9-LDBDP_6 0.2764558 1.0000000 0.0450831
UTAUT_3-UTAUT_8 0.2742274 1.0000000 0.0469142
UTAUT_5-LDBDP_8 0.2708614 1.0000000 0.0497948
UTAUT_4-LDBDP_7 -0.2672272 1.0000000 0.0530649
UTAUT_10-LDBDP_1 0.2594071 1.0000000 0.0606924
UTAUT_7-LDBDP_8 0.2579292 1.0000000 0.0622283
UTAUT_11-LDBDP_3 0.2537960 1.0000000 0.0666900
LDBDP_1-LDBDP_8 0.2528900 1.0000000 0.0677014
UTAUT_2-LDBDP_1 0.2523581 1.0000000 0.0683009
UTAUT_2-UTAUT_5 0.2502097 1.0000000 0.0707652
UTAUT_5-UTAUT_11 0.2422597 1.0000000 0.0805054
UTAUT_6-UTAUT_10 -0.2398777 1.0000000 0.0836207
UTAUT_2-UTAUT_10 0.2392022 1.0000000 0.0845213
UTAUT_4-UTAUT_10 -0.2390347 1.0000000 0.0847457
UTAUT_8-UTAUT_10 0.2369362 1.0000000 0.0875977
LDBDP_1-LDBDP_6 0.2363716 1.0000000 0.0883777
UTAUT_3-LDBDP_1 0.2353716 1.0000000 0.0897726
LDBDP_1-LDBDP_5 0.2338078 1.0000000 0.0919881
LDBDP_1-LDBDP_3 0.2309290 1.0000000 0.0961780
LDBDP_3-LDBDP_5 0.2267579 1.0000000 0.1025100
UTAUT_2-UTAUT_11 0.2233836 1.0000000 0.1078638
UTAUT_1-LDBDP_1 0.2232094 1.0000000 0.1081459
UTAUT_1-LDBDP_6 0.2131431 1.0000000 0.1254304
UTAUT_8-LDBDP_2 -0.2111117 1.0000000 0.1291586
UTAUT_8-LDBDP_7 0.2092701 1.0000000 0.1326102
UTAUT_7-LDBDP_6 0.2022308 1.0000000 0.1464436
UTAUT_4-LDBDP_6 -0.2005538 1.0000000 0.1498917
UTAUT_2-LDBDP_8 0.1986504 1.0000000 0.1538777
LDBDP_6-LDBDP_8 0.1974749 1.0000000 0.1563780
LDBDP_4-LDBDP_8 0.1962426 1.0000000 0.1590312
UTAUT_3-UTAUT_7 0.1939214 1.0000000 0.1641185
UTAUT_3-UTAUT_4 -0.1921805 1.0000000 0.1680109
UTAUT_2-UTAUT_8 0.1920682 1.0000000 0.1682645
UTAUT_5-LDBDP_2 0.1907398 1.0000000 0.1712831
UTAUT_3-LDBDP_8 0.1905371 1.0000000 0.1717471
UTAUT_6-LDBDP_7 0.1892680 1.0000000 0.1746732
UTAUT_8-LDBDP_8 0.1808107 1.0000000 0.1950987
UTAUT_5-LDBDP_3 0.1804299 1.0000000 0.1960567
UTAUT_10-LDBDP_4 0.1760983 1.0000000 0.2071902
UTAUT_5-UTAUT_8 0.1746792 1.0000000 0.2109327
UTAUT_3-LDBDP_2 0.1706074 1.0000000 0.2219338
LDBDP_3-LDBDP_7 0.1681563 1.0000000 0.2287449
UTAUT_1-UTAUT_7 0.1667817 1.0000000 0.2326272
UTAUT_8-LDBDP_1 0.1639393 1.0000000 0.2407985
UTAUT_4-UTAUT_11 -0.1619594 1.0000000 0.2466048
UTAUT_8-LDBDP_6 0.1594952 1.0000000 0.2539633
UTAUT_9-LDBDP_8 0.1588581 1.0000000 0.2558897
UTAUT_7-UTAUT_10 0.1558323 1.0000000 0.2651727
UTAUT_2-UTAUT_7 0.1474599 1.0000000 0.2920204
LDBDP_3-LDBDP_4 0.1470171 1.0000000 0.2934881
UTAUT_8-LDBDP_4 0.1445226 1.0000000 0.3018452
LDBDP_1-LDBDP_2 0.1388743 1.0000000 0.3213302
UTAUT_2-LDBDP_2 0.1385350 1.0000000 0.3225255
UTAUT_10-LDBDP_3 0.1358841 1.0000000 0.3319608
LDBDP_2-LDBDP_4 0.1345677 1.0000000 0.3367102
UTAUT_10-LDBDP_2 0.1309614 1.0000000 0.3499364
UTAUT_4-LDBDP_5 -0.1244672 1.0000000 0.3745473
UTAUT_6-LDBDP_4 0.1189040 1.0000000 0.3964339
UTAUT_5-UTAUT_7 0.1148635 1.0000000 0.4127893
UTAUT_11-LDBDP_2 0.1064318 1.0000000 0.4481413
UTAUT_4-LDBDP_8 -0.1055966 1.0000000 0.4517315
UTAUT_7-LDBDP_3 0.1041115 1.0000000 0.4581542
UTAUT_6-UTAUT_9 -0.1033349 1.0000000 0.4615324
UTAUT_3-UTAUT_6 -0.0974829 1.0000000 0.4874185
UTAUT_6-LDBDP_2 -0.0966975 1.0000000 0.4909496
UTAUT_5-LDBDP_1 0.0931240 1.0000000 0.5071829
UTAUT_7-LDBDP_4 0.0907240 1.0000000 0.5182369
UTAUT_6-LDBDP_8 0.0896485 1.0000000 0.5232291
UTAUT_4-LDBDP_3 -0.0831863 1.0000000 0.5537218
UTAUT_1-UTAUT_4 -0.0822739 1.0000000 0.5580942
UTAUT_7-UTAUT_9 0.0798790 1.0000000 0.5696475
UTAUT_7-LDBDP_1 0.0758687 1.0000000 0.5892375
UTAUT_9-LDBDP_1 0.0743861 1.0000000 0.5965558
UTAUT_8-LDBDP_3 -0.0727391 1.0000000 0.6047320
UTAUT_4-UTAUT_8 -0.0712261 1.0000000 0.6122857
UTAUT_7-LDBDP_2 -0.0640491 1.0000000 0.6486532
UTAUT_2-UTAUT_4 0.0604845 1.0000000 0.6670298
UTAUT_2-UTAUT_6 -0.0553547 1.0000000 0.6938167
UTAUT_9-LDBDP_2 0.0543960 1.0000000 0.6988652
UTAUT_4-LDBDP_4 -0.0496493 1.0000000 0.7240502
UTAUT_6-UTAUT_11 0.0487645 1.0000000 0.7287778
LDBDP_2-LDBDP_8 0.0454857 1.0000000 0.7463831
LDBDP_2-LDBDP_7 -0.0436368 1.0000000 0.7563685
UTAUT_9-LDBDP_3 0.0425890 1.0000000 0.7620449
UTAUT_5-UTAUT_6 -0.0388440 1.0000000 0.7824331
UTAUT_6-LDBDP_1 0.0335766 1.0000000 0.8113536
UTAUT_4-LDBDP_1 0.0321827 1.0000000 0.8190509
UTAUT_4-LDBDP_2 -0.0305033 1.0000000 0.8283468
UTAUT_1-LDBDP_2 0.0290931 1.0000000 0.8361704
UTAUT_6-LDBDP_5 0.0239213 1.0000000 0.8649935
UTAUT_6-UTAUT_8 0.0227062 1.0000000 0.8717921
UTAUT_3-LDBDP_6 0.0192887 1.0000000 0.8909610
UTAUT_1-UTAUT_6 -0.0169257 1.0000000 0.9042524
UTAUT_6-LDBDP_6 0.0154993 1.0000000 0.9122884
LDBDP_2-LDBDP_5 0.0150765 1.0000000 0.9146722
UTAUT_4-UTAUT_7 -0.0111320 1.0000000 0.9369433
UTAUT_2-LDBDP_6 -0.0096386 1.0000000 0.9453892
LDBDP_3-LDBDP_6 0.0095819 1.0000000 0.9457094
UTAUT_6-LDBDP_3 -0.0062891 1.0000000 0.9643513
UTAUT_4-UTAUT_6 -0.0058504 1.0000000 0.9668367
LDBDP_2-LDBDP_6 0.0000000 1.0000000 1.0000000

Dendrogram

Column

Dendrogram

Column

Rand indeksi (mean)

Rand indeksi (boxplot)

3 klastera

Column 1

Sličnost varijabli sa sintetičkom varijablom klastera


Call:
cutreevar(obj = tree, k = 3, matsim = TRUE)



Data: 
   number of observations:  53
   number of variables:  19
   number of clusters:  3

Cluster  1 : 
        squared loading correlation
UTAUT_9            0.98          NA
UTAUT_8            0.98          NA
LDBDP_5            0.98          NA
UTAUT_7            0.98          NA
UTAUT_3            0.98          NA
UTAUT_2            0.59          NA
UTAUT_1            0.59          NA


Cluster  2 : 
         squared loading correlation
LDBDP_7             0.68          NA
LDBDP_6             0.55          NA
UTAUT_5             0.53          NA
UTAUT_10            0.47          NA
LDBDP_4             0.43          NA
UTAUT_11            0.42          NA
UTAUT_6             0.32          NA
LDBDP_8             0.31          NA
LDBDP_1             0.27          NA
UTAUT_4             0.18          NA


Cluster  3 : 
        squared loading correlation
LDBDP_2               1          NA
LDBDP_3               1          NA


Gain in cohesion (in %):  35.76

Column 2

Sličnost varijabli unutar klastera

$cluster1
        UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1    1.00    0.45    0.50    0.54    0.53    0.53    0.63
UTAUT_2    0.45    1.00    0.54    0.53    0.53    0.66    0.50
UTAUT_3    0.50    0.54    1.00    1.00    1.00    1.00    1.00
UTAUT_7    0.54    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_8    0.53    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_9    0.53    0.66    1.00    1.00    1.00    1.00    1.00
LDBDP_5    0.63    0.50    1.00    1.00    1.00    1.00    1.00

$cluster2
         UTAUT_4 UTAUT_5 UTAUT_6 UTAUT_10 UTAUT_11 LDBDP_1 LDBDP_4 LDBDP_6 LDBDP_7 LDBDP_8
UTAUT_4    1.000   0.357    0.14    0.131     0.12   0.199   0.041    0.22    0.14   0.170
UTAUT_5    0.357   1.000    0.23    0.278     0.16   0.062   0.213    0.27    0.30   0.097
UTAUT_6    0.141   0.230    1.00    0.306     0.19   0.105   0.344    0.24    0.20   0.160
UTAUT_10   0.131   0.278    0.31    1.000     0.32   0.165   0.069    0.20    0.18   0.170
UTAUT_11   0.124   0.161    0.19    0.316     1.00   0.286   0.110    0.25    0.20   0.172
LDBDP_1    0.199   0.062    0.11    0.165     0.29   1.000   0.202    0.16    0.23   0.183
LDBDP_4    0.041   0.213    0.34    0.069     0.11   0.202   1.000    0.20    0.34   0.063
LDBDP_6    0.215   0.267    0.24    0.199     0.25   0.158   0.202    1.00    0.52   0.187
LDBDP_7    0.138   0.299    0.20    0.178     0.20   0.227   0.335    0.52    1.00   0.175
LDBDP_8    0.170   0.097    0.16    0.170     0.17   0.183   0.063    0.19    0.18   1.000

$cluster3
        LDBDP_2 LDBDP_3
LDBDP_2       1       1
LDBDP_3       1       1

Homogenost klastera

cluster1 cluster2 cluster3 
    6.08     4.16     2.00 

4 klastera

Column 1

Sličnost varijabli sa sintetičkom varijablom klastera


Call:
cutreevar(obj = tree, k = 4, matsim = TRUE)



Data: 
   number of observations:  53
   number of variables:  19
   number of clusters:  4

Cluster  1 : 
        squared loading correlation
UTAUT_9            0.98          NA
UTAUT_8            0.98          NA
LDBDP_5            0.98          NA
UTAUT_7            0.98          NA
UTAUT_3            0.98          NA
UTAUT_2            0.59          NA
UTAUT_1            0.59          NA


Cluster  2 : 
        squared loading correlation
LDBDP_7            0.73          NA
LDBDP_6            0.63          NA
UTAUT_5            0.58          NA
UTAUT_6            0.47          NA
LDBDP_4            0.45          NA
UTAUT_4            0.28          NA


Cluster  3 : 
         squared loading correlation
UTAUT_11            0.68          NA
UTAUT_10            0.60          NA
LDBDP_1             0.51          NA
LDBDP_8             0.42          NA


Cluster  4 : 
        squared loading correlation
LDBDP_2               1          NA
LDBDP_3               1          NA


Gain in cohesion (in %):  47.1

Column 2

Sličnost varijabli unutar klastera

$cluster1
        UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1    1.00    0.45    0.50    0.54    0.53    0.53    0.63
UTAUT_2    0.45    1.00    0.54    0.53    0.53    0.66    0.50
UTAUT_3    0.50    0.54    1.00    1.00    1.00    1.00    1.00
UTAUT_7    0.54    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_8    0.53    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_9    0.53    0.66    1.00    1.00    1.00    1.00    1.00
LDBDP_5    0.63    0.50    1.00    1.00    1.00    1.00    1.00

$cluster2
        UTAUT_4 UTAUT_5 UTAUT_6 LDBDP_4 LDBDP_6 LDBDP_7
UTAUT_4   1.000    0.36    0.14   0.041    0.22    0.14
UTAUT_5   0.357    1.00    0.23   0.213    0.27    0.30
UTAUT_6   0.141    0.23    1.00   0.344    0.24    0.20
LDBDP_4   0.041    0.21    0.34   1.000    0.20    0.34
LDBDP_6   0.215    0.27    0.24   0.202    1.00    0.52
LDBDP_7   0.138    0.30    0.20   0.335    0.52    1.00

$cluster3
         UTAUT_10 UTAUT_11 LDBDP_1 LDBDP_8
UTAUT_10     1.00     0.32    0.16    0.17
UTAUT_11     0.32     1.00    0.29    0.17
LDBDP_1      0.16     0.29    1.00    0.18
LDBDP_8      0.17     0.17    0.18    1.00

$cluster4
        LDBDP_2 LDBDP_3
LDBDP_2       1       1
LDBDP_3       1       1

Homogenost klastera

cluster1 cluster2 cluster3 cluster4 
    6.08     3.14     2.21     2.00 

5 klastera

Column 1

Sličnost varijabli sa sintetičkom varijablom klastera


Call:
cutreevar(obj = tree, k = 5, matsim = TRUE)



Data: 
   number of observations:  53
   number of variables:  19
   number of clusters:  5

Cluster  1 : 
        squared loading correlation
UTAUT_9            0.98          NA
UTAUT_8            0.98          NA
LDBDP_5            0.98          NA
UTAUT_7            0.98          NA
UTAUT_3            0.98          NA
UTAUT_2            0.59          NA
UTAUT_1            0.59          NA


Cluster  2 : 
        squared loading correlation
UTAUT_4             0.8          NA
UTAUT_5             0.8          NA


Cluster  3 : 
        squared loading correlation
LDBDP_7            0.74          NA
LDBDP_6            0.64          NA
LDBDP_4            0.60          NA
UTAUT_6            0.58          NA


Cluster  4 : 
         squared loading correlation
UTAUT_11            0.68          NA
UTAUT_10            0.60          NA
LDBDP_1             0.51          NA
LDBDP_8             0.42          NA


Cluster  5 : 
        squared loading correlation
LDBDP_2               1          NA
LDBDP_3               1          NA


Gain in cohesion (in %):  56.7

Column 2

Sličnost varijabli unutar klastera

$cluster1
        UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1    1.00    0.45    0.50    0.54    0.53    0.53    0.63
UTAUT_2    0.45    1.00    0.54    0.53    0.53    0.66    0.50
UTAUT_3    0.50    0.54    1.00    1.00    1.00    1.00    1.00
UTAUT_7    0.54    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_8    0.53    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_9    0.53    0.66    1.00    1.00    1.00    1.00    1.00
LDBDP_5    0.63    0.50    1.00    1.00    1.00    1.00    1.00

$cluster2
        UTAUT_4 UTAUT_5
UTAUT_4    1.00    0.36
UTAUT_5    0.36    1.00

$cluster3
        UTAUT_6 LDBDP_4 LDBDP_6 LDBDP_7
UTAUT_6    1.00    0.34    0.24    0.20
LDBDP_4    0.34    1.00    0.20    0.34
LDBDP_6    0.24    0.20    1.00    0.52
LDBDP_7    0.20    0.34    0.52    1.00

$cluster4
         UTAUT_10 UTAUT_11 LDBDP_1 LDBDP_8
UTAUT_10     1.00     0.32    0.16    0.17
UTAUT_11     0.32     1.00    0.29    0.17
LDBDP_1      0.16     0.29    1.00    0.18
LDBDP_8      0.17     0.17    0.18    1.00

$cluster5
        LDBDP_2 LDBDP_3
LDBDP_2       1       1
LDBDP_3       1       1

Homogenost klastera

cluster1 cluster2 cluster3 cluster4 cluster5 
    6.08     1.60     2.56     2.21     2.00 

6 klastera

Column 1

Sličnost varijabli sa sintetičkom varijablom klastera


Call:
cutreevar(obj = tree, k = 6, matsim = TRUE)



Data: 
   number of observations:  53
   number of variables:  19
   number of clusters:  6

Cluster  1 : 
        squared loading correlation
UTAUT_9            0.98          NA
UTAUT_8            0.98          NA
LDBDP_5            0.98          NA
UTAUT_7            0.98          NA
UTAUT_3            0.98          NA
UTAUT_2            0.59          NA
UTAUT_1            0.59          NA


Cluster  2 : 
        squared loading correlation
UTAUT_4             0.8          NA
UTAUT_5             0.8          NA


Cluster  3 : 
        squared loading correlation
LDBDP_7            0.74          NA
LDBDP_6            0.64          NA
LDBDP_4            0.60          NA
UTAUT_6            0.58          NA


Cluster  4 : 
         squared loading correlation
UTAUT_10            0.78          NA
UTAUT_11            0.78          NA


Cluster  5 : 
        squared loading correlation
LDBDP_1            0.71          NA
LDBDP_8            0.71          NA


Cluster  6 : 
        squared loading correlation
LDBDP_2               1          NA
LDBDP_3               1          NA


Gain in cohesion (in %):  64.12

Column 2

Sličnost varijabli unutar klastera

$cluster1
        UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1    1.00    0.45    0.50    0.54    0.53    0.53    0.63
UTAUT_2    0.45    1.00    0.54    0.53    0.53    0.66    0.50
UTAUT_3    0.50    0.54    1.00    1.00    1.00    1.00    1.00
UTAUT_7    0.54    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_8    0.53    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_9    0.53    0.66    1.00    1.00    1.00    1.00    1.00
LDBDP_5    0.63    0.50    1.00    1.00    1.00    1.00    1.00

$cluster2
        UTAUT_4 UTAUT_5
UTAUT_4    1.00    0.36
UTAUT_5    0.36    1.00

$cluster3
        UTAUT_6 LDBDP_4 LDBDP_6 LDBDP_7
UTAUT_6    1.00    0.34    0.24    0.20
LDBDP_4    0.34    1.00    0.20    0.34
LDBDP_6    0.24    0.20    1.00    0.52
LDBDP_7    0.20    0.34    0.52    1.00

$cluster4
         UTAUT_10 UTAUT_11
UTAUT_10     1.00     0.32
UTAUT_11     0.32     1.00

$cluster5
        LDBDP_1 LDBDP_8
LDBDP_1    1.00    0.18
LDBDP_8    0.18    1.00

$cluster6
        LDBDP_2 LDBDP_3
LDBDP_2       1       1
LDBDP_3       1       1

Homogenost klastera

cluster1 cluster2 cluster3 cluster4 cluster5 cluster6 
    6.08     1.60     2.56     1.56     1.43     2.00 

7 klastera

Column 1

Sličnost varijabli sa sintetičkom varijablom klastera


Call:
cutreevar(obj = tree, k = 7, matsim = TRUE)



Data: 
   number of observations:  53
   number of variables:  19
   number of clusters:  7

Cluster  1 : 
        squared loading correlation
UTAUT_9            0.98          NA
UTAUT_8            0.98          NA
LDBDP_5            0.98          NA
UTAUT_7            0.98          NA
UTAUT_3            0.98          NA
UTAUT_2            0.59          NA
UTAUT_1            0.59          NA


Cluster  2 : 
        squared loading correlation
UTAUT_4             0.8          NA
UTAUT_5             0.8          NA


Cluster  3 : 
        squared loading correlation
UTAUT_6            0.79          NA
LDBDP_4            0.79          NA


Cluster  4 : 
         squared loading correlation
UTAUT_10            0.78          NA
UTAUT_11            0.78          NA


Cluster  5 : 
        squared loading correlation
LDBDP_1            0.71          NA
LDBDP_8            0.71          NA


Cluster  6 : 
        squared loading correlation
LDBDP_2               1          NA
LDBDP_3               1          NA


Cluster  7 : 
        squared loading correlation
LDBDP_6            0.86          NA
LDBDP_7            0.86          NA


Gain in cohesion (in %):  71.26

Column 2

Sličnost varijabli unutar klastera

$cluster1
        UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1    1.00    0.45    0.50    0.54    0.53    0.53    0.63
UTAUT_2    0.45    1.00    0.54    0.53    0.53    0.66    0.50
UTAUT_3    0.50    0.54    1.00    1.00    1.00    1.00    1.00
UTAUT_7    0.54    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_8    0.53    0.53    1.00    1.00    1.00    1.00    1.00
UTAUT_9    0.53    0.66    1.00    1.00    1.00    1.00    1.00
LDBDP_5    0.63    0.50    1.00    1.00    1.00    1.00    1.00

$cluster2
        UTAUT_4 UTAUT_5
UTAUT_4    1.00    0.36
UTAUT_5    0.36    1.00

$cluster3
        UTAUT_6 LDBDP_4
UTAUT_6    1.00    0.34
LDBDP_4    0.34    1.00

$cluster4
         UTAUT_10 UTAUT_11
UTAUT_10     1.00     0.32
UTAUT_11     0.32     1.00

$cluster5
        LDBDP_1 LDBDP_8
LDBDP_1    1.00    0.18
LDBDP_8    0.18    1.00

$cluster6
        LDBDP_2 LDBDP_3
LDBDP_2       1       1
LDBDP_3       1       1

$cluster7
        LDBDP_6 LDBDP_7
LDBDP_6    1.00    0.52
LDBDP_7    0.52    1.00

Homogenost klastera

cluster1 cluster2 cluster3 cluster4 cluster5 cluster6 cluster7 
    6.08     1.60     1.59     1.56     1.43     2.00     1.72 

Dendrogram, Silhouette

Column

Dendrogram (3 klastera)

Dendrogram (4 klastera)

Dendrogram (5 klastera)

Silhouette (summary)

3 klastera

Silhouette of 53 units in 3 clusters from silhouette.default(x = BDP_cluster3$Cluster, dist = udaljenost) :
 Cluster sizes and average silhouette widths:
         21          14          18 
0.197465464 0.228128882 0.002296016 
Individual silhouette widths:
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.17576  0.02268  0.13410  0.13928  0.23182  0.45325 

4 klastera

Silhouette of 53 units in 4 clusters from silhouette.default(x = BDP_cluster4$Cluster, dist = udaljenost) :
 Cluster sizes and average silhouette widths:
        21         14         14          4 
0.16870997 0.22797569 0.05231017 0.06425163 
Individual silhouette widths:
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.11677  0.05283  0.13987  0.14573  0.21795  0.45325 

5 klastera

Silhouette of 53 units in 5 clusters from silhouette.default(x = BDP_cluster5$Cluster, dist = udaljenost) :
 Cluster sizes and average silhouette widths:
          9          14          14           4          12 
 0.01699288  0.17593605 -0.02122045  0.05689842  0.30425630 
Individual silhouette widths:
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.16507 -0.01880  0.08029  0.11694  0.24861  0.39161 

Silhouette (broj klastera)

Column

Silhouette (3 klastera)

Silhouette (4 klastera)

Silhouette (5 klastera)

Silhouette (summary)

3 klastera

Silhouette of 53 units in 3 clusters from silhouette.default(x = BDP_cluster3$Cluster, dist = udaljenost) :
 Cluster sizes and average silhouette widths:
         21          14          18 
0.197465464 0.228128882 0.002296016 
Individual silhouette widths:
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.17576  0.02268  0.13410  0.13928  0.23182  0.45325 

4 klastera

Silhouette of 53 units in 4 clusters from silhouette.default(x = BDP_cluster4$Cluster, dist = udaljenost) :
 Cluster sizes and average silhouette widths:
        21         14         14          4 
0.16870997 0.22797569 0.05231017 0.06425163 
Individual silhouette widths:
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.11677  0.05283  0.13987  0.14573  0.21795  0.45325 

5 klastera

Silhouette of 53 units in 5 clusters from silhouette.default(x = BDP_cluster5$Cluster, dist = udaljenost) :
 Cluster sizes and average silhouette widths:
          9          14          14           4          12 
 0.01699288  0.17593605 -0.02122045  0.05689842  0.30425630 
Individual silhouette widths:
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
-0.16507 -0.01880  0.08029  0.11694  0.24861  0.39161 

Silhouette (broj klastera)

Vizualizacija 4 klastera

Column

UTAUT varijable

LDBDP varijable

Q1 Q4

Q5 Q8

Q3 Q7

Q2

Q6

Unutarnja pouzdanost

Column

Cronbach alpha


Reliability analysis   
Call: psych::alpha(x = BDP_kor, check.keys = TRUE)

  raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
       0.8      0.86    0.92      0.25 6.4 0.041  3.8 0.43     0.26

    95% confidence boundaries 
         lower alpha upper
Feldt     0.71   0.8  0.87
Duhachek  0.72   0.8  0.88

 Reliability if an item is dropped:
         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
UTAUT_1       0.79      0.85    0.91      0.24 5.7    0.044 0.037  0.25
UTAUT_2       0.79      0.85    0.91      0.25 5.9    0.044 0.038  0.26
UTAUT_3       0.78      0.85    0.91      0.24 5.7    0.045 0.039  0.25
UTAUT_4-      0.80      0.86    0.92      0.26 6.4    0.041 0.038  0.29
UTAUT_5       0.77      0.85    0.91      0.24 5.7    0.047 0.037  0.25
UTAUT_6-      0.84      0.87    0.92      0.28 6.9    0.031 0.032  0.29
UTAUT_7       0.82      0.87    0.92      0.27 6.5    0.036 0.036  0.28
UTAUT_8       0.79      0.86    0.91      0.25 6.1    0.044 0.037  0.26
UTAUT_9       0.78      0.85    0.91      0.24 5.7    0.046 0.036  0.26
UTAUT_10      0.78      0.85    0.91      0.24 5.8    0.046 0.039  0.24
UTAUT_11      0.79      0.85    0.91      0.25 5.9    0.044 0.039  0.26
LDBDP_1       0.79      0.86    0.92      0.25 6.1    0.043 0.039  0.26
LDBDP_2       0.80      0.87    0.92      0.27 6.7    0.041 0.035  0.29
LDBDP_3       0.80      0.86    0.92      0.26 6.4    0.041 0.038  0.29
LDBDP_4       0.79      0.85    0.91      0.25 5.9    0.043 0.038  0.26
LDBDP_5       0.78      0.85    0.91      0.24 5.5    0.046 0.035  0.24
LDBDP_6       0.79      0.86    0.91      0.25 6.0    0.044 0.037  0.26
LDBDP_7       0.78      0.85    0.91      0.24 5.7    0.045 0.036  0.24
LDBDP_8       0.79      0.86    0.92      0.25 6.0    0.043 0.040  0.26

 Item statistics 
          n raw.r std.r r.cor r.drop mean   sd
UTAUT_1  53  0.65  0.70 0.696  0.607  4.3 0.54
UTAUT_2  53  0.57  0.60 0.591  0.503  3.8 0.72
UTAUT_3  53  0.67  0.68 0.663  0.623  4.0 0.71
UTAUT_4- 53  0.42  0.38 0.344  0.290  1.6 1.23
UTAUT_5  53  0.72  0.70 0.707  0.653  3.8 0.93
UTAUT_6- 53  0.21  0.13 0.074 -0.008  3.0 1.78
UTAUT_7  53  0.37  0.32 0.282  0.166  2.2 1.71
UTAUT_8  53  0.54  0.51 0.489  0.453  3.2 0.86
UTAUT_9  53  0.71  0.69 0.690  0.647  3.8 0.86
UTAUT_10 53  0.69  0.65 0.635  0.628  4.1 0.86
UTAUT_11 53  0.59  0.61 0.582  0.541  4.3 0.62
LDBDP_1  53  0.46  0.50 0.464  0.367  3.9 0.86
LDBDP_2  53  0.17  0.22 0.166  0.105  4.6 0.53
LDBDP_3  53  0.31  0.37 0.336  0.237  4.6 0.63
LDBDP_4  53  0.54  0.62 0.598  0.490  4.1 0.60
LDBDP_5  53  0.74  0.77 0.773  0.704  4.2 0.67
LDBDP_6  53  0.55  0.55 0.533  0.486  4.1 0.74
LDBDP_7  53  0.68  0.71 0.710  0.640  4.2 0.63
LDBDP_8  53  0.51  0.53 0.484  0.445  4.1 0.71

Non missing response frequency for each item
            0    1    2    3    4    5 miss
UTAUT_1  0.00 0.00 0.00 0.04 0.62 0.34    0
UTAUT_2  0.00 0.00 0.04 0.26 0.57 0.13    0
UTAUT_3  0.00 0.00 0.02 0.17 0.57 0.25    0
UTAUT_4  0.00 0.06 0.25 0.17 0.32 0.21    0
UTAUT_5  0.00 0.00 0.13 0.15 0.51 0.21    0
UTAUT_6  0.42 0.00 0.06 0.28 0.21 0.04    0
UTAUT_7  0.30 0.02 0.17 0.21 0.25 0.06    0
UTAUT_8  0.00 0.02 0.21 0.42 0.32 0.04    0
UTAUT_9  0.00 0.02 0.06 0.21 0.55 0.17    0
UTAUT_10 0.00 0.00 0.06 0.13 0.43 0.38    0
UTAUT_11 0.00 0.00 0.00 0.09 0.55 0.36    0
LDBDP_1  0.00 0.00 0.08 0.19 0.49 0.25    0
LDBDP_2  0.00 0.00 0.00 0.02 0.36 0.62    0
LDBDP_3  0.00 0.00 0.02 0.02 0.28 0.68    0
LDBDP_4  0.00 0.00 0.00 0.15 0.64 0.21    0
LDBDP_5  0.00 0.00 0.02 0.08 0.57 0.34    0
LDBDP_6  0.00 0.00 0.04 0.13 0.57 0.26    0
LDBDP_7  0.00 0.00 0.00 0.11 0.57 0.32    0
LDBDP_8  0.00 0.00 0.00 0.19 0.49 0.32    0

Column

split-half & Kaiser-Meyer-Olkin

split-half

Split half reliabilities  
Call: splitHalf(r = BDP_kor)

Maximum split half reliability (lambda 4) =  0.95
Guttman lambda 6                          =  0.92
Average split half reliability            =  0.86
Guttman lambda 3 (alpha)                  =  0.86
Guttman lambda 2                          =  0.88
Minimum split half reliability  (beta)    =  0.71
Average interitem r =  0.25  with median =  0.26

Kaiser-Meyer-Olkin

Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = BDP_kor)
Overall MSA =  0.78
MSA for each item = 
 UTAUT_1  UTAUT_2  UTAUT_3  UTAUT_4  UTAUT_5  UTAUT_6  UTAUT_7  UTAUT_8 
    0.79     0.83     0.85     0.71     0.80     0.42     0.62     0.79 
 UTAUT_9 UTAUT_10 UTAUT_11  LDBDP_1  LDBDP_2  LDBDP_3  LDBDP_4  LDBDP_5 
    0.81     0.79     0.85     0.72     0.46     0.57     0.86     0.89 
 LDBDP_6  LDBDP_7  LDBDP_8 
    0.79     0.83     0.85 

SCREE plot

EFA model - 3 faktora

Column

EFA - 3 faktora

Factor Analysis using method =  minres
Call: fa(r = BDP_kor, nfactors = 3)
Standardized loadings (pattern matrix) based upon correlation matrix
           MR3   MR1   MR2   h2   u2 com
UTAUT_1   0.17  0.26  0.54 0.57 0.43 1.7
UTAUT_2   0.09  0.09  0.67 0.55 0.45 1.1
UTAUT_3   0.37  0.07  0.44 0.49 0.51 2.0
UTAUT_4  -0.58  0.04  0.15 0.29 0.71 1.1
UTAUT_5   0.87 -0.01  0.03 0.76 0.24 1.0
UTAUT_6  -0.39  0.45 -0.13 0.22 0.78 2.2
UTAUT_7  -0.20  0.65 -0.06 0.34 0.66 1.2
UTAUT_8   0.23  0.40  0.00 0.30 0.70 1.6
UTAUT_9   0.80  0.03  0.06 0.70 0.30 1.0
UTAUT_10  0.52  0.17  0.07 0.41 0.59 1.2
UTAUT_11  0.02  0.55  0.17 0.39 0.61 1.2
LDBDP_1  -0.13  0.45  0.30 0.30 0.70 2.0
LDBDP_2  -0.01 -0.25  0.45 0.20 0.80 1.6
LDBDP_3  -0.12 -0.12  0.69 0.41 0.59 1.1
LDBDP_4   0.09  0.38  0.35 0.41 0.59 2.1
LDBDP_5   0.25  0.46  0.35 0.65 0.35 2.5
LDBDP_6   0.37  0.52 -0.24 0.49 0.51 2.3
LDBDP_7   0.22  0.65  0.05 0.63 0.37 1.2
LDBDP_8   0.05  0.42  0.16 0.26 0.74 1.3

                       MR3  MR1  MR2
SS loadings           3.01 3.00 2.36
Proportion Var        0.16 0.16 0.12
Cumulative Var        0.16 0.32 0.44
Proportion Explained  0.36 0.36 0.28
Cumulative Proportion 0.36 0.72 1.00

 With factor correlations of 
     MR3  MR1  MR2
MR3 1.00 0.43 0.35
MR1 0.43 1.00 0.28
MR2 0.35 0.28 1.00

Mean item complexity =  1.5
Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are  171  and the objective function was  9.84 with Chi Square of  441.13
The degrees of freedom for the model are 117  and the objective function was  3.1 

The root mean square of the residuals (RMSR) is  0.08 
The df corrected root mean square of the residuals is  0.09 

The harmonic number of observations is  53 with the empirical chi square  108.29  with prob <  0.71 
The total number of observations was  53  with Likelihood Chi Square =  132.95  with prob <  0.15 

Tucker Lewis Index of factoring reliability =  0.907
RMSEA index =  0.047  and the 90 % confidence intervals are  0 0.089
BIC =  -331.57
Fit based upon off diagonal values = 0.94
Measures of factor score adequacy             
                                                   MR3  MR1 MR2
Correlation of (regression) scores with factors   0.95 0.91 0.9
Multiple R square of scores with factors          0.90 0.84 0.8
Minimum correlation of possible factor scores     0.79 0.67 0.6

Column

Loadings (cutoff = 0.4)


Loadings:
         MR3    MR1    MR2   
UTAUT_4  -0.582              
UTAUT_5   0.866              
UTAUT_9   0.804              
UTAUT_10  0.518              
UTAUT_7          0.646       
UTAUT_11         0.548       
LDBDP_6          0.516       
LDBDP_7          0.651       
UTAUT_1                 0.544
UTAUT_2                 0.669
LDBDP_3                 0.689
UTAUT_3                 0.443
UTAUT_6          0.446       
UTAUT_8          0.404       
LDBDP_1          0.446       
LDBDP_2                 0.448
LDBDP_4                      
LDBDP_5          0.461       
LDBDP_8          0.415       

                 MR3   MR1   MR2
SS loadings    2.707 2.687 2.114
Proportion Var 0.142 0.141 0.111
Cumulative Var 0.142 0.284 0.395

Scores - 3 faktora

Column

Funkcija gustoće

Column

tablica

              MR3         MR1          MR2
 [1,]  0.48209505 -0.57969070  1.221903291
 [2,]  0.80017766  0.99895841  0.667451960
 [3,]  0.02974421 -1.39561173  0.001983145
 [4,] -2.85954617 -2.56402362 -1.739980065
 [5,] -0.93077775  1.13896594  0.209687611
 [6,] -1.47358318  0.20754397  0.382991739
 [7,] -0.41802367  0.85655190 -2.229572324
 [8,] -0.47762184 -1.36942064 -0.952616466
 [9,]  1.13994398  1.86589542  1.370518067
[10,] -1.50285761 -0.41101445 -1.094846688
[11,]  1.06868446  0.54959734  0.722625774
[12,] -0.17521533 -0.54717622  0.034450937
[13,]  0.58118808  0.60732890  0.549615594
[14,] -1.12838982 -0.96002524 -1.019318816
[15,]  0.66488009  0.34574251  0.589945565
[16,]  0.13685421  0.72090853  0.252323204
[17,]  0.21879809  0.11621725 -1.757018267
[18,]  0.26960750 -0.53883880 -0.353779819
[19,]  0.44704790  1.13617842  0.461987518
[20,]  1.06602513  1.41849262  0.448143464
[21,] -0.99310293 -0.01004742 -0.478316033
[22,]  0.18825896  0.70067885 -1.384664847
[23,] -2.01247974  0.17677634  0.129599288
[24,] -0.24178059 -0.39148883 -0.455365283
[25,]  0.80438246 -0.44181300  0.361891506
[26,]  1.23581060  1.29260518  0.955453784
[27,]  0.32317478 -0.72988358  0.289148940
[28,]  0.61663936  0.69525142  0.333688269
[29,] -0.73530874 -1.56240991 -0.215296172
[30,]  0.54189570 -0.39717500 -0.941496102
[31,] -1.30010216 -1.38861628  1.705277559
[32,] -1.13037543 -0.52259253 -0.429403769
[33,]  0.25914805 -0.73478076 -0.172401386
[34,] -0.31926912 -0.49496373  0.563941616
[35,] -0.43492782  0.32975867 -0.464449206
[36,]  0.21525420 -1.18562481  0.343154078
[37,]  0.07792702 -0.19444404 -0.858163332
[38,]  0.22431618 -0.55233485  0.003641215
[39,]  1.19970345  1.71525056  1.421642974
[40,]  0.39439112  1.24799183  1.656799997
[41,]  1.44925295  1.12843882  1.053047392
[42,] -0.15316648  0.11437214 -0.848283527
[43,] -1.49411079 -0.37204778 -0.172889917
[44,]  0.41510829 -0.26527544 -0.665753402
[45,] -1.53989160  0.46513057 -0.675703512
[46,] -0.38637184  0.14581473  0.435685675
[47,]  1.19342768  1.02515601  0.022194418
[48,]  1.39400821 -0.13851487 -0.491439222
[49,]  0.13902596 -0.93688917 -0.458691216
[50,]  0.18345378 -0.20464675  0.228398725
[51,]  1.17424015 -0.05970004  1.278383578
[52,]  0.60832481  0.56273012  1.258701972
[53,]  0.16411254 -0.61328625 -1.094829483

EFA model - 4 faktora

Column

EFA - 4 faktora

Factor Analysis using method =  minres
Call: fa(r = BDP_kor, nfactors = 4)
Standardized loadings (pattern matrix) based upon correlation matrix
           MR4   MR1   MR3   MR2   h2   u2 com
UTAUT_1   0.73  0.11  0.05  0.05 0.66 0.34 1.1
UTAUT_2   0.81 -0.06 -0.01  0.15 0.67 0.33 1.1
UTAUT_3   0.50  0.03  0.30  0.13 0.49 0.51 1.8
UTAUT_4   0.21 -0.10 -0.60 -0.05 0.35 0.65 1.3
UTAUT_5   0.01  0.12  0.85  0.10 0.83 0.17 1.1
UTAUT_6  -0.11  0.40 -0.37 -0.08 0.21 0.79 2.2
UTAUT_7   0.13  0.53 -0.25 -0.18 0.32 0.68 1.8
UTAUT_8   0.48  0.18  0.07 -0.40 0.48 0.52 2.3
UTAUT_9   0.39 -0.07  0.69 -0.20 0.78 0.22 1.8
UTAUT_10  0.14  0.21  0.45  0.01 0.40 0.60 1.6
UTAUT_11  0.18  0.55 -0.02  0.05 0.40 0.60 1.2
LDBDP_1   0.18  0.49 -0.14  0.18 0.33 0.67 1.8
LDBDP_2  -0.05 -0.02  0.12  0.66 0.44 0.56 1.1
LDBDP_3   0.21  0.07 -0.03  0.73 0.62 0.38 1.2
LDBDP_4   0.31  0.40  0.06  0.15 0.41 0.59 2.3
LDBDP_5   0.58  0.33  0.13 -0.07 0.69 0.31 1.7
LDBDP_6  -0.18  0.61  0.33 -0.11 0.56 0.44 1.8
LDBDP_7   0.04  0.74  0.18  0.05 0.71 0.29 1.1
LDBDP_8   0.12  0.46  0.03  0.11 0.28 0.72 1.3

                       MR4  MR1  MR3  MR2
SS loadings           2.91 2.85 2.51 1.36
Proportion Var        0.15 0.15 0.13 0.07
Cumulative Var        0.15 0.30 0.44 0.51
Proportion Explained  0.30 0.30 0.26 0.14
Cumulative Proportion 0.30 0.60 0.86 1.00

 With factor correlations of 
     MR4   MR1  MR3   MR2
MR4 1.00  0.36 0.36  0.12
MR1 0.36  1.00 0.37 -0.02
MR3 0.36  0.37 1.00  0.00
MR2 0.12 -0.02 0.00  1.00

Mean item complexity =  1.6
Test of the hypothesis that 4 factors are sufficient.

The degrees of freedom for the null model are  171  and the objective function was  9.84 with Chi Square of  441.13
The degrees of freedom for the model are 101  and the objective function was  2.11 

The root mean square of the residuals (RMSR) is  0.06 
The df corrected root mean square of the residuals is  0.07 

The harmonic number of observations is  53 with the empirical chi square  58.53  with prob <  1 
The total number of observations was  53  with Likelihood Chi Square =  88.89  with prob <  0.8 

Tucker Lewis Index of factoring reliability =  1.084
RMSEA index =  0  and the 90 % confidence intervals are  0 0.049
BIC =  -312.11
Fit based upon off diagonal values = 0.97
Measures of factor score adequacy             
                                                   MR4  MR1  MR3  MR2
Correlation of (regression) scores with factors   0.93 0.92 0.95 0.87
Multiple R square of scores with factors          0.87 0.85 0.90 0.76
Minimum correlation of possible factor scores     0.75 0.70 0.81 0.51

Column

Loadings (cutoff = 0.4)


Loadings:
         MR4    MR1    MR3    MR2   
UTAUT_1   0.732                     
UTAUT_2   0.811                     
LDBDP_5   0.585                     
UTAUT_7          0.527              
UTAUT_11         0.548              
LDBDP_6          0.613              
LDBDP_7          0.744              
UTAUT_4                -0.601       
UTAUT_5                 0.854       
UTAUT_9                 0.687       
LDBDP_2                        0.657
LDBDP_3                        0.732
UTAUT_3   0.497                     
UTAUT_6          0.404              
UTAUT_8   0.480                     
UTAUT_10                0.451       
LDBDP_1          0.489              
LDBDP_4                             
LDBDP_8          0.456              

                 MR4   MR1   MR3   MR2
SS loadings    2.513 2.513 2.253 1.348
Proportion Var 0.132 0.132 0.119 0.071
Cumulative Var 0.132 0.265 0.383 0.454

Scores - 4 faktora

Column

Funkcija gustoće

Column

tablica

              MR4         MR1         MR3           MR2
 [1,]  1.03762326 -0.69396273  0.38238137  0.9066770105
 [2,]  0.42175558  1.22593030  0.88626792  0.6450174299
 [3,] -0.41824842 -1.34543639  0.30541006  0.7895925441
 [4,] -3.03501623 -2.06951557 -2.36008145  1.0821168405
 [5,]  0.29778941  1.09599358 -1.23273297 -0.0685897712
 [6,]  0.71416280 -0.19924109 -1.83929476 -0.2658378116
 [7,] -1.01061054  0.55815140 -0.50625433 -2.8977371386
 [8,] -1.75208392 -0.86431295 -0.08990414  0.7566424858
 [9,]  1.79810470  1.66961057  0.86706068  0.1335881097
[10,] -0.62418063 -0.74347623 -1.61785956 -1.1832702627
[11,]  0.70398121  0.61971998  1.04857617  0.3655970624
[12,] -0.55274402 -0.31655955  0.02978198  0.6899426448
[13,]  0.36377605  0.82992127  0.51710892  0.3499453499
[14,] -0.50841564 -1.32456814 -1.14980295 -1.0313184973
[15,]  1.05643204  0.03684593  0.51615076 -0.1955798940
[16,] -0.30113298  1.05694787  0.24272826  0.8612397564
[17,] -0.80366052 -0.21721145  0.22420090 -2.4006789459
[18,] -0.13368720 -0.60456474  0.30820421 -0.5976476201
[19,]  0.66540030  1.09441774  0.26502462 -0.0681079523
[20,]  1.03304908  1.28707851  0.85725361 -0.5279462790
[21,] -0.20463542 -0.22393782 -1.11008398 -0.7150797883
[22,] -0.99065315  0.84569944  0.31173269 -1.1467237444
[23,] -0.36968468  0.16084524 -2.14993569  0.8120744355
[24,] -0.01153636 -0.66074495 -0.34186780 -0.8742864578
[25,] -0.04961144 -0.25939267  0.99106823  0.7495927483
[26,]  1.04869284  1.28550419  1.14108000  0.2617876028
[27,] -0.09063656 -0.54701703  0.43223317  0.7386794159
[28,]  0.42751961  0.83047911  0.52038682 -0.1581045357
[29,] -0.27403603 -1.77832004 -0.61695596  0.2545059163
[30,] -0.35719441 -0.57749950  0.55767163 -1.2088988236
[31,]  1.39679771 -1.85555952 -1.61237797  1.0866226841
[32,] -0.05644894 -0.89555367 -1.26775828 -0.6109054936
[33,] -0.63360274 -0.42563799  0.49150434  0.5665095552
[34,] -0.07280599 -0.43155942 -0.28107370  1.0695385965
[35,] -0.55018739  0.48404329 -0.38783291 -0.3286454431
[36,]  0.23504737 -1.18140793  0.28269897  0.4454203857
[37,] -0.65460640 -0.15531624  0.20688134 -0.6808826589
[38,]  0.02150890 -0.48118850  0.25955262  0.0279616225
[39,]  1.79448629  1.56411132  0.93984981  0.2057769279
[40,]  1.62161482  1.15002609  0.08940142  0.6839586650
[41,]  1.56672277  0.92483756  1.24226324 -0.2070757338
[42,] -1.34371323  0.70310411  0.10103427  0.4486205351
[43,] -0.88210202 -0.08952680 -1.35489039  0.8830857343
[44,]  0.01714652 -0.61769188  0.42500210 -1.3602295974
[45,] -1.40400302  0.81320404 -1.52786872  0.6411731066
[46,]  0.35188067  0.11056511 -0.48964486  0.3709939553
[47,]  0.26942651  1.17111877  1.28524280  0.0001116584
[48,] -0.60040305  0.09799475  1.66996052 -0.2358104636
[49,] -0.58000950 -0.86322185  0.32342085 -0.0263334298
[50,]  0.40635734 -0.26529600  0.14421036 -0.0906882899
[51,]  0.90725459  0.05425571  1.20810008  0.9777811399
[52,]  0.87125544  0.67320647  0.61127143  1.0730033045
[53,] -0.76213538 -0.65589169  0.25150426 -0.9971785912

EFA model - 5 faktora

Column

EFA - 5 faktora

Factor Analysis using method =  minres
Call: fa(r = BDP_kor, nfactors = 5)
Standardized loadings (pattern matrix) based upon correlation matrix
           MR1   MR4   MR3   MR2   MR5   h2    u2 com
UTAUT_1   0.74  0.09  0.04  0.06  0.00 0.66 0.344 1.0
UTAUT_2   0.81 -0.07 -0.03  0.16 -0.05 0.67 0.335 1.1
UTAUT_3   0.51  0.04  0.27  0.13 -0.06 0.49 0.506 1.7
UTAUT_4   0.18 -0.06 -0.65 -0.05 -0.04 0.39 0.611 1.2
UTAUT_5   0.04  0.08  0.91  0.10 -0.02 0.92 0.079 1.0
UTAUT_6  -0.03  0.00  0.01 -0.01  0.86 0.74 0.258 1.0
UTAUT_7   0.18  0.31 -0.08 -0.15  0.36 0.33 0.672 3.0
UTAUT_8   0.50  0.18  0.02 -0.40  0.01 0.48 0.525 2.2
UTAUT_9   0.43 -0.06  0.63 -0.20 -0.09 0.78 0.225 2.1
UTAUT_10  0.08  0.49  0.20 -0.06 -0.38 0.55 0.447 2.3
UTAUT_11  0.17  0.60 -0.09  0.03  0.01 0.44 0.564 1.2
LDBDP_1   0.15  0.62 -0.26  0.17 -0.06 0.42 0.579 1.7
LDBDP_2  -0.10  0.07  0.07  0.63 -0.14 0.42 0.579 1.2
LDBDP_3   0.19  0.01  0.06  0.77  0.05 0.68 0.321 1.1
LDBDP_4   0.33  0.34  0.08  0.15  0.10 0.41 0.594 2.7
LDBDP_5   0.61  0.29  0.12 -0.07  0.04 0.69 0.312 1.6
LDBDP_6  -0.18  0.67  0.25 -0.14 -0.01 0.58 0.417 1.5
LDBDP_7   0.09  0.62  0.25  0.04  0.21 0.69 0.309 1.6
LDBDP_8   0.12  0.42  0.04  0.10  0.08 0.28 0.720 1.4

                       MR1  MR4  MR3  MR2  MR5
SS loadings           3.01 2.78 2.28 1.38 1.15
Proportion Var        0.16 0.15 0.12 0.07 0.06
Cumulative Var        0.16 0.30 0.43 0.50 0.56
Proportion Explained  0.28 0.26 0.22 0.13 0.11
Cumulative Proportion 0.28 0.55 0.76 0.89 1.00

 With factor correlations of 
      MR1   MR4   MR3   MR2   MR5
MR1  1.00  0.41  0.35  0.13 -0.07
MR4  0.41  1.00  0.40 -0.01  0.09
MR3  0.35  0.40  1.00 -0.03 -0.15
MR2  0.13 -0.01 -0.03  1.00 -0.04
MR5 -0.07  0.09 -0.15 -0.04  1.00

Mean item complexity =  1.6
Test of the hypothesis that 5 factors are sufficient.

The degrees of freedom for the null model are  171  and the objective function was  9.84 with Chi Square of  441.13
The degrees of freedom for the model are 86  and the objective function was  1.71 

The root mean square of the residuals (RMSR) is  0.05 
The df corrected root mean square of the residuals is  0.06 

The harmonic number of observations is  53 with the empirical chi square  38.26  with prob <  1 
The total number of observations was  53  with Likelihood Chi Square =  71.13  with prob <  0.88 

Tucker Lewis Index of factoring reliability =  1.125
RMSEA index =  0  and the 90 % confidence intervals are  0 0.04
BIC =  -270.32
Fit based upon off diagonal values = 0.98
Measures of factor score adequacy             
                                                   MR1  MR4  MR3  MR2  MR5
Correlation of (regression) scores with factors   0.94 0.92 0.97 0.88 0.89
Multiple R square of scores with factors          0.88 0.85 0.94 0.78 0.80
Minimum correlation of possible factor scores     0.76 0.69 0.89 0.56 0.60

Column

Loadings (cutoff = 0.4)


Loadings:
         MR1    MR4    MR3    MR2    MR5   
UTAUT_1   0.744                            
UTAUT_2   0.808                            
UTAUT_3   0.508                            
UTAUT_8   0.502                            
LDBDP_5   0.613                            
UTAUT_11         0.601                     
LDBDP_1          0.618                     
LDBDP_6          0.670                     
LDBDP_7          0.620                     
UTAUT_4                -0.648              
UTAUT_5                 0.908              
UTAUT_9   0.426         0.631              
LDBDP_2                        0.633       
LDBDP_3                        0.772       
UTAUT_6                               0.861
UTAUT_7                                    
UTAUT_10         0.495                     
LDBDP_4                                    
LDBDP_8          0.424                     

                 MR1   MR4   MR3   MR2   MR5
SS loadings    2.610 2.364 2.003 1.369 1.124
Proportion Var 0.137 0.124 0.105 0.072 0.059
Cumulative Var 0.137 0.262 0.367 0.439 0.498

Scores - 5 faktora

Column

Funkcija gustoće

Column

tablica

               MR1         MR4         MR3         MR2         MR5
 [1,]  0.934289927 -0.38895082  0.14699999  0.80800425 -1.10505677
 [2,]  0.523334321  0.98100864  1.22685168  0.70778901  0.48645454
 [3,] -0.486853486 -1.20082364  0.37464023  0.82130525 -0.08467574
 [4,] -3.036935993 -2.39627693 -1.96806228  1.16787304  0.31283292
 [5,]  0.351573425  0.75418744 -1.03696664  0.10747697  1.47801634
 [6,]  0.739953395 -0.66823564 -1.73539301 -0.03474148  1.16494649
 [7,] -1.048909310  0.78163388 -0.78660287 -3.16717396 -0.14790392
 [8,] -1.764713027 -0.79481445 -0.06335596  0.66954187 -0.73101500
 [9,]  1.834351288  1.59851132  0.97138941  0.21151423  1.25928770
[10,] -0.676561453 -0.75454150 -1.70513773 -1.09496184  0.43743546
[11,]  0.687000650  0.72233604  1.06178415  0.26730067 -0.89792258
[12,] -0.503229973 -0.61591263  0.19973808  0.75748803  1.11095300
[13,]  0.345740644  1.12622493  0.24028968  0.28156694 -0.92016153
[14,] -0.575039902 -1.36874973 -0.99845967 -0.93814517  0.63027258
[15,]  1.094839397 -0.10643948  0.49378563 -0.19808176 -0.65272975
[16,] -0.256746548  1.02275070  0.25896349  0.84252764  0.54097450
[17,] -0.719710122 -0.44133115  0.45431287 -2.38534073  0.48608043
[18,] -0.168705646 -0.42335868  0.16680420 -0.66091192 -0.97187048
[19,]  0.721635830  0.94983106  0.37980972  0.01674351  1.06130978
[20,]  1.087331920  1.41486414  0.61718664 -0.50465249 -0.69831577
[21,] -0.205016369 -0.41747149 -1.01871751 -0.63682495  0.70998650
[22,] -0.877388243  0.60852815  0.51388537 -1.12394028  1.07492963
[23,] -0.395600816 -0.08338652 -2.02845681  0.94058792  1.71389805
[24,] -0.046144101 -0.49246944 -0.60609235 -0.90384254 -0.89088491
[25,] -0.061306711 -0.07560820  1.04930284  0.69687895 -1.11794333
[26,]  1.134923083  1.07952230  1.32815166  0.27897734  0.82607282
[27,] -0.173052665 -0.16644133  0.17527177  0.63445257 -1.18436462
[28,]  0.386446096  1.10909836  0.13949205 -0.37105759 -0.88951257
[29,] -0.315321259 -1.85273354 -0.59379034  0.34948170 -0.16980226
[30,] -0.341338980 -0.43721126  0.49108955 -1.25298674 -0.86465724
[31,]  1.194476320 -1.45559805 -2.09453801  1.09821923 -1.31810109
[32,] -0.099142851 -0.90516792 -1.53284564 -0.64479938  0.23556363
[33,] -0.642830621 -0.26870839  0.37915576  0.50013347 -0.99201274
[34,] -0.111015881 -0.34767741 -0.16506194  1.08506094  0.26899862
[35,] -0.472725486  0.09414585 -0.10681631 -0.30867389  0.92175620
[36,]  0.205284614 -1.18558681  0.26462134  0.39688834 -0.97501306
[37,] -0.630887931 -0.27850480  0.29958073 -0.76070110  0.32386910
[38,] -0.007523508 -0.34758218  0.19908631  0.08495569 -0.86686809
[39,]  1.814789439  1.56695090  0.96169885  0.24768531  0.81509134
[40,]  1.607033482  1.24119245 -0.10469312  0.63078269 -0.76107221
[41,]  1.636545690  0.83350774  1.30547939 -0.15094327 -0.66850546
[42,] -1.322683555  0.72905759  0.12010288  0.35437629  0.49909204
[43,] -0.861076613 -0.30817770 -1.06906397  1.01260219  0.62828446
[44,]  0.120893455 -0.89816285  0.60824994 -1.21799948  0.47463114
[45,] -1.474948717  1.18965924 -1.87336389  0.54984941  0.48883992
[46,]  0.289234088  0.36707242 -0.86789802  0.33686314 -0.83791968
[47,]  0.385628882  0.92280553  1.59069784  0.10873610  1.07319267
[48,] -0.619993076  0.52413217  1.42748605 -0.48513497 -1.39018507
[49,] -0.623426147 -0.66413773  0.20475967 -0.18707830 -1.12869601
[50,]  0.393125600 -0.33247453  0.26618453  0.03599806  0.69045976
[51,]  0.841295546  0.47048251  1.04783683  0.89655983 -1.22912968
[52,]  0.929490820  0.36459579  0.97565475  1.12296660  0.92793419
[53,] -0.740388924 -0.77556436  0.41497217 -0.99319535  0.85315573

Unutarnja pouzdanost

Column

Cronbach alpha


Reliability analysis   
Call: psych::alpha(x = BDP_aut, check.keys = TRUE)

  raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
      0.69      0.81    0.86      0.27 4.2 0.067  3.5 0.52      0.3

    95% confidence boundaries 
         lower alpha upper
Feldt     0.55  0.69  0.80
Duhachek  0.56  0.69  0.82

 Reliability if an item is dropped:
         raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
UTAUT_1       0.66      0.78    0.84      0.26 3.5    0.074 0.041  0.30
UTAUT_2       0.66      0.79    0.84      0.27 3.7    0.074 0.041  0.33
UTAUT_3       0.64      0.77    0.84      0.25 3.4    0.078 0.043  0.30
UTAUT_4-      0.68      0.81    0.86      0.29 4.2    0.071 0.040  0.33
UTAUT_5       0.63      0.77    0.83      0.25 3.4    0.082 0.038  0.30
UTAUT_6-      0.77      0.83    0.87      0.32 4.8    0.049 0.029  0.34
UTAUT_7       0.75      0.82    0.86      0.31 4.5    0.053 0.034  0.33
UTAUT_8       0.65      0.79    0.84      0.27 3.7    0.076 0.044  0.30
UTAUT_9       0.62      0.77    0.82      0.25 3.3    0.082 0.038  0.30
UTAUT_10      0.63      0.78    0.84      0.26 3.5    0.080 0.046  0.25
UTAUT_11      0.66      0.79    0.85      0.28 3.8    0.073 0.046  0.30

 Item statistics 
          n raw.r std.r r.cor r.drop mean   sd
UTAUT_1  53  0.60  0.69  0.67  0.538  4.3 0.54
UTAUT_2  53  0.54  0.61  0.58  0.446  3.8 0.72
UTAUT_3  53  0.69  0.72  0.69  0.615  4.0 0.71
UTAUT_4- 53  0.48  0.45  0.39  0.292  1.6 1.23
UTAUT_5  53  0.72  0.73  0.73  0.630  3.8 0.93
UTAUT_6- 53  0.32  0.23  0.14  0.014  3.0 1.78
UTAUT_7  53  0.37  0.32  0.23  0.074  2.2 1.71
UTAUT_8  53  0.59  0.62  0.58  0.484  3.2 0.86
UTAUT_9  53  0.76  0.78  0.79  0.685  3.8 0.86
UTAUT_10 53  0.71  0.69  0.65  0.618  4.1 0.86
UTAUT_11 53  0.53  0.57  0.50  0.443  4.3 0.62

Non missing response frequency for each item
            0    1    2    3    4    5 miss
UTAUT_1  0.00 0.00 0.00 0.04 0.62 0.34    0
UTAUT_2  0.00 0.00 0.04 0.26 0.57 0.13    0
UTAUT_3  0.00 0.00 0.02 0.17 0.57 0.25    0
UTAUT_4  0.00 0.06 0.25 0.17 0.32 0.21    0
UTAUT_5  0.00 0.00 0.13 0.15 0.51 0.21    0
UTAUT_6  0.42 0.00 0.06 0.28 0.21 0.04    0
UTAUT_7  0.30 0.02 0.17 0.21 0.25 0.06    0
UTAUT_8  0.00 0.02 0.21 0.42 0.32 0.04    0
UTAUT_9  0.00 0.02 0.06 0.21 0.55 0.17    0
UTAUT_10 0.00 0.00 0.06 0.13 0.43 0.38    0
UTAUT_11 0.00 0.00 0.00 0.09 0.55 0.36    0

Column

split-half & Kaiser-Meyer-Olkin

split-half

Split half reliabilities  
Call: splitHalf(r = BDP_aut)

Maximum split half reliability (lambda 4) =  0.91
Guttman lambda 6                          =  0.86
Average split half reliability            =  0.81
Guttman lambda 3 (alpha)                  =  0.81
Guttman lambda 2                          =  0.82
Minimum split half reliability  (beta)    =  0.62
Average interitem r =  0.27  with median =  0.3

Kaiser-Meyer-Olkin

Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = BDP_aut)
Overall MSA =  0.73
MSA for each item = 
 UTAUT_1  UTAUT_2  UTAUT_3  UTAUT_4  UTAUT_5  UTAUT_6  UTAUT_7  UTAUT_8 
    0.80     0.73     0.85     0.72     0.72     0.42     0.60     0.69 
 UTAUT_9 UTAUT_10 UTAUT_11 
    0.74     0.74     0.80 

SCREE plot

EFA model - 2 faktora

Column

EFA - 2 faktora

Factor Analysis using method =  minres
Call: fa(r = BDP_aut, nfactors = 2)
Standardized loadings (pattern matrix) based upon correlation matrix
           MR1   MR2   h2   u2 com
UTAUT_1   0.47  0.38 0.47 0.53 1.9
UTAUT_2   0.42  0.31 0.34 0.66 1.8
UTAUT_3   0.59  0.22 0.48 0.52 1.3
UTAUT_4  -0.50  0.16 0.23 0.77 1.2
UTAUT_5   0.85 -0.12 0.68 0.32 1.0
UTAUT_6  -0.36  0.36 0.18 0.82 2.0
UTAUT_7  -0.13  0.67 0.41 0.59 1.1
UTAUT_8   0.32  0.47 0.41 0.59 1.8
UTAUT_9   0.82  0.02 0.69 0.31 1.0
UTAUT_10  0.60  0.05 0.38 0.62 1.0
UTAUT_11  0.23  0.46 0.33 0.67 1.5

                       MR1  MR2
SS loadings           3.17 1.44
Proportion Var        0.29 0.13
Cumulative Var        0.29 0.42
Proportion Explained  0.69 0.31
Cumulative Proportion 0.69 1.00

 With factor correlations of 
     MR1  MR2
MR1 1.00 0.29
MR2 0.29 1.00

Mean item complexity =  1.4
Test of the hypothesis that 2 factors are sufficient.

The degrees of freedom for the null model are  55  and the objective function was  4.5 with Chi Square of  213.55
The degrees of freedom for the model are 34  and the objective function was  1.28 

The root mean square of the residuals (RMSR) is  0.09 
The df corrected root mean square of the residuals is  0.11 

The harmonic number of observations is  53 with the empirical chi square  46.16  with prob <  0.08 
The total number of observations was  53  with Likelihood Chi Square =  58.98  with prob <  0.005 

Tucker Lewis Index of factoring reliability =  0.735
RMSEA index =  0.116  and the 90 % confidence intervals are  0.065 0.169
BIC =  -76.01
Fit based upon off diagonal values = 0.93
Measures of factor score adequacy             
                                                   MR1  MR2
Correlation of (regression) scores with factors   0.94 0.84
Multiple R square of scores with factors          0.88 0.70
Minimum correlation of possible factor scores     0.76 0.40

Column

Loadings (cutoff = 0.4)


Loadings:
         MR1    MR2   
UTAUT_3   0.594       
UTAUT_5   0.851       
UTAUT_9   0.824       
UTAUT_10  0.601       
UTAUT_7          0.669
UTAUT_1   0.471       
UTAUT_2   0.418       
UTAUT_4  -0.497       
UTAUT_6               
UTAUT_8          0.471
UTAUT_11         0.461

                 MR1   MR2
SS loadings    3.065 1.340
Proportion Var 0.279 0.122
Cumulative Var 0.279 0.400

Scores - 2 faktora

Column

Funkcija gustoće

Column

tablica

              MR1          MR2
 [1,]  0.60569742 -0.557213489
 [2,]  0.55282567  0.423425277
 [3,] -0.12134235 -1.194404986
 [4,] -2.97973004 -1.786977946
 [5,] -0.82526324  0.725389380
 [6,] -1.25031664  0.771796484
 [7,] -0.74079753  0.561383589
 [8,] -0.71239120 -1.584746481
 [9,]  1.39066949  2.051080601
[10,] -1.50915702  0.040913867
[11,]  1.16182726  0.926028860
[12,] -0.17760748 -0.884670131
[13,]  0.68525506 -0.174399372
[14,] -1.00527835  0.362072430
[15,]  0.80516604  1.002932089
[16,]  0.07860924 -0.027151365
[17,] -0.09373261  0.006230525
[18,]  0.16725242 -0.876738647
[19,]  0.46708476  0.744771949
[20,]  0.98497590  0.978911835
[21,] -0.96178768  0.188645632
[22,] -0.30843627 -0.285525519
[23,] -1.75103543  0.939271638
[24,] -0.24777302 -0.270565151
[25,]  0.78982606 -0.037845544
[26,]  1.42275686  1.212918648
[27,]  0.34706229 -0.900758901
[28,]  0.68413832 -0.189986591
[29,] -0.50351543  0.056662410
[30,]  0.08000130 -0.662583924
[31,] -0.46164671  0.234637995
[32,] -1.00922100 -0.365274338
[33,]  0.13215445 -1.093068113
[34,] -0.11379647  0.133075907
[35,] -0.58712611 -0.494957241
[36,]  0.29595101 -0.751499567
[37,] -0.01096343 -0.168028320
[38,]  0.20106084 -0.639223773
[39,]  1.45581340  1.758365716
[40,]  0.83086055  1.336758103
[41,]  1.57810362  1.333624232
[42,] -0.29510114 -0.209055635
[43,] -1.58853450 -0.361112709
[44,]  0.36502570  0.281023537
[45,] -1.61349401 -0.085815091
[46,] -0.13311741  0.328578432
[47,]  0.81098080  0.638442387
[48,]  1.15855998 -0.949213268
[49,] -0.16982361 -1.587510957
[50,]  0.30770228  0.042284910
[51,]  1.22594035 -0.135033452
[52,]  0.60423729 -0.029575671
[53,] -0.01854969 -0.776290250

EFA model - 3 faktora

Column

EFA - 3 faktora

Factor Analysis using method =  minres
Call: fa(r = BDP_aut, nfactors = 3)
Standardized loadings (pattern matrix) based upon correlation matrix
           MR1   MR3   MR2   h2   u2 com
UTAUT_1   0.09  0.71  0.09 0.60 0.40 1.1
UTAUT_2  -0.06  0.83 -0.02 0.65 0.35 1.0
UTAUT_3   0.35  0.46  0.07 0.48 0.52 1.9
UTAUT_4  -0.76  0.29 -0.04 0.49 0.51 1.3
UTAUT_5   0.86  0.06 -0.03 0.77 0.23 1.0
UTAUT_6  -0.14 -0.24  0.49 0.28 0.72 1.6
UTAUT_7  -0.03  0.02  0.81 0.66 0.34 1.0
UTAUT_8   0.19  0.35  0.33 0.38 0.62 2.5
UTAUT_9   0.65  0.31 -0.02 0.67 0.33 1.4
UTAUT_10  0.46  0.25  0.01 0.38 0.62 1.6
UTAUT_11  0.21  0.21  0.39 0.33 0.67 2.1

                       MR1  MR3  MR2
SS loadings           2.37 2.09 1.21
Proportion Var        0.22 0.19 0.11
Cumulative Var        0.22 0.41 0.52
Proportion Explained  0.42 0.37 0.21
Cumulative Proportion 0.42 0.79 1.00

 With factor correlations of 
     MR1  MR3  MR2
MR1 1.00 0.40 0.11
MR3 0.40 1.00 0.19
MR2 0.11 0.19 1.00

Mean item complexity =  1.5
Test of the hypothesis that 3 factors are sufficient.

The degrees of freedom for the null model are  55  and the objective function was  4.5 with Chi Square of  213.55
The degrees of freedom for the model are 25  and the objective function was  0.72 

The root mean square of the residuals (RMSR) is  0.05 
The df corrected root mean square of the residuals is  0.08 

The harmonic number of observations is  53 with the empirical chi square  17.47  with prob <  0.86 
The total number of observations was  53  with Likelihood Chi Square =  32.59  with prob <  0.14 

Tucker Lewis Index of factoring reliability =  0.888
RMSEA index =  0.073  and the 90 % confidence intervals are  0 0.143
BIC =  -66.67
Fit based upon off diagonal values = 0.97
Measures of factor score adequacy             
                                                   MR1  MR3  MR2
Correlation of (regression) scores with factors   0.93 0.91 0.86
Multiple R square of scores with factors          0.87 0.82 0.74
Minimum correlation of possible factor scores     0.74 0.65 0.47

Column

Loadings (cutoff = 0.4)


Loadings:
         MR1    MR3    MR2   
UTAUT_4  -0.758              
UTAUT_5   0.857              
UTAUT_9   0.648              
UTAUT_1          0.713       
UTAUT_2          0.829       
UTAUT_7                 0.809
UTAUT_3          0.456       
UTAUT_6                 0.487
UTAUT_8                      
UTAUT_10  0.463              
UTAUT_11                     

                 MR1   MR3   MR2
SS loadings    2.179 1.877 1.172
Proportion Var 0.198 0.171 0.107
Cumulative Var 0.198 0.369 0.475

Scores - 3 faktora

Column

Funkcija gustoće

Column

tablica

              MR1         MR3         MR2
 [1,]  0.02010009  1.16922230 -1.32523624
 [2,]  0.86206340  0.23762453  0.77814036
 [3,]  0.33207997 -0.68254446 -1.02323973
 [4,] -2.32474022 -2.84652499 -0.87673957
 [5,] -0.85537045 -0.12847200  0.87211481
 [6,] -1.74903187  0.30929513  0.53489027
 [7,] -0.54895128 -0.63011002  0.94755896
 [8,] -0.31789997 -1.41917975 -0.95372125
 [9,]  0.84468620  1.82587873  1.66551256
[10,] -1.42709197 -0.91510779  0.17816212
[11,]  1.45734393  0.74294116  0.92903979
[12,]  0.03530989 -0.85150906 -0.79141832
[13,]  0.46743746  0.69206146 -0.80646404
[14,] -1.08063634 -0.22690694  0.42721920
[15,]  0.49540496  0.98538025  0.88370769
[16,]  0.33283078 -0.27562655  0.34687410
[17,]  0.36758550 -0.82980675  0.72935673
[18,]  0.06069841  0.06394563 -1.22195094
[19,]  0.48295258  0.43014256  0.72960835
[20,]  0.74870870  0.97503460  0.87614877
[21,] -1.12868328 -0.18071852  0.25163079
[22,]  0.11103088 -0.96693602  0.37215382
[23,] -1.80023084 -0.51359353  1.36837351
[24,] -0.51988742  0.10585772 -0.40487461
[25,]  1.08028822  0.11118249  0.30847312
[26,]  1.58590179  0.76921467  1.27597496
[27,]  0.31400214  0.05359997 -1.22950986
[28,]  0.72652217  0.34540188 -0.76877004
[29,] -0.51486288 -0.17652812  0.23850918
[30,]  0.10931022 -0.49345353 -0.28048260
[31,] -1.48845504  1.38856852 -1.02584300
[32,] -1.36741282 -0.26724177 -0.35200463
[33,]  0.49310422 -0.71457150 -1.06185234
[34,] -0.22008016 -0.02998291  0.39167350
[35,] -0.45081210 -0.43127062 -0.30252692
[36,] -0.02612636  0.51739844 -1.27802406
[37,]  0.44262272 -0.72915605  0.12360873
[38,]  0.28431880  0.05724281 -1.02443009
[39,]  0.88388806  1.86436112  1.19578712
[40,]  0.29576911  1.67072389  0.78274868
[41,]  1.43514722  1.59494366  1.18634166
[42,]  0.21068014 -0.91363779  0.30439734
[43,] -1.33966559 -1.13094403 -0.06853394
[44,]  0.33947880 -0.22376986  0.49382089
[45,] -1.57004365 -1.46591299  0.43591894
[46,] -0.50495585  0.40721400 -0.04620102
[47,]  1.23052319  0.02760278  1.07638803
[48,]  1.52060093 -0.38507282 -0.92590164
[49,] -0.35182161 -0.22785628 -1.68269076
[50,]  0.35687857  0.34064526 -0.45096957
[51,]  0.93655719  0.96435101 -0.87501875
[52,]  0.51939360  0.76817151 -0.17744515
[53,]  0.20353985 -0.76157143 -0.75028490

EFA model - 4 faktora

Column

EFA - 4 faktora

Factor Analysis using method =  minres
Call: fa(r = BDP_aut, nfactors = 4)
Standardized loadings (pattern matrix) based upon correlation matrix
           MR1   MR3   MR4   MR2   h2      u2 com
UTAUT_1   0.10  0.58  0.23 -0.02 0.57  0.4315 1.4
UTAUT_2  -0.01  0.95 -0.04  0.01 0.86  0.1372 1.0
UTAUT_3   0.33  0.36  0.19 -0.06 0.47  0.5274 2.6
UTAUT_4  -0.72  0.25 -0.01 -0.06 0.45  0.5452 1.2
UTAUT_5   0.93  0.06 -0.04  0.02 0.86  0.1353 1.0
UTAUT_6   0.03  0.01  0.02  1.01 1.00 -0.0025 1.0
UTAUT_7  -0.13 -0.01  0.58  0.28 0.41  0.5902 1.6
UTAUT_8   0.05  0.15  0.56 -0.03 0.43  0.5696 1.2
UTAUT_9   0.63  0.23  0.12 -0.07 0.66  0.3380 1.4
UTAUT_10  0.31  0.00  0.39 -0.31 0.46  0.5372 2.9
UTAUT_11  0.02 -0.02  0.66 -0.02 0.44  0.5593 1.0

                       MR1  MR3  MR4  MR2
SS loadings           2.18 1.68 1.55 1.23
Proportion Var        0.20 0.15 0.14 0.11
Cumulative Var        0.20 0.35 0.49 0.60
Proportion Explained  0.33 0.25 0.23 0.19
Cumulative Proportion 0.33 0.58 0.81 1.00

 With factor correlations of 
      MR1   MR3  MR4   MR2
MR1  1.00  0.33 0.39 -0.18
MR3  0.33  1.00 0.40 -0.15
MR4  0.39  0.40 1.00  0.07
MR2 -0.18 -0.15 0.07  1.00

Mean item complexity =  1.5
Test of the hypothesis that 4 factors are sufficient.

The degrees of freedom for the null model are  55  and the objective function was  4.5 with Chi Square of  213.55
The degrees of freedom for the model are 17  and the objective function was  0.43 

The root mean square of the residuals (RMSR) is  0.04 
The df corrected root mean square of the residuals is  0.07 

The harmonic number of observations is  53 with the empirical chi square  7.69  with prob <  0.97 
The total number of observations was  53  with Likelihood Chi Square =  19.33  with prob <  0.31 

Tucker Lewis Index of factoring reliability =  0.949
RMSEA index =  0.047  and the 90 % confidence intervals are  0 0.14
BIC =  -48.16
Fit based upon off diagonal values = 0.99

Column

Loadings (cutoff = 0.4)


Loadings:
         MR1    MR3    MR4    MR2   
UTAUT_4  -0.718                     
UTAUT_5   0.927                     
UTAUT_9   0.628                     
UTAUT_1          0.580              
UTAUT_2          0.948              
UTAUT_7                 0.583       
UTAUT_8                 0.558       
UTAUT_11                0.664       
UTAUT_6                        1.006
UTAUT_3                             
UTAUT_10                            

                 MR1   MR3   MR4   MR2
SS loadings    2.005 1.504 1.356 1.201
Proportion Var 0.182 0.137 0.123 0.109
Cumulative Var 0.182 0.319 0.442 0.551

Scores - 4 faktora

Column

Funkcija gustoće

Column

tablica

              MR1          MR3         MR4         MR2
 [1,]  0.10705833  1.411616811 -0.58748752 -1.10658666
 [2,]  1.07751100  0.324417618  0.20534442  0.36658860
 [3,]  0.39731535 -0.103426055 -1.02077156  0.52085204
 [4,] -2.20543820 -2.640469052 -2.17742969  0.04835371
 [5,] -0.88580326  0.136885067  0.29347754  1.17493609
 [6,] -1.74742796  0.412479000 -0.33434186  0.54141217
 [7,] -0.75876874 -1.021816517  0.85159029 -0.01279370
 [8,] -0.20319249 -1.263840101 -1.50549923 -0.97120532
 [9,]  0.98272374  1.790812616  1.96568564  1.66876649
[10,] -1.56932754 -0.967841694 -0.31155748  0.57156110
[11,]  1.36629769  0.447498564  1.21295037 -1.29912356
[12,]  0.22029796 -0.854152016 -1.04762077  1.24130820
[13,]  0.38991473  0.389879667  0.25461323 -1.16979151
[14,] -1.00895731  0.110978898 -0.01875794  1.12547870
[15,]  0.38461749  0.591881723  1.03271711 -1.24190463
[16,]  0.28741428  0.006576208  0.09887471  0.58856111
[17,]  0.31716927 -1.004419832  0.11183401  0.56281260
[18,]  0.12785747  0.228314916 -0.74044864 -1.07595473
[19,]  0.41079368  0.272973365  0.92414577  1.07123943
[20,]  0.52484515  0.506325408  1.27670760 -1.21741744
[21,] -1.04039851  0.159717198 -0.42443276  0.62518096
[22,]  0.18598758 -1.041183741 -0.14758829  1.08987245
[23,] -1.90703577 -0.089847071  0.15151047  1.78685024
[24,] -0.67269991  0.187286602 -0.35330990 -1.02601412
[25,]  1.07823053  0.162582231  0.19790839 -1.11475833
[26,]  1.51486195  0.475197930  1.56362897  1.04825332
[27,]  0.26808513  0.142758601 -0.49645815 -1.05146754
[28,]  0.51369037  0.273613812  0.42231479 -1.03946863
[29,] -0.60943781  0.151287608 -0.34438421  0.03526473
[30,]  0.08617615 -0.924877046 -0.43976153 -1.03629783
[31,] -1.65425950  1.545216115 -0.38312597 -0.97156993
[32,] -1.53128147  0.039469462 -0.77024186  0.70056107
[33,]  0.43210502 -0.934157929 -0.66202137 -1.11649305
[34,] -0.16902486  0.044108272  0.03566436  0.74194380
[35,] -0.18653365  0.063110418 -0.92825228  0.57401316
[36,]  0.14042800  0.450390428 -0.97565474 -1.17161430
[37,]  0.40770413 -0.902571396  0.07137877  0.54924784
[38,]  0.29409503  0.266110182 -0.47647804 -1.14199598
[39,]  1.01346459  1.811092527  1.75901850  1.10481077
[40,]  0.18579005  1.632996264  1.21723599 -1.15616814
[41,]  1.34114087  1.626470737  1.42452086 -1.25719228
[42,]  0.17830621 -1.106475476  0.06582675  0.58590684
[43,] -1.16110895 -1.054583314 -0.79438478  0.52123078
[44,]  0.32904708 -0.629560927  0.28561376  0.67023288
[45,] -1.82924566 -2.309420935  0.24432261  0.72893839
[46,] -0.69409106  0.328022303  0.41036357 -1.04868066
[47,]  1.28269609  0.245618788  0.90004224  1.04138554
[48,]  1.44163887 -0.868668337  0.13838498 -1.10974032
[49,] -0.11774776  0.097459705 -1.65922157 -1.08795364
[50,]  0.45031366  0.412068681 -0.01057474  1.02972774
[51,]  1.04865471  0.537809637  0.34012807 -1.12812934
[52,]  0.88668292  1.366664139 -0.39851232  1.02010152
[53,]  0.27886534 -0.932380062 -0.44748657  1.21692936
---
title: "BDP"
output: 
  flexdashboard::flex_dashboard:
    social: menu
    orientation: columns
    vertical_layout: fill
    source_code: embed
---

```{css, echo=FALSE}
.sidebar { overflow: auto; }
.dataTables_scrollBody {
    height:95% !important;
    max-height:95% !important;
}
.chart-stage-flex {
    overflow:auto !important;
}
```

```{r setup, include=FALSE}
library(flexdashboard)
library(psych)
library(tidyverse)
library(readxl)
library(knitr)
library(kableExtra)
library(corrplot)
library(ClustOfVar)
library(cluster)
library(dendextend)
library(factoextra)
library(circlize)
library(NbClust)
library(gridExtra)

BDP <- read_excel("BDP_po_sudionicima.xlsx") %>% 
  rename(Osoba = `Puno ime`) %>%
  select(-c(3,4,24:30,39,40))
imena <- names(BDP)

BDP <- BDP %>% rename_with(.fn = ~paste0("UTAUT_", which(imena[3:13] == .)), .cols = 3:13) %>%
  rename_with(.fn = ~paste0("LDBDP_", which(imena[14:21] == .)), .cols = 14:21) %>%
  rename_with(.fn = ~paste0("Q", which(imena[22:29] == .)), .cols = 22:29) %>%
  mutate_at(vars(UTAUT_1:LDBDP_8), factor, 
            levels = c("I do not know", "Strongly disagree",
                       "Disagree", "Neither agree nor disagree",
                       "Agree", "Strongly agree")) %>%
  mutate(Q2 = case_when(
  Q2 == "curriculum developers\neducational decision-makers\nresearcher\nteacher" ~ 
    "curriculum developers, educational decision-makers\nresearcher, teacher",
  Q2 == "curriculum developers\neducational decision-makers\ninstructional designer, learning designer\nresearcher\nteacher" ~
    "curriculum developers, educational decision-makers\ninstructional designer, learning designer, researcher, teacher",
  Q2 == "instructional designer, learning designer\nresearcher\nteacher" ~
    "instructional designer, learning designer\nresearcher, teacher",
  Q2 == "curriculum developers\ninstructional designer, learning designer\nresearcher\nteacher" ~
    "curriculum developers, instructional designer\nlearning designer, researcher, teacher",
  Q2 == "instructional designer, learning designer\nresearcher\nteacher\ntechnical expert" ~
    "instructional designer, learning designer\nresearcher, teacher, technical expert",
  Q2 == "educational decision-makers\ninstructional designer, learning designer\nresearcher\nteacher\ntechnical expert" ~
    "educational decision-makers, instructional designer\nlearning designer, researcher, teacher, technical expert",
  .default = Q2
))

kodovi_varijable <- data.frame(varijabla=names(BDP)[-(1:2)], opis=imena[-(1:2)])
likert <- data.frame(Opis = c("I do not know", "Strongly disagree",
                       "Disagree", "Neither agree nor disagree",
                       "Agree", "Strongly agree"),
                    `Numerički kod` = 0:5)
pvalues_stars <- data.frame(interval = c("[0, 0.001)", "[0.001, 0.01)", "[0.01, 0.05)"),
                            oznaka = c('***', '**', '\\*'))

tablica_UTAUT <- BDP %>% select(Osoba, UTAUT_1:UTAUT_11) %>% 
  pivot_longer(UTAUT_1:UTAUT_11, names_to = "varijabla", values_to = "odgovor")
tablica_LDBDP <- BDP %>% select(Osoba, LDBDP_1:LDBDP_8) %>% 
  pivot_longer(LDBDP_1:LDBDP_8, names_to = "varijabla", values_to = "odgovor")

BDP_kor <- BDP %>% select(UTAUT_1:LDBDP_8) %>%
  mutate_all(~case_when(
    . == "I do not know" ~ 0,
    . == "Strongly disagree" ~ 1,
    . == "Disagree" ~ 2,
    . == "Neither agree nor disagree" ~ 3,
    . == "Agree" ~ 4,
    . == "Strongly agree" ~ 5
  ))
kor_holm <- corr.test(BDP_kor, method = "kendall", adjust = "holm")
kor_none <- corr.test(BDP_kor, method = "kendall", adjust = "none")
par_var1 <- as_tibble(kor_holm$ci, rownames = "parovi varijabli") %>%
  select(`parovi varijabli`)
par_var2 <- as_tibble(kor_holm$ci2) %>% 
  select(korelacija = r, `p-value (Holm)` = p.adj, `p-value (bez korekcije)` = p)
par_var <- par_var1 %>% bind_cols(par_var2) %>% arrange(desc(abs(korelacija)))

BDP_klast <- BDP %>% select(UTAUT_1:LDBDP_8)
X_quanti <- PCAmixdata::splitmix(BDP_klast)$X.quanti
X_quali <- PCAmixdata::splitmix(BDP_klast)$X.quali
tree <- hclustvar(X_quanti, X_quali)
stab <- readRDS("stability.rds")
matCR <- as_tibble(stab$matCR) %>% 
  pivot_longer(everything(), names_to = "varijabla", values_to = "vrijednost")

P3 <- cutreevar(tree, 3, matsim = TRUE)
P4 <- cutreevar(tree, 4, matsim = TRUE)
P5 <- cutreevar(tree, 5, matsim = TRUE)
P6 <- cutreevar(tree, 6, matsim = TRUE)
P7 <- cutreevar(tree, 7, matsim = TRUE)

udaljenost <- daisy(BDP_klast, metric = c("gower"))
hc_ward <- hclust(udaljenost, method = "ward.D2")
ward_dend <- as.dendrogram(hc_ward)
ward_dend_color3 <- color_branches(ward_dend, k=3, 
                                   col=c("#00BA38","#F8766D","#619CFF"))
ward_dend_color4 <- color_branches(ward_dend, k=4,
                                   col=c("#7CAE00","#F8766D","#C77CFF","#00BFC4"))
ward_dend_color5 <- color_branches(ward_dend, k=5,
                                   col=c("#A3A500","#E76BF3","#F8766D","#00B0F6","#00BF7D"))

info <- NbClust(diss = udaljenost, distance = NULL, 
                method = "ward.D2", index = "silhouette")
info_tib <- info$All.index %>% as_tibble(rownames = "broj") %>%
  mutate_at(vars(broj), as.numeric)

klasteri3 <- cutree(hc_ward, k = 3)
klasteri4 <- cutree(hc_ward, k = 4)
klasteri5 <- cutree(hc_ward, k = 5)
BDP_cluster3 <- BDP_klast %>% mutate(Cluster = klasteri3)
BDP_cluster4 <- BDP_klast %>% mutate(Cluster = klasteri4)
BDP_cluster5 <- BDP_klast %>% mutate(Cluster = klasteri5)
sil3 <- silhouette(BDP_cluster3$Cluster, udaljenost)
sil4 <- silhouette(BDP_cluster4$Cluster, udaljenost)
sil5 <- silhouette(BDP_cluster5$Cluster, udaljenost)

klaster4_UTAUT <- BDP_cluster4 %>% select(UTAUT_1:UTAUT_11, Cluster) %>% 
  pivot_longer(UTAUT_1:UTAUT_11, names_to = "varijabla", values_to = "odgovor")
klaster4_LDBDP <- BDP_cluster4 %>% select(LDBDP_1:LDBDP_8, Cluster) %>% 
  pivot_longer(LDBDP_1:LDBDP_8, names_to = "varijabla", values_to = "odgovor")

BDP_cluster4_deskriptiva <- BDP %>% select(Q1:Q8) %>% mutate(Cluster = klasteri4)

EFA_model3 <- fa(BDP_kor, nfactors = 3)
EFA_model4 <- fa(BDP_kor, nfactors = 4)
EFA_model5 <- fa(BDP_kor, nfactors = 5)

BDP_aut <- BDP_kor %>% select(UTAUT_1:UTAUT_11)
EFAaut_model2 <- fa(BDP_aut, nfactors = 2)
EFAaut_model3 <- fa(BDP_aut, nfactors = 3)
EFAaut_model4 <- fa(BDP_aut, nfactors = 4)
```

Informacije {data-navmenu="Deskriptiva"}
=======================================================================

Column 1
-----------------------------------------------------------------------

### Opis varijabli

```{r}
kodovi_varijable %>% 
  kbl(caption = "Opis varijabli") %>%
  kable_classic("hover",full_width = F, html_font = "Cambria")
```

Column 2
-----------------------------------------------------------------------

### Likert skala

```{r}
likert %>% 
  kbl(caption = "Kodiranje Likertove skale") %>%
  kable_classic("hover",full_width = F, html_font = "Cambria")
```

### Zvjezdica oznake za p-vrijednosti

```{r}
pvalues_stars %>% 
  kbl(caption = "Oznake za p-vrijednosti ako je $\\alpha=0.05$") %>%
  kable_classic("hover",full_width = F, html_font = "Cambria")
```

UTAUT, LDBDP frekvencije {data-navmenu="Deskriptiva"}
=======================================================================

Column {.tabset .tabset-fade}
-----------------------------------------------------------------------

### Frekvencije varijabli UTAUT

```{r}
ggplot(tablica_UTAUT, aes(x = odgovor)) +
  geom_bar(fill="#F8766D", alpha = 0.9) + 
  facet_wrap(vars(fct_relevel(factor(varijabla), "UTAUT_10", "UTAUT_11", after = 9))) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
  coord_flip() + ylim(0,38)
```

### Frekvencije varijabli LDBDP

```{r}
ggplot(tablica_LDBDP, aes(x = odgovor)) +
  geom_bar(fill="#F8766D", alpha = 0.9) + facet_wrap(vars(varijabla)) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
  scale_x_discrete(drop = FALSE) +
  coord_flip() + ylim(0,39)
```

Q1, Q8, Q4, Q5 frekvencije {data-navmenu="Deskriptiva"}
=======================================================================

Column 1
-----------------------------------------------------------------------

### Frekvencije varijable Q1

```{r}
ggplot(BDP, aes(x = Q1)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
  coord_flip() + ylim(0,15) +
  theme(
    axis.title = element_text(size = 12),
    axis.text = element_text(size = 12)
  )
```

### Frekvencije varijable Q4

```{r}
ggplot(BDP, aes(x = Q4)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
  coord_flip() + ylim(0,38) +
  theme(
    axis.title = element_text(size = 14),
    axis.text = element_text(size = 14)
  )
```

Column 2
-----------------------------------------------------------------------

### Frekvencije varijable Q8

```{r}
ggplot(BDP, aes(x = Q8)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
  coord_flip() + ylim(0,18) +
  theme(
    axis.title = element_text(size = 14),
    axis.text = element_text(size = 14)
  )
```

### Frekvencije varijable Q5

```{r}
ggplot(BDP, aes(x = Q5)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
  coord_flip() + ylim(0,22) +
  theme(
    axis.title = element_text(size = 14),
    axis.text = element_text(size = 14)
  )
```

Q3, Q7 frekvencije {data-navmenu="Deskriptiva"}
=======================================================================

Column 1
-----------------------------------------------------------------------

### Frekvencije varijable Q3

```{r}
ggplot(BDP, aes(x = Q3)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3.5) +
  coord_flip()
```

Column 2
-----------------------------------------------------------------------

### Frekvencije varijable Q7

```{r}
ggplot(BDP, aes(x = Q7)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3.5) +
  coord_flip()
```

Q2, Q6 frekvencije {data-navmenu="Deskriptiva"}
=======================================================================

Column {.tabset .tabset-fade}
-----------------------------------------------------------------------

### Frekvencije varijable Q2

```{r}
ggplot(BDP, aes(x = Q2)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
  coord_flip() + ylim(0,15) +
  theme(axis.text.y=element_text(size=rel(0.8)))
```

### Frekvencije varijable Q6

```{r}
ggplot(BDP, aes(x = Q6)) + geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
  coord_flip() + ylim(0,20) +
  theme(axis.text.y=element_text(size=rel(0.6)))
```

Korelacije {data-navmenu="Deskriptiva"}
=======================================================================

Column {.tabset .tabset-fade}
-----------------------------------------------------------------------

### Korelacije (Kendall)

```{r}
corrplot.mixed(kor_none$r, tl.col = "black", tl.srt = 90, tl.pos="lt",
               mar=c(0,0,0.1,0), tl.cex=0.5, number.cex = 0.5)
```

Column {.tabset .tabset-fade}
-----------------------------------------------------------------------

### Značajnost (Holm korekcija)

```{r}
corrplot(kor_holm$r, p.mat = kor_holm$p, insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05), 
         type = "upper", diag = FALSE, tl.cex=0.5, tl.col = "black",
         pch.cex = 0.65)
```

### Značajnost (bez korekcije)

```{r}
corrplot(kor_none$r, p.mat = kor_none$p, insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05), 
         type = "upper", diag = FALSE, tl.cex=0.5, tl.col = "black",
         pch.cex = 0.65)
```

### p-vrijednosti (tablica)

```{r}
par_var %>% 
  kbl(caption = "**p-vrijednosti:** tablica je sortirana silazno s obzirom na apsolutne vrijednosti korelacija") %>%
  kable_classic("hover",full_width = F, html_font = "Cambria")
```

Dendrogram {data-navmenu="Klasteriranje varijabli"}
=======================================================================

Column 
-----------------------------------------------------------------------

### Dendrogram

```{r}
plot(tree, cex=0.8)
```

Column {.tabset .tabset-fade}
-----------------------------------------------------------------------

### Rand indeksi (mean)

```{r}
plot(stab, main = "Stability of the partitions")
```

### Rand indeksi (boxplot)

```{r}
ggplot(matCR, aes(x = fct_relevel(varijabla, paste0("P",10:18), after = Inf), 
                  y = vrijednost, fill = varijabla)) +
  geom_boxplot() + theme(legend.position = 'none') + xlab("") + ylab("") +
  ggtitle("Dispersion of the adjusted Rand index")
```

3 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================

Column 1  
-----------------------------------------------------------------------

### Sličnost varijabli sa sintetičkom varijablom klastera

```{r}
summary(P3)
```

Column 2
-----------------------------------------------------------------------

### Sličnost varijabli unutar klastera {data-height=600}

```{r}
print(P3$sim, digits = 2, max.levels = NULL, width = 100)
```

### Homogenost klastera {data-height=100}

```{r}
print(P3$wss, digits = 3)
```

4 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================

Column 1  
-----------------------------------------------------------------------

### Sličnost varijabli sa sintetičkom varijablom klastera

```{r}
summary(P4)
```

Column 2
-----------------------------------------------------------------------

### Sličnost varijabli unutar klastera {data-height=600}

```{r}
print(P4$sim, digits = 2)
```

### Homogenost klastera {data-height=100}

```{r}
print(P4$wss, digits = 3)
```

5 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================

Column 1  
-----------------------------------------------------------------------

### Sličnost varijabli sa sintetičkom varijablom klastera

```{r}
summary(P5)
```

Column 2
-----------------------------------------------------------------------

### Sličnost varijabli unutar klastera {data-height=600}

```{r}
print(P5$sim, digits = 2)
```

### Homogenost klastera {data-height=100}

```{r}
print(P5$wss, digits = 3)
```

6 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================

Column 1  
-----------------------------------------------------------------------

### Sličnost varijabli sa sintetičkom varijablom klastera

```{r}
summary(P6)
```

Column 2
-----------------------------------------------------------------------

### Sličnost varijabli unutar klastera {data-height=600}

```{r}
print(P6$sim, digits = 2)
```

### Homogenost klastera {data-height=100}

```{r}
print(P6$wss, digits = 3)
```


7 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================

Column 1  
-----------------------------------------------------------------------

### Sličnost varijabli sa sintetičkom varijablom klastera

```{r}
summary(P7)
```

Column 2
-----------------------------------------------------------------------

### Sličnost varijabli unutar klastera {data-height=600}

```{r}
print(P7$sim, digits = 2)
```

### Homogenost klastera {data-height=100}

```{r}
print(P7$wss, digits = 3)
```

Dendrogram, Silhouette {data-navmenu="Klasteriranje ispitanika"}
=======================================================================

Column {data-width=500 .tabset .tabset-fade}
-------------------------------------

### Dendrogram (3 klastera)
```{r}
circlize_dendrogram(ward_dend_color3, dend_track_height = 0.8)
```

### Dendrogram (4 klastera)
```{r}
circlize_dendrogram(ward_dend_color4, dend_track_height = 0.8)
```

### Dendrogram (5 klastera)
```{r}
circlize_dendrogram(ward_dend_color5, dend_track_height = 0.8)
```

### Silhouette (summary)

**3 klastera**

```{r}
summary(sil3)
```

**4 klastera**

```{r}
summary(sil4)
```

**5 klastera**

```{r}
summary(sil5)
```

### Silhouette (broj klastera)

```{r}
ggplot(info_tib,  aes(x=broj, y=value, group = 1)) + 
  geom_point(color = "#0071bf") +
  geom_line(color = "#0071bf") +
  geom_vline(xintercept = info$Best.nc[1], color = "#0071bf", linetype = "dashed") + 
  ggtitle("Optimal number of clusters") +
  labs(x = "Number of clusters", y = "Average silhouette width") +
  scale_x_continuous(breaks = 2:15)
```

Column {data-width=500 .tabset .tabset-fade}
-------------------------------------

### Silhouette (3 klastera)

```{r}
fviz_silhouette(sil3, print.summary=FALSE)
```

### Silhouette (4 klastera)

```{r}
fviz_silhouette(sil4, print.summary=FALSE)
```

### Silhouette (5 klastera)

```{r}
fviz_silhouette(sil5, print.summary=FALSE)
```

### Silhouette (summary)

**3 klastera**

```{r}
summary(sil3)
```

**4 klastera**

```{r}
summary(sil4)
```

**5 klastera**

```{r}
summary(sil5)
```

### Silhouette (broj klastera)

```{r}
ggplot(info_tib,  aes(x=broj, y=value, group = 1)) + 
  geom_point(color = "#0071bf") +
  geom_line(color = "#0071bf") +
  geom_vline(xintercept = info$Best.nc[1], color = "#0071bf", linetype = "dashed") + 
  ggtitle("Optimal number of clusters") +
  labs(x = "Number of clusters", y = "Average silhouette width") +
  scale_x_continuous(breaks = 2:15)
```

Vizualizacija 4 klastera {data-navmenu="Klasteriranje ispitanika"}
=======================================================================

Column {data-width=500 .tabset .tabset-fade}
-------------------------------------

### UTAUT varijable

```{r fig.width=14}
ggplot(klaster4_UTAUT, aes(x = odgovor)) +
  geom_bar(alpha = 0.9, fill="#F8766D") + 
  facet_grid(cols =vars(fct_relevel(factor(varijabla), "UTAUT_10", "UTAUT_11", after = 9)),
             rows = vars(Cluster)) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
  coord_flip() + ylim(0,25)
```

### LDBDP varijable

```{r fig.width=14}
ggplot(klaster4_LDBDP, aes(x = odgovor)) +
  geom_bar(alpha = 0.9, fill="#F8766D") + 
  facet_grid(cols =vars(varijabla), rows = vars(Cluster)) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
  scale_x_discrete(drop = FALSE) + coord_flip() + ylim(0,25)
```

### Q1 Q4

```{r fig.width=12}
slQ1 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q1)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
  coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
  scale_y_continuous(breaks = c(0,2,4,6,8), limits = c(0,9)) +
  theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"))
slQ4 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q4)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
  coord_flip() + ylim(0,16) + facet_wrap(vars(Cluster), ncol = 4) +
  theme(plot.margin = margin(0.5,0.2,0,0.2,"cm"))
grid.arrange(slQ1, slQ4, ncol = 1)
```

### Q5 Q8

```{r fig.width=12}
slQ5 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q5)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
  coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
  scale_y_continuous(breaks = c(0,2,4,6,8), limits = c(0,8.5)) +
  theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"))
slQ8 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q8)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
  coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
  scale_y_continuous(breaks = c(0,2,4,6,8,10,12), limits = c(0,12)) +
  theme(plot.margin = margin(0.5,0.2,0,0.2,"cm"))
grid.arrange(slQ5, slQ8, ncol = 1)
```

### Q3 Q7

```{r fig.width=12}
slQ3 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q3)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
  coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
  theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"))
slQ7 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q7)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
  coord_flip() + ylim(0,13) + facet_wrap(vars(Cluster), ncol = 4) +
  theme(plot.margin = margin(0.5,0.2,0,0.2,"cm"))
grid.arrange(slQ3, slQ7, ncol = 1)
```

### Q2

```{r fig.width=12}
ggplot(BDP_cluster4_deskriptiva, aes(x=Q2)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
  coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
  theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"),
        axis.text.y=element_text(size=rel(0.8)))
```

### Q6

```{r fig.width=10}
ggplot(BDP_cluster4_deskriptiva, aes(x=Q6)) +
  geom_bar(fill="#F8766D", alpha = 0.9) +
  geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
  coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
  scale_y_continuous(breaks = c(0,2,4,6,8,10,12), limits = c(0,12)) +
  theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"),
        axis.text.y=element_text(size=rel(0.6)),
        axis.title = element_text(size=rel(0.75)))
```

Unutarnja pouzdanost {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Cronbach alpha

```{r}
psych::alpha(BDP_kor, check.keys = TRUE)
```

Column {data-width=400 .tabset .tabset-fade}
-----------------------------------------------------------------------

### split-half & Kaiser-Meyer-Olkin

#### split-half

```{r}
splitHalf(BDP_kor)
```

#### Kaiser-Meyer-Olkin

```{r}
KMO(BDP_kor)
```

### SCREE plot

```{r warning=FALSE, fig.width=8, fig.height=7}
scree(BDP_kor)
```

EFA model - 3 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### EFA - 3 faktora

```{r}
EFA_model3
```

Column {data-width=400}
-----------------------------------------------------------------------

### Loadings (cutoff = 0.4)

```{r}
print(EFA_model3$loadings, sort=TRUE, cutoff=0.4)
```

Scores - 3 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Funkcija gustoće

```{r warning=FALSE}
plot(density(EFA_model3$scores, na.rm = TRUE), 
    main = "Factor Scores")
```

Column {data-width=400}
-----------------------------------------------------------------------

### tablica

```{r}
EFA_model3$scores
```

EFA model - 4 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### EFA - 4 faktora

```{r}
EFA_model4
```

Column {data-width=400}
-----------------------------------------------------------------------

### Loadings (cutoff = 0.4)

```{r}
print(EFA_model4$loadings, sort=TRUE, cutoff=0.4)
```

Scores - 4 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Funkcija gustoće

```{r warning=FALSE}
plot(density(EFA_model4$scores, na.rm = TRUE), 
    main = "Factor Scores")
```

Column {data-width=400}
-----------------------------------------------------------------------

### tablica

```{r}
EFA_model4$scores
```

EFA model - 5 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### EFA - 5 faktora

```{r}
EFA_model5
```

Column {data-width=400}
-----------------------------------------------------------------------

### Loadings (cutoff = 0.4)

```{r}
print(EFA_model5$loadings, sort=TRUE, cutoff=0.4)
```

Scores - 5 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Funkcija gustoće

```{r warning=FALSE}
plot(density(EFA_model5$scores, na.rm = TRUE), 
    main = "Factor Scores")
```

Column {data-width=400}
-----------------------------------------------------------------------

### tablica

```{r}
EFA_model5$scores
```

Unutarnja pouzdanost {data-navmenu="EFA - UTAUT"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Cronbach alpha

```{r}
psych::alpha(BDP_aut, check.keys = TRUE)
```

Column {data-width=400 .tabset .tabset-fade}
-----------------------------------------------------------------------

### split-half & Kaiser-Meyer-Olkin

#### split-half

```{r}
splitHalf(BDP_aut)
```

#### Kaiser-Meyer-Olkin

```{r}
KMO(BDP_aut)
```

### SCREE plot

```{r warning=FALSE, fig.width=8, fig.height=7}
scree(BDP_aut)
```

EFA model - 2 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### EFA - 2 faktora

```{r}
EFAaut_model2
```

Column {data-width=400}
-----------------------------------------------------------------------

### Loadings (cutoff = 0.4)

```{r}
print(EFAaut_model2$loadings, sort=TRUE, cutoff=0.4)
```

Scores - 2 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Funkcija gustoće

```{r warning=FALSE}
plot(density(EFAaut_model2$scores, na.rm = TRUE), 
    main = "Factor Scores")
```

Column {data-width=400}
-----------------------------------------------------------------------

### tablica

```{r}
EFAaut_model2$scores
```

EFA model - 3 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### EFA - 3 faktora

```{r}
EFAaut_model3
```

Column {data-width=400}
-----------------------------------------------------------------------

### Loadings (cutoff = 0.4)

```{r}
print(EFAaut_model3$loadings, sort=TRUE, cutoff=0.4)
```

Scores - 3 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Funkcija gustoće

```{r warning=FALSE}
plot(density(EFAaut_model3$scores, na.rm = TRUE), 
    main = "Factor Scores")
```

Column {data-width=400}
-----------------------------------------------------------------------

### tablica

```{r}
EFAaut_model3$scores
```

EFA model - 4 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### EFA - 4 faktora

```{r}
EFAaut_model4
```

Column {data-width=400}
-----------------------------------------------------------------------

### Loadings (cutoff = 0.4)

```{r}
print(EFAaut_model4$loadings, sort=TRUE, cutoff=0.4)
```

Scores - 4 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================

Column {data-width=400}
-----------------------------------------------------------------------

### Funkcija gustoće

```{r warning=FALSE}
plot(density(EFAaut_model4$scores, na.rm = TRUE), 
    main = "Factor Scores")
```

Column {data-width=400}
-----------------------------------------------------------------------

### tablica

```{r}
EFAaut_model4$scores
```