varijabla | opis |
---|---|
UTAUT_1 | UTAUT: BDP will help me improve my work performance |
UTAUT_2 | UTAUT: BDP will increase my productivity |
UTAUT_3 | UTAUT: BDP will make my job easier |
UTAUT_4 | UTAUT: fully utilizing the BDP will require a significant amount of effort on my part |
UTAUT_5 | UTAUT: using the BDP is easy for me |
UTAUT_6 | UTAUT: My colleagues think that I should use the BDP learning design. |
UTAUT_7 | UTAUT: most of my colleagues will use the BDP |
UTAUT_8 | UTAUT: creating a LD with the BDP is increasingly becoming the standard |
UTAUT_9 | UTAUT: BDP is very easy to use in my HE context |
UTAUT_10 | UTAUT: there are good instructions available for using the BDP |
UTAUT_11 | UTAUT: BDP will be available to me when I need it |
LDBDP_1 | LD BDP: LD based on WEIGHTED learning outcomes improves the quality of my work |
LDBDP_2 | LD BDP: planning TLA based on LOs contributes to the quality of my |
LDBDP_3 | LD BDP: planning of assessment based on LOs contributes to the quality of my work |
LDBDP_4 | LD BDP: choice of analysis available in the BDP Analysis contributes to the quality of my work |
LDBDP_5 | LD BDP: planning of TLA in the BDP tool useful |
LDBDP_6 | LD BDP: data presentation and visualization in the BDP Analysis understandable |
LDBDP_7 | LD BDP: data presentation and visualization in the BDP Analysis useful |
LDBDP_8 | LD BDP: export possibilitiesuseful for productivity of my work |
Q1 | What institution are you affiliated with? |
Q2 | Which user group(s) do you belong to? Choose at least one. |
Q3 | How many years of work do you have in the primary area of expertise? |
Q4 | Choose your gender |
Q5 | How old are you? |
Q6 | How did you train yourself to use the BDP tool? |
Q7 | How many learning designs have you prepared in the BDP tool? |
Q8 | How many hours did you spend working in the BDP tool? |
Opis | Numerički.kod |
---|---|
I do not know | 0 |
Strongly disagree | 1 |
Disagree | 2 |
Neither agree nor disagree | 3 |
Agree | 4 |
Strongly agree | 5 |
interval | oznaka |
---|---|
[0, 0.001) | *** |
[0.001, 0.01) | ** |
[0.01, 0.05) | * |
parovi varijabli | korelacija | p-value (Holm) | p-value (bez korekcije) |
---|---|---|---|
UTAUT_1-LDBDP_5 | 0.6782270 | 0.0000041 | 0.0000000 |
UTAUT_5-UTAUT_9 | 0.6465094 | 0.0000289 | 0.0000002 |
UTAUT_1-UTAUT_2 | 0.6196939 | 0.0001269 | 0.0000008 |
LDBDP_6-LDBDP_7 | 0.5550229 | 0.0027046 | 0.0000161 |
LDBDP_4-LDBDP_7 | 0.5482336 | 0.0035771 | 0.0000214 |
LDBDP_5-LDBDP_7 | 0.5380780 | 0.0053888 | 0.0000325 |
UTAUT_3-UTAUT_5 | 0.5030076 | 0.0204071 | 0.0001237 |
UTAUT_4-UTAUT_5 | -0.4900453 | 0.0320854 | 0.0001956 |
LDBDP_2-LDBDP_3 | 0.4888348 | 0.0332543 | 0.0002040 |
UTAUT_2-LDBDP_5 | 0.4772695 | 0.0489395 | 0.0003021 |
UTAUT_5-LDBDP_7 | 0.4748567 | 0.0526965 | 0.0003273 |
LDBDP_4-LDBDP_5 | 0.4732476 | 0.0552268 | 0.0003452 |
UTAUT_11-LDBDP_1 | 0.4702208 | 0.0606071 | 0.0003812 |
UTAUT_5-UTAUT_10 | 0.4623872 | 0.0775337 | 0.0004907 |
UTAUT_9-LDBDP_5 | 0.4519870 | 0.1067579 | 0.0006800 |
UTAUT_1-LDBDP_4 | 0.4407151 | 0.1493466 | 0.0009573 |
UTAUT_5-LDBDP_5 | 0.4373046 | 0.1641958 | 0.0010593 |
UTAUT_11-LDBDP_5 | 0.4215915 | 0.2566376 | 0.0016665 |
UTAUT_1-UTAUT_3 | 0.4199608 | 0.2669188 | 0.0017446 |
UTAUT_3-LDBDP_5 | 0.4180176 | 0.2799651 | 0.0018419 |
UTAUT_2-UTAUT_3 | 0.4171188 | 0.2851634 | 0.0018885 |
UTAUT_8-UTAUT_9 | 0.4138951 | 0.3096737 | 0.0020645 |
LDBDP_1-LDBDP_7 | 0.4067997 | 0.3731195 | 0.0025042 |
UTAUT_1-LDBDP_3 | 0.4065920 | 0.3731195 | 0.0025182 |
UTAUT_10-UTAUT_11 | 0.4028828 | 0.4087903 | 0.0027809 |
LDBDP_5-LDBDP_8 | 0.4003241 | 0.4344913 | 0.0029760 |
LDBDP_4-LDBDP_6 | 0.3997307 | 0.4383208 | 0.0030229 |
LDBDP_1-LDBDP_4 | 0.3994955 | 0.4383208 | 0.0030417 |
UTAUT_11-LDBDP_6 | 0.3986348 | 0.4449171 | 0.0031113 |
UTAUT_3-UTAUT_9 | 0.3973518 | 0.4569151 | 0.0032177 |
UTAUT_5-LDBDP_6 | 0.3953085 | 0.4785268 | 0.0033938 |
UTAUT_1-UTAUT_9 | 0.3940024 | 0.4915103 | 0.0035108 |
UTAUT_2-LDBDP_4 | 0.3933248 | 0.4966282 | 0.0035729 |
UTAUT_10-LDBDP_6 | 0.3933036 | 0.4966282 | 0.0035748 |
UTAUT_11-LDBDP_7 | 0.3891346 | 0.5450811 | 0.0039787 |
LDBDP_7-LDBDP_8 | 0.3886706 | 0.5475419 | 0.0040260 |
UTAUT_10-LDBDP_5 | 0.3881116 | 0.5513050 | 0.0040837 |
UTAUT_4-UTAUT_9 | -0.3745135 | 0.7678794 | 0.0057304 |
UTAUT_1-UTAUT_11 | 0.3733249 | 0.7845363 | 0.0058988 |
UTAUT_10-LDBDP_7 | 0.3696646 | 0.8506813 | 0.0064446 |
UTAUT_1-UTAUT_5 | 0.3693059 | 0.8515448 | 0.0065003 |
UTAUT_8-UTAUT_11 | 0.3635776 | 0.9685047 | 0.0074500 |
UTAUT_5-LDBDP_4 | 0.3632640 | 0.9685047 | 0.0075054 |
UTAUT_1-LDBDP_7 | 0.3609671 | 1.0000000 | 0.0079215 |
UTAUT_1-UTAUT_10 | 0.3591718 | 1.0000000 | 0.0082605 |
UTAUT_9-LDBDP_4 | 0.3587544 | 1.0000000 | 0.0083411 |
UTAUT_2-LDBDP_3 | 0.3545318 | 1.0000000 | 0.0091957 |
UTAUT_8-LDBDP_5 | 0.3536403 | 1.0000000 | 0.0093855 |
UTAUT_7-UTAUT_11 | 0.3474183 | 1.0000000 | 0.0108072 |
UTAUT_11-LDBDP_8 | 0.3467736 | 1.0000000 | 0.0109646 |
UTAUT_9-LDBDP_7 | 0.3441692 | 1.0000000 | 0.0116208 |
UTAUT_9-UTAUT_10 | 0.3320856 | 1.0000000 | 0.0151258 |
UTAUT_3-UTAUT_10 | 0.3302520 | 1.0000000 | 0.0157296 |
UTAUT_7-LDBDP_7 | 0.3277903 | 1.0000000 | 0.0165725 |
UTAUT_1-UTAUT_8 | 0.3127763 | 1.0000000 | 0.0225904 |
UTAUT_10-LDBDP_8 | 0.3107866 | 1.0000000 | 0.0235114 |
UTAUT_3-UTAUT_11 | 0.3087269 | 1.0000000 | 0.0244980 |
UTAUT_3-LDBDP_7 | 0.3085320 | 1.0000000 | 0.0245932 |
UTAUT_11-LDBDP_4 | 0.3070998 | 1.0000000 | 0.0253018 |
UTAUT_7-UTAUT_8 | 0.3053823 | 1.0000000 | 0.0261742 |
UTAUT_3-LDBDP_4 | 0.3038247 | 1.0000000 | 0.0269870 |
UTAUT_7-LDBDP_5 | 0.2980298 | 1.0000000 | 0.0301988 |
UTAUT_1-LDBDP_8 | 0.2965167 | 1.0000000 | 0.0310881 |
UTAUT_6-UTAUT_7 | 0.2951944 | 1.0000000 | 0.0318829 |
UTAUT_9-UTAUT_11 | 0.2951886 | 1.0000000 | 0.0318864 |
UTAUT_2-LDBDP_7 | 0.2886119 | 1.0000000 | 0.0360954 |
UTAUT_2-UTAUT_9 | 0.2881700 | 1.0000000 | 0.0363939 |
LDBDP_5-LDBDP_6 | 0.2863617 | 1.0000000 | 0.0376369 |
LDBDP_3-LDBDP_8 | 0.2857920 | 1.0000000 | 0.0380357 |
UTAUT_3-LDBDP_3 | 0.2835225 | 1.0000000 | 0.0396591 |
UTAUT_9-LDBDP_6 | 0.2764558 | 1.0000000 | 0.0450831 |
UTAUT_3-UTAUT_8 | 0.2742274 | 1.0000000 | 0.0469142 |
UTAUT_5-LDBDP_8 | 0.2708614 | 1.0000000 | 0.0497948 |
UTAUT_4-LDBDP_7 | -0.2672272 | 1.0000000 | 0.0530649 |
UTAUT_10-LDBDP_1 | 0.2594071 | 1.0000000 | 0.0606924 |
UTAUT_7-LDBDP_8 | 0.2579292 | 1.0000000 | 0.0622283 |
UTAUT_11-LDBDP_3 | 0.2537960 | 1.0000000 | 0.0666900 |
LDBDP_1-LDBDP_8 | 0.2528900 | 1.0000000 | 0.0677014 |
UTAUT_2-LDBDP_1 | 0.2523581 | 1.0000000 | 0.0683009 |
UTAUT_2-UTAUT_5 | 0.2502097 | 1.0000000 | 0.0707652 |
UTAUT_5-UTAUT_11 | 0.2422597 | 1.0000000 | 0.0805054 |
UTAUT_6-UTAUT_10 | -0.2398777 | 1.0000000 | 0.0836207 |
UTAUT_2-UTAUT_10 | 0.2392022 | 1.0000000 | 0.0845213 |
UTAUT_4-UTAUT_10 | -0.2390347 | 1.0000000 | 0.0847457 |
UTAUT_8-UTAUT_10 | 0.2369362 | 1.0000000 | 0.0875977 |
LDBDP_1-LDBDP_6 | 0.2363716 | 1.0000000 | 0.0883777 |
UTAUT_3-LDBDP_1 | 0.2353716 | 1.0000000 | 0.0897726 |
LDBDP_1-LDBDP_5 | 0.2338078 | 1.0000000 | 0.0919881 |
LDBDP_1-LDBDP_3 | 0.2309290 | 1.0000000 | 0.0961780 |
LDBDP_3-LDBDP_5 | 0.2267579 | 1.0000000 | 0.1025100 |
UTAUT_2-UTAUT_11 | 0.2233836 | 1.0000000 | 0.1078638 |
UTAUT_1-LDBDP_1 | 0.2232094 | 1.0000000 | 0.1081459 |
UTAUT_1-LDBDP_6 | 0.2131431 | 1.0000000 | 0.1254304 |
UTAUT_8-LDBDP_2 | -0.2111117 | 1.0000000 | 0.1291586 |
UTAUT_8-LDBDP_7 | 0.2092701 | 1.0000000 | 0.1326102 |
UTAUT_7-LDBDP_6 | 0.2022308 | 1.0000000 | 0.1464436 |
UTAUT_4-LDBDP_6 | -0.2005538 | 1.0000000 | 0.1498917 |
UTAUT_2-LDBDP_8 | 0.1986504 | 1.0000000 | 0.1538777 |
LDBDP_6-LDBDP_8 | 0.1974749 | 1.0000000 | 0.1563780 |
LDBDP_4-LDBDP_8 | 0.1962426 | 1.0000000 | 0.1590312 |
UTAUT_3-UTAUT_7 | 0.1939214 | 1.0000000 | 0.1641185 |
UTAUT_3-UTAUT_4 | -0.1921805 | 1.0000000 | 0.1680109 |
UTAUT_2-UTAUT_8 | 0.1920682 | 1.0000000 | 0.1682645 |
UTAUT_5-LDBDP_2 | 0.1907398 | 1.0000000 | 0.1712831 |
UTAUT_3-LDBDP_8 | 0.1905371 | 1.0000000 | 0.1717471 |
UTAUT_6-LDBDP_7 | 0.1892680 | 1.0000000 | 0.1746732 |
UTAUT_8-LDBDP_8 | 0.1808107 | 1.0000000 | 0.1950987 |
UTAUT_5-LDBDP_3 | 0.1804299 | 1.0000000 | 0.1960567 |
UTAUT_10-LDBDP_4 | 0.1760983 | 1.0000000 | 0.2071902 |
UTAUT_5-UTAUT_8 | 0.1746792 | 1.0000000 | 0.2109327 |
UTAUT_3-LDBDP_2 | 0.1706074 | 1.0000000 | 0.2219338 |
LDBDP_3-LDBDP_7 | 0.1681563 | 1.0000000 | 0.2287449 |
UTAUT_1-UTAUT_7 | 0.1667817 | 1.0000000 | 0.2326272 |
UTAUT_8-LDBDP_1 | 0.1639393 | 1.0000000 | 0.2407985 |
UTAUT_4-UTAUT_11 | -0.1619594 | 1.0000000 | 0.2466048 |
UTAUT_8-LDBDP_6 | 0.1594952 | 1.0000000 | 0.2539633 |
UTAUT_9-LDBDP_8 | 0.1588581 | 1.0000000 | 0.2558897 |
UTAUT_7-UTAUT_10 | 0.1558323 | 1.0000000 | 0.2651727 |
UTAUT_2-UTAUT_7 | 0.1474599 | 1.0000000 | 0.2920204 |
LDBDP_3-LDBDP_4 | 0.1470171 | 1.0000000 | 0.2934881 |
UTAUT_8-LDBDP_4 | 0.1445226 | 1.0000000 | 0.3018452 |
LDBDP_1-LDBDP_2 | 0.1388743 | 1.0000000 | 0.3213302 |
UTAUT_2-LDBDP_2 | 0.1385350 | 1.0000000 | 0.3225255 |
UTAUT_10-LDBDP_3 | 0.1358841 | 1.0000000 | 0.3319608 |
LDBDP_2-LDBDP_4 | 0.1345677 | 1.0000000 | 0.3367102 |
UTAUT_10-LDBDP_2 | 0.1309614 | 1.0000000 | 0.3499364 |
UTAUT_4-LDBDP_5 | -0.1244672 | 1.0000000 | 0.3745473 |
UTAUT_6-LDBDP_4 | 0.1189040 | 1.0000000 | 0.3964339 |
UTAUT_5-UTAUT_7 | 0.1148635 | 1.0000000 | 0.4127893 |
UTAUT_11-LDBDP_2 | 0.1064318 | 1.0000000 | 0.4481413 |
UTAUT_4-LDBDP_8 | -0.1055966 | 1.0000000 | 0.4517315 |
UTAUT_7-LDBDP_3 | 0.1041115 | 1.0000000 | 0.4581542 |
UTAUT_6-UTAUT_9 | -0.1033349 | 1.0000000 | 0.4615324 |
UTAUT_3-UTAUT_6 | -0.0974829 | 1.0000000 | 0.4874185 |
UTAUT_6-LDBDP_2 | -0.0966975 | 1.0000000 | 0.4909496 |
UTAUT_5-LDBDP_1 | 0.0931240 | 1.0000000 | 0.5071829 |
UTAUT_7-LDBDP_4 | 0.0907240 | 1.0000000 | 0.5182369 |
UTAUT_6-LDBDP_8 | 0.0896485 | 1.0000000 | 0.5232291 |
UTAUT_4-LDBDP_3 | -0.0831863 | 1.0000000 | 0.5537218 |
UTAUT_1-UTAUT_4 | -0.0822739 | 1.0000000 | 0.5580942 |
UTAUT_7-UTAUT_9 | 0.0798790 | 1.0000000 | 0.5696475 |
UTAUT_7-LDBDP_1 | 0.0758687 | 1.0000000 | 0.5892375 |
UTAUT_9-LDBDP_1 | 0.0743861 | 1.0000000 | 0.5965558 |
UTAUT_8-LDBDP_3 | -0.0727391 | 1.0000000 | 0.6047320 |
UTAUT_4-UTAUT_8 | -0.0712261 | 1.0000000 | 0.6122857 |
UTAUT_7-LDBDP_2 | -0.0640491 | 1.0000000 | 0.6486532 |
UTAUT_2-UTAUT_4 | 0.0604845 | 1.0000000 | 0.6670298 |
UTAUT_2-UTAUT_6 | -0.0553547 | 1.0000000 | 0.6938167 |
UTAUT_9-LDBDP_2 | 0.0543960 | 1.0000000 | 0.6988652 |
UTAUT_4-LDBDP_4 | -0.0496493 | 1.0000000 | 0.7240502 |
UTAUT_6-UTAUT_11 | 0.0487645 | 1.0000000 | 0.7287778 |
LDBDP_2-LDBDP_8 | 0.0454857 | 1.0000000 | 0.7463831 |
LDBDP_2-LDBDP_7 | -0.0436368 | 1.0000000 | 0.7563685 |
UTAUT_9-LDBDP_3 | 0.0425890 | 1.0000000 | 0.7620449 |
UTAUT_5-UTAUT_6 | -0.0388440 | 1.0000000 | 0.7824331 |
UTAUT_6-LDBDP_1 | 0.0335766 | 1.0000000 | 0.8113536 |
UTAUT_4-LDBDP_1 | 0.0321827 | 1.0000000 | 0.8190509 |
UTAUT_4-LDBDP_2 | -0.0305033 | 1.0000000 | 0.8283468 |
UTAUT_1-LDBDP_2 | 0.0290931 | 1.0000000 | 0.8361704 |
UTAUT_6-LDBDP_5 | 0.0239213 | 1.0000000 | 0.8649935 |
UTAUT_6-UTAUT_8 | 0.0227062 | 1.0000000 | 0.8717921 |
UTAUT_3-LDBDP_6 | 0.0192887 | 1.0000000 | 0.8909610 |
UTAUT_1-UTAUT_6 | -0.0169257 | 1.0000000 | 0.9042524 |
UTAUT_6-LDBDP_6 | 0.0154993 | 1.0000000 | 0.9122884 |
LDBDP_2-LDBDP_5 | 0.0150765 | 1.0000000 | 0.9146722 |
UTAUT_4-UTAUT_7 | -0.0111320 | 1.0000000 | 0.9369433 |
UTAUT_2-LDBDP_6 | -0.0096386 | 1.0000000 | 0.9453892 |
LDBDP_3-LDBDP_6 | 0.0095819 | 1.0000000 | 0.9457094 |
UTAUT_6-LDBDP_3 | -0.0062891 | 1.0000000 | 0.9643513 |
UTAUT_4-UTAUT_6 | -0.0058504 | 1.0000000 | 0.9668367 |
LDBDP_2-LDBDP_6 | 0.0000000 | 1.0000000 | 1.0000000 |
Call:
cutreevar(obj = tree, k = 3, matsim = TRUE)
Data:
number of observations: 53
number of variables: 19
number of clusters: 3
Cluster 1 :
squared loading correlation
UTAUT_9 0.98 NA
UTAUT_8 0.98 NA
LDBDP_5 0.98 NA
UTAUT_7 0.98 NA
UTAUT_3 0.98 NA
UTAUT_2 0.59 NA
UTAUT_1 0.59 NA
Cluster 2 :
squared loading correlation
LDBDP_7 0.68 NA
LDBDP_6 0.55 NA
UTAUT_5 0.53 NA
UTAUT_10 0.47 NA
LDBDP_4 0.43 NA
UTAUT_11 0.42 NA
UTAUT_6 0.32 NA
LDBDP_8 0.31 NA
LDBDP_1 0.27 NA
UTAUT_4 0.18 NA
Cluster 3 :
squared loading correlation
LDBDP_2 1 NA
LDBDP_3 1 NA
Gain in cohesion (in %): 35.76
$cluster1
UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1 1.00 0.45 0.50 0.54 0.53 0.53 0.63
UTAUT_2 0.45 1.00 0.54 0.53 0.53 0.66 0.50
UTAUT_3 0.50 0.54 1.00 1.00 1.00 1.00 1.00
UTAUT_7 0.54 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_8 0.53 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_9 0.53 0.66 1.00 1.00 1.00 1.00 1.00
LDBDP_5 0.63 0.50 1.00 1.00 1.00 1.00 1.00
$cluster2
UTAUT_4 UTAUT_5 UTAUT_6 UTAUT_10 UTAUT_11 LDBDP_1 LDBDP_4 LDBDP_6 LDBDP_7 LDBDP_8
UTAUT_4 1.000 0.357 0.14 0.131 0.12 0.199 0.041 0.22 0.14 0.170
UTAUT_5 0.357 1.000 0.23 0.278 0.16 0.062 0.213 0.27 0.30 0.097
UTAUT_6 0.141 0.230 1.00 0.306 0.19 0.105 0.344 0.24 0.20 0.160
UTAUT_10 0.131 0.278 0.31 1.000 0.32 0.165 0.069 0.20 0.18 0.170
UTAUT_11 0.124 0.161 0.19 0.316 1.00 0.286 0.110 0.25 0.20 0.172
LDBDP_1 0.199 0.062 0.11 0.165 0.29 1.000 0.202 0.16 0.23 0.183
LDBDP_4 0.041 0.213 0.34 0.069 0.11 0.202 1.000 0.20 0.34 0.063
LDBDP_6 0.215 0.267 0.24 0.199 0.25 0.158 0.202 1.00 0.52 0.187
LDBDP_7 0.138 0.299 0.20 0.178 0.20 0.227 0.335 0.52 1.00 0.175
LDBDP_8 0.170 0.097 0.16 0.170 0.17 0.183 0.063 0.19 0.18 1.000
$cluster3
LDBDP_2 LDBDP_3
LDBDP_2 1 1
LDBDP_3 1 1
cluster1 cluster2 cluster3
6.08 4.16 2.00
Call:
cutreevar(obj = tree, k = 4, matsim = TRUE)
Data:
number of observations: 53
number of variables: 19
number of clusters: 4
Cluster 1 :
squared loading correlation
UTAUT_9 0.98 NA
UTAUT_8 0.98 NA
LDBDP_5 0.98 NA
UTAUT_7 0.98 NA
UTAUT_3 0.98 NA
UTAUT_2 0.59 NA
UTAUT_1 0.59 NA
Cluster 2 :
squared loading correlation
LDBDP_7 0.73 NA
LDBDP_6 0.63 NA
UTAUT_5 0.58 NA
UTAUT_6 0.47 NA
LDBDP_4 0.45 NA
UTAUT_4 0.28 NA
Cluster 3 :
squared loading correlation
UTAUT_11 0.68 NA
UTAUT_10 0.60 NA
LDBDP_1 0.51 NA
LDBDP_8 0.42 NA
Cluster 4 :
squared loading correlation
LDBDP_2 1 NA
LDBDP_3 1 NA
Gain in cohesion (in %): 47.1
$cluster1
UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1 1.00 0.45 0.50 0.54 0.53 0.53 0.63
UTAUT_2 0.45 1.00 0.54 0.53 0.53 0.66 0.50
UTAUT_3 0.50 0.54 1.00 1.00 1.00 1.00 1.00
UTAUT_7 0.54 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_8 0.53 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_9 0.53 0.66 1.00 1.00 1.00 1.00 1.00
LDBDP_5 0.63 0.50 1.00 1.00 1.00 1.00 1.00
$cluster2
UTAUT_4 UTAUT_5 UTAUT_6 LDBDP_4 LDBDP_6 LDBDP_7
UTAUT_4 1.000 0.36 0.14 0.041 0.22 0.14
UTAUT_5 0.357 1.00 0.23 0.213 0.27 0.30
UTAUT_6 0.141 0.23 1.00 0.344 0.24 0.20
LDBDP_4 0.041 0.21 0.34 1.000 0.20 0.34
LDBDP_6 0.215 0.27 0.24 0.202 1.00 0.52
LDBDP_7 0.138 0.30 0.20 0.335 0.52 1.00
$cluster3
UTAUT_10 UTAUT_11 LDBDP_1 LDBDP_8
UTAUT_10 1.00 0.32 0.16 0.17
UTAUT_11 0.32 1.00 0.29 0.17
LDBDP_1 0.16 0.29 1.00 0.18
LDBDP_8 0.17 0.17 0.18 1.00
$cluster4
LDBDP_2 LDBDP_3
LDBDP_2 1 1
LDBDP_3 1 1
cluster1 cluster2 cluster3 cluster4
6.08 3.14 2.21 2.00
Call:
cutreevar(obj = tree, k = 5, matsim = TRUE)
Data:
number of observations: 53
number of variables: 19
number of clusters: 5
Cluster 1 :
squared loading correlation
UTAUT_9 0.98 NA
UTAUT_8 0.98 NA
LDBDP_5 0.98 NA
UTAUT_7 0.98 NA
UTAUT_3 0.98 NA
UTAUT_2 0.59 NA
UTAUT_1 0.59 NA
Cluster 2 :
squared loading correlation
UTAUT_4 0.8 NA
UTAUT_5 0.8 NA
Cluster 3 :
squared loading correlation
LDBDP_7 0.74 NA
LDBDP_6 0.64 NA
LDBDP_4 0.60 NA
UTAUT_6 0.58 NA
Cluster 4 :
squared loading correlation
UTAUT_11 0.68 NA
UTAUT_10 0.60 NA
LDBDP_1 0.51 NA
LDBDP_8 0.42 NA
Cluster 5 :
squared loading correlation
LDBDP_2 1 NA
LDBDP_3 1 NA
Gain in cohesion (in %): 56.7
$cluster1
UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1 1.00 0.45 0.50 0.54 0.53 0.53 0.63
UTAUT_2 0.45 1.00 0.54 0.53 0.53 0.66 0.50
UTAUT_3 0.50 0.54 1.00 1.00 1.00 1.00 1.00
UTAUT_7 0.54 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_8 0.53 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_9 0.53 0.66 1.00 1.00 1.00 1.00 1.00
LDBDP_5 0.63 0.50 1.00 1.00 1.00 1.00 1.00
$cluster2
UTAUT_4 UTAUT_5
UTAUT_4 1.00 0.36
UTAUT_5 0.36 1.00
$cluster3
UTAUT_6 LDBDP_4 LDBDP_6 LDBDP_7
UTAUT_6 1.00 0.34 0.24 0.20
LDBDP_4 0.34 1.00 0.20 0.34
LDBDP_6 0.24 0.20 1.00 0.52
LDBDP_7 0.20 0.34 0.52 1.00
$cluster4
UTAUT_10 UTAUT_11 LDBDP_1 LDBDP_8
UTAUT_10 1.00 0.32 0.16 0.17
UTAUT_11 0.32 1.00 0.29 0.17
LDBDP_1 0.16 0.29 1.00 0.18
LDBDP_8 0.17 0.17 0.18 1.00
$cluster5
LDBDP_2 LDBDP_3
LDBDP_2 1 1
LDBDP_3 1 1
cluster1 cluster2 cluster3 cluster4 cluster5
6.08 1.60 2.56 2.21 2.00
Call:
cutreevar(obj = tree, k = 6, matsim = TRUE)
Data:
number of observations: 53
number of variables: 19
number of clusters: 6
Cluster 1 :
squared loading correlation
UTAUT_9 0.98 NA
UTAUT_8 0.98 NA
LDBDP_5 0.98 NA
UTAUT_7 0.98 NA
UTAUT_3 0.98 NA
UTAUT_2 0.59 NA
UTAUT_1 0.59 NA
Cluster 2 :
squared loading correlation
UTAUT_4 0.8 NA
UTAUT_5 0.8 NA
Cluster 3 :
squared loading correlation
LDBDP_7 0.74 NA
LDBDP_6 0.64 NA
LDBDP_4 0.60 NA
UTAUT_6 0.58 NA
Cluster 4 :
squared loading correlation
UTAUT_10 0.78 NA
UTAUT_11 0.78 NA
Cluster 5 :
squared loading correlation
LDBDP_1 0.71 NA
LDBDP_8 0.71 NA
Cluster 6 :
squared loading correlation
LDBDP_2 1 NA
LDBDP_3 1 NA
Gain in cohesion (in %): 64.12
$cluster1
UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1 1.00 0.45 0.50 0.54 0.53 0.53 0.63
UTAUT_2 0.45 1.00 0.54 0.53 0.53 0.66 0.50
UTAUT_3 0.50 0.54 1.00 1.00 1.00 1.00 1.00
UTAUT_7 0.54 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_8 0.53 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_9 0.53 0.66 1.00 1.00 1.00 1.00 1.00
LDBDP_5 0.63 0.50 1.00 1.00 1.00 1.00 1.00
$cluster2
UTAUT_4 UTAUT_5
UTAUT_4 1.00 0.36
UTAUT_5 0.36 1.00
$cluster3
UTAUT_6 LDBDP_4 LDBDP_6 LDBDP_7
UTAUT_6 1.00 0.34 0.24 0.20
LDBDP_4 0.34 1.00 0.20 0.34
LDBDP_6 0.24 0.20 1.00 0.52
LDBDP_7 0.20 0.34 0.52 1.00
$cluster4
UTAUT_10 UTAUT_11
UTAUT_10 1.00 0.32
UTAUT_11 0.32 1.00
$cluster5
LDBDP_1 LDBDP_8
LDBDP_1 1.00 0.18
LDBDP_8 0.18 1.00
$cluster6
LDBDP_2 LDBDP_3
LDBDP_2 1 1
LDBDP_3 1 1
cluster1 cluster2 cluster3 cluster4 cluster5 cluster6
6.08 1.60 2.56 1.56 1.43 2.00
Call:
cutreevar(obj = tree, k = 7, matsim = TRUE)
Data:
number of observations: 53
number of variables: 19
number of clusters: 7
Cluster 1 :
squared loading correlation
UTAUT_9 0.98 NA
UTAUT_8 0.98 NA
LDBDP_5 0.98 NA
UTAUT_7 0.98 NA
UTAUT_3 0.98 NA
UTAUT_2 0.59 NA
UTAUT_1 0.59 NA
Cluster 2 :
squared loading correlation
UTAUT_4 0.8 NA
UTAUT_5 0.8 NA
Cluster 3 :
squared loading correlation
UTAUT_6 0.79 NA
LDBDP_4 0.79 NA
Cluster 4 :
squared loading correlation
UTAUT_10 0.78 NA
UTAUT_11 0.78 NA
Cluster 5 :
squared loading correlation
LDBDP_1 0.71 NA
LDBDP_8 0.71 NA
Cluster 6 :
squared loading correlation
LDBDP_2 1 NA
LDBDP_3 1 NA
Cluster 7 :
squared loading correlation
LDBDP_6 0.86 NA
LDBDP_7 0.86 NA
Gain in cohesion (in %): 71.26
$cluster1
UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_7 UTAUT_8 UTAUT_9 LDBDP_5
UTAUT_1 1.00 0.45 0.50 0.54 0.53 0.53 0.63
UTAUT_2 0.45 1.00 0.54 0.53 0.53 0.66 0.50
UTAUT_3 0.50 0.54 1.00 1.00 1.00 1.00 1.00
UTAUT_7 0.54 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_8 0.53 0.53 1.00 1.00 1.00 1.00 1.00
UTAUT_9 0.53 0.66 1.00 1.00 1.00 1.00 1.00
LDBDP_5 0.63 0.50 1.00 1.00 1.00 1.00 1.00
$cluster2
UTAUT_4 UTAUT_5
UTAUT_4 1.00 0.36
UTAUT_5 0.36 1.00
$cluster3
UTAUT_6 LDBDP_4
UTAUT_6 1.00 0.34
LDBDP_4 0.34 1.00
$cluster4
UTAUT_10 UTAUT_11
UTAUT_10 1.00 0.32
UTAUT_11 0.32 1.00
$cluster5
LDBDP_1 LDBDP_8
LDBDP_1 1.00 0.18
LDBDP_8 0.18 1.00
$cluster6
LDBDP_2 LDBDP_3
LDBDP_2 1 1
LDBDP_3 1 1
$cluster7
LDBDP_6 LDBDP_7
LDBDP_6 1.00 0.52
LDBDP_7 0.52 1.00
cluster1 cluster2 cluster3 cluster4 cluster5 cluster6 cluster7
6.08 1.60 1.59 1.56 1.43 2.00 1.72
3 klastera
Silhouette of 53 units in 3 clusters from silhouette.default(x = BDP_cluster3$Cluster, dist = udaljenost) :
Cluster sizes and average silhouette widths:
21 14 18
0.197465464 0.228128882 0.002296016
Individual silhouette widths:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.17576 0.02268 0.13410 0.13928 0.23182 0.45325
4 klastera
Silhouette of 53 units in 4 clusters from silhouette.default(x = BDP_cluster4$Cluster, dist = udaljenost) :
Cluster sizes and average silhouette widths:
21 14 14 4
0.16870997 0.22797569 0.05231017 0.06425163
Individual silhouette widths:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.11677 0.05283 0.13987 0.14573 0.21795 0.45325
5 klastera
Silhouette of 53 units in 5 clusters from silhouette.default(x = BDP_cluster5$Cluster, dist = udaljenost) :
Cluster sizes and average silhouette widths:
9 14 14 4 12
0.01699288 0.17593605 -0.02122045 0.05689842 0.30425630
Individual silhouette widths:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.16507 -0.01880 0.08029 0.11694 0.24861 0.39161
3 klastera
Silhouette of 53 units in 3 clusters from silhouette.default(x = BDP_cluster3$Cluster, dist = udaljenost) :
Cluster sizes and average silhouette widths:
21 14 18
0.197465464 0.228128882 0.002296016
Individual silhouette widths:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.17576 0.02268 0.13410 0.13928 0.23182 0.45325
4 klastera
Silhouette of 53 units in 4 clusters from silhouette.default(x = BDP_cluster4$Cluster, dist = udaljenost) :
Cluster sizes and average silhouette widths:
21 14 14 4
0.16870997 0.22797569 0.05231017 0.06425163
Individual silhouette widths:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.11677 0.05283 0.13987 0.14573 0.21795 0.45325
5 klastera
Silhouette of 53 units in 5 clusters from silhouette.default(x = BDP_cluster5$Cluster, dist = udaljenost) :
Cluster sizes and average silhouette widths:
9 14 14 4 12
0.01699288 0.17593605 -0.02122045 0.05689842 0.30425630
Individual silhouette widths:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.16507 -0.01880 0.08029 0.11694 0.24861 0.39161
Reliability analysis
Call: psych::alpha(x = BDP_kor, check.keys = TRUE)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.8 0.86 0.92 0.25 6.4 0.041 3.8 0.43 0.26
95% confidence boundaries
lower alpha upper
Feldt 0.71 0.8 0.87
Duhachek 0.72 0.8 0.88
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
UTAUT_1 0.79 0.85 0.91 0.24 5.7 0.044 0.037 0.25
UTAUT_2 0.79 0.85 0.91 0.25 5.9 0.044 0.038 0.26
UTAUT_3 0.78 0.85 0.91 0.24 5.7 0.045 0.039 0.25
UTAUT_4- 0.80 0.86 0.92 0.26 6.4 0.041 0.038 0.29
UTAUT_5 0.77 0.85 0.91 0.24 5.7 0.047 0.037 0.25
UTAUT_6- 0.84 0.87 0.92 0.28 6.9 0.031 0.032 0.29
UTAUT_7 0.82 0.87 0.92 0.27 6.5 0.036 0.036 0.28
UTAUT_8 0.79 0.86 0.91 0.25 6.1 0.044 0.037 0.26
UTAUT_9 0.78 0.85 0.91 0.24 5.7 0.046 0.036 0.26
UTAUT_10 0.78 0.85 0.91 0.24 5.8 0.046 0.039 0.24
UTAUT_11 0.79 0.85 0.91 0.25 5.9 0.044 0.039 0.26
LDBDP_1 0.79 0.86 0.92 0.25 6.1 0.043 0.039 0.26
LDBDP_2 0.80 0.87 0.92 0.27 6.7 0.041 0.035 0.29
LDBDP_3 0.80 0.86 0.92 0.26 6.4 0.041 0.038 0.29
LDBDP_4 0.79 0.85 0.91 0.25 5.9 0.043 0.038 0.26
LDBDP_5 0.78 0.85 0.91 0.24 5.5 0.046 0.035 0.24
LDBDP_6 0.79 0.86 0.91 0.25 6.0 0.044 0.037 0.26
LDBDP_7 0.78 0.85 0.91 0.24 5.7 0.045 0.036 0.24
LDBDP_8 0.79 0.86 0.92 0.25 6.0 0.043 0.040 0.26
Item statistics
n raw.r std.r r.cor r.drop mean sd
UTAUT_1 53 0.65 0.70 0.696 0.607 4.3 0.54
UTAUT_2 53 0.57 0.60 0.591 0.503 3.8 0.72
UTAUT_3 53 0.67 0.68 0.663 0.623 4.0 0.71
UTAUT_4- 53 0.42 0.38 0.344 0.290 1.6 1.23
UTAUT_5 53 0.72 0.70 0.707 0.653 3.8 0.93
UTAUT_6- 53 0.21 0.13 0.074 -0.008 3.0 1.78
UTAUT_7 53 0.37 0.32 0.282 0.166 2.2 1.71
UTAUT_8 53 0.54 0.51 0.489 0.453 3.2 0.86
UTAUT_9 53 0.71 0.69 0.690 0.647 3.8 0.86
UTAUT_10 53 0.69 0.65 0.635 0.628 4.1 0.86
UTAUT_11 53 0.59 0.61 0.582 0.541 4.3 0.62
LDBDP_1 53 0.46 0.50 0.464 0.367 3.9 0.86
LDBDP_2 53 0.17 0.22 0.166 0.105 4.6 0.53
LDBDP_3 53 0.31 0.37 0.336 0.237 4.6 0.63
LDBDP_4 53 0.54 0.62 0.598 0.490 4.1 0.60
LDBDP_5 53 0.74 0.77 0.773 0.704 4.2 0.67
LDBDP_6 53 0.55 0.55 0.533 0.486 4.1 0.74
LDBDP_7 53 0.68 0.71 0.710 0.640 4.2 0.63
LDBDP_8 53 0.51 0.53 0.484 0.445 4.1 0.71
Non missing response frequency for each item
0 1 2 3 4 5 miss
UTAUT_1 0.00 0.00 0.00 0.04 0.62 0.34 0
UTAUT_2 0.00 0.00 0.04 0.26 0.57 0.13 0
UTAUT_3 0.00 0.00 0.02 0.17 0.57 0.25 0
UTAUT_4 0.00 0.06 0.25 0.17 0.32 0.21 0
UTAUT_5 0.00 0.00 0.13 0.15 0.51 0.21 0
UTAUT_6 0.42 0.00 0.06 0.28 0.21 0.04 0
UTAUT_7 0.30 0.02 0.17 0.21 0.25 0.06 0
UTAUT_8 0.00 0.02 0.21 0.42 0.32 0.04 0
UTAUT_9 0.00 0.02 0.06 0.21 0.55 0.17 0
UTAUT_10 0.00 0.00 0.06 0.13 0.43 0.38 0
UTAUT_11 0.00 0.00 0.00 0.09 0.55 0.36 0
LDBDP_1 0.00 0.00 0.08 0.19 0.49 0.25 0
LDBDP_2 0.00 0.00 0.00 0.02 0.36 0.62 0
LDBDP_3 0.00 0.00 0.02 0.02 0.28 0.68 0
LDBDP_4 0.00 0.00 0.00 0.15 0.64 0.21 0
LDBDP_5 0.00 0.00 0.02 0.08 0.57 0.34 0
LDBDP_6 0.00 0.00 0.04 0.13 0.57 0.26 0
LDBDP_7 0.00 0.00 0.00 0.11 0.57 0.32 0
LDBDP_8 0.00 0.00 0.00 0.19 0.49 0.32 0
Split half reliabilities
Call: splitHalf(r = BDP_kor)
Maximum split half reliability (lambda 4) = 0.95
Guttman lambda 6 = 0.92
Average split half reliability = 0.86
Guttman lambda 3 (alpha) = 0.86
Guttman lambda 2 = 0.88
Minimum split half reliability (beta) = 0.71
Average interitem r = 0.25 with median = 0.26
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = BDP_kor)
Overall MSA = 0.78
MSA for each item =
UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_4 UTAUT_5 UTAUT_6 UTAUT_7 UTAUT_8
0.79 0.83 0.85 0.71 0.80 0.42 0.62 0.79
UTAUT_9 UTAUT_10 UTAUT_11 LDBDP_1 LDBDP_2 LDBDP_3 LDBDP_4 LDBDP_5
0.81 0.79 0.85 0.72 0.46 0.57 0.86 0.89
LDBDP_6 LDBDP_7 LDBDP_8
0.79 0.83 0.85
Factor Analysis using method = minres
Call: fa(r = BDP_kor, nfactors = 3)
Standardized loadings (pattern matrix) based upon correlation matrix
MR3 MR1 MR2 h2 u2 com
UTAUT_1 0.17 0.26 0.54 0.57 0.43 1.7
UTAUT_2 0.09 0.09 0.67 0.55 0.45 1.1
UTAUT_3 0.37 0.07 0.44 0.49 0.51 2.0
UTAUT_4 -0.58 0.04 0.15 0.29 0.71 1.1
UTAUT_5 0.87 -0.01 0.03 0.76 0.24 1.0
UTAUT_6 -0.39 0.45 -0.13 0.22 0.78 2.2
UTAUT_7 -0.20 0.65 -0.06 0.34 0.66 1.2
UTAUT_8 0.23 0.40 0.00 0.30 0.70 1.6
UTAUT_9 0.80 0.03 0.06 0.70 0.30 1.0
UTAUT_10 0.52 0.17 0.07 0.41 0.59 1.2
UTAUT_11 0.02 0.55 0.17 0.39 0.61 1.2
LDBDP_1 -0.13 0.45 0.30 0.30 0.70 2.0
LDBDP_2 -0.01 -0.25 0.45 0.20 0.80 1.6
LDBDP_3 -0.12 -0.12 0.69 0.41 0.59 1.1
LDBDP_4 0.09 0.38 0.35 0.41 0.59 2.1
LDBDP_5 0.25 0.46 0.35 0.65 0.35 2.5
LDBDP_6 0.37 0.52 -0.24 0.49 0.51 2.3
LDBDP_7 0.22 0.65 0.05 0.63 0.37 1.2
LDBDP_8 0.05 0.42 0.16 0.26 0.74 1.3
MR3 MR1 MR2
SS loadings 3.01 3.00 2.36
Proportion Var 0.16 0.16 0.12
Cumulative Var 0.16 0.32 0.44
Proportion Explained 0.36 0.36 0.28
Cumulative Proportion 0.36 0.72 1.00
With factor correlations of
MR3 MR1 MR2
MR3 1.00 0.43 0.35
MR1 0.43 1.00 0.28
MR2 0.35 0.28 1.00
Mean item complexity = 1.5
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the null model are 171 and the objective function was 9.84 with Chi Square of 441.13
The degrees of freedom for the model are 117 and the objective function was 3.1
The root mean square of the residuals (RMSR) is 0.08
The df corrected root mean square of the residuals is 0.09
The harmonic number of observations is 53 with the empirical chi square 108.29 with prob < 0.71
The total number of observations was 53 with Likelihood Chi Square = 132.95 with prob < 0.15
Tucker Lewis Index of factoring reliability = 0.907
RMSEA index = 0.047 and the 90 % confidence intervals are 0 0.089
BIC = -331.57
Fit based upon off diagonal values = 0.94
Measures of factor score adequacy
MR3 MR1 MR2
Correlation of (regression) scores with factors 0.95 0.91 0.9
Multiple R square of scores with factors 0.90 0.84 0.8
Minimum correlation of possible factor scores 0.79 0.67 0.6
Loadings:
MR3 MR1 MR2
UTAUT_4 -0.582
UTAUT_5 0.866
UTAUT_9 0.804
UTAUT_10 0.518
UTAUT_7 0.646
UTAUT_11 0.548
LDBDP_6 0.516
LDBDP_7 0.651
UTAUT_1 0.544
UTAUT_2 0.669
LDBDP_3 0.689
UTAUT_3 0.443
UTAUT_6 0.446
UTAUT_8 0.404
LDBDP_1 0.446
LDBDP_2 0.448
LDBDP_4
LDBDP_5 0.461
LDBDP_8 0.415
MR3 MR1 MR2
SS loadings 2.707 2.687 2.114
Proportion Var 0.142 0.141 0.111
Cumulative Var 0.142 0.284 0.395
MR3 MR1 MR2
[1,] 0.48209505 -0.57969070 1.221903291
[2,] 0.80017766 0.99895841 0.667451960
[3,] 0.02974421 -1.39561173 0.001983145
[4,] -2.85954617 -2.56402362 -1.739980065
[5,] -0.93077775 1.13896594 0.209687611
[6,] -1.47358318 0.20754397 0.382991739
[7,] -0.41802367 0.85655190 -2.229572324
[8,] -0.47762184 -1.36942064 -0.952616466
[9,] 1.13994398 1.86589542 1.370518067
[10,] -1.50285761 -0.41101445 -1.094846688
[11,] 1.06868446 0.54959734 0.722625774
[12,] -0.17521533 -0.54717622 0.034450937
[13,] 0.58118808 0.60732890 0.549615594
[14,] -1.12838982 -0.96002524 -1.019318816
[15,] 0.66488009 0.34574251 0.589945565
[16,] 0.13685421 0.72090853 0.252323204
[17,] 0.21879809 0.11621725 -1.757018267
[18,] 0.26960750 -0.53883880 -0.353779819
[19,] 0.44704790 1.13617842 0.461987518
[20,] 1.06602513 1.41849262 0.448143464
[21,] -0.99310293 -0.01004742 -0.478316033
[22,] 0.18825896 0.70067885 -1.384664847
[23,] -2.01247974 0.17677634 0.129599288
[24,] -0.24178059 -0.39148883 -0.455365283
[25,] 0.80438246 -0.44181300 0.361891506
[26,] 1.23581060 1.29260518 0.955453784
[27,] 0.32317478 -0.72988358 0.289148940
[28,] 0.61663936 0.69525142 0.333688269
[29,] -0.73530874 -1.56240991 -0.215296172
[30,] 0.54189570 -0.39717500 -0.941496102
[31,] -1.30010216 -1.38861628 1.705277559
[32,] -1.13037543 -0.52259253 -0.429403769
[33,] 0.25914805 -0.73478076 -0.172401386
[34,] -0.31926912 -0.49496373 0.563941616
[35,] -0.43492782 0.32975867 -0.464449206
[36,] 0.21525420 -1.18562481 0.343154078
[37,] 0.07792702 -0.19444404 -0.858163332
[38,] 0.22431618 -0.55233485 0.003641215
[39,] 1.19970345 1.71525056 1.421642974
[40,] 0.39439112 1.24799183 1.656799997
[41,] 1.44925295 1.12843882 1.053047392
[42,] -0.15316648 0.11437214 -0.848283527
[43,] -1.49411079 -0.37204778 -0.172889917
[44,] 0.41510829 -0.26527544 -0.665753402
[45,] -1.53989160 0.46513057 -0.675703512
[46,] -0.38637184 0.14581473 0.435685675
[47,] 1.19342768 1.02515601 0.022194418
[48,] 1.39400821 -0.13851487 -0.491439222
[49,] 0.13902596 -0.93688917 -0.458691216
[50,] 0.18345378 -0.20464675 0.228398725
[51,] 1.17424015 -0.05970004 1.278383578
[52,] 0.60832481 0.56273012 1.258701972
[53,] 0.16411254 -0.61328625 -1.094829483
Factor Analysis using method = minres
Call: fa(r = BDP_kor, nfactors = 4)
Standardized loadings (pattern matrix) based upon correlation matrix
MR4 MR1 MR3 MR2 h2 u2 com
UTAUT_1 0.73 0.11 0.05 0.05 0.66 0.34 1.1
UTAUT_2 0.81 -0.06 -0.01 0.15 0.67 0.33 1.1
UTAUT_3 0.50 0.03 0.30 0.13 0.49 0.51 1.8
UTAUT_4 0.21 -0.10 -0.60 -0.05 0.35 0.65 1.3
UTAUT_5 0.01 0.12 0.85 0.10 0.83 0.17 1.1
UTAUT_6 -0.11 0.40 -0.37 -0.08 0.21 0.79 2.2
UTAUT_7 0.13 0.53 -0.25 -0.18 0.32 0.68 1.8
UTAUT_8 0.48 0.18 0.07 -0.40 0.48 0.52 2.3
UTAUT_9 0.39 -0.07 0.69 -0.20 0.78 0.22 1.8
UTAUT_10 0.14 0.21 0.45 0.01 0.40 0.60 1.6
UTAUT_11 0.18 0.55 -0.02 0.05 0.40 0.60 1.2
LDBDP_1 0.18 0.49 -0.14 0.18 0.33 0.67 1.8
LDBDP_2 -0.05 -0.02 0.12 0.66 0.44 0.56 1.1
LDBDP_3 0.21 0.07 -0.03 0.73 0.62 0.38 1.2
LDBDP_4 0.31 0.40 0.06 0.15 0.41 0.59 2.3
LDBDP_5 0.58 0.33 0.13 -0.07 0.69 0.31 1.7
LDBDP_6 -0.18 0.61 0.33 -0.11 0.56 0.44 1.8
LDBDP_7 0.04 0.74 0.18 0.05 0.71 0.29 1.1
LDBDP_8 0.12 0.46 0.03 0.11 0.28 0.72 1.3
MR4 MR1 MR3 MR2
SS loadings 2.91 2.85 2.51 1.36
Proportion Var 0.15 0.15 0.13 0.07
Cumulative Var 0.15 0.30 0.44 0.51
Proportion Explained 0.30 0.30 0.26 0.14
Cumulative Proportion 0.30 0.60 0.86 1.00
With factor correlations of
MR4 MR1 MR3 MR2
MR4 1.00 0.36 0.36 0.12
MR1 0.36 1.00 0.37 -0.02
MR3 0.36 0.37 1.00 0.00
MR2 0.12 -0.02 0.00 1.00
Mean item complexity = 1.6
Test of the hypothesis that 4 factors are sufficient.
The degrees of freedom for the null model are 171 and the objective function was 9.84 with Chi Square of 441.13
The degrees of freedom for the model are 101 and the objective function was 2.11
The root mean square of the residuals (RMSR) is 0.06
The df corrected root mean square of the residuals is 0.07
The harmonic number of observations is 53 with the empirical chi square 58.53 with prob < 1
The total number of observations was 53 with Likelihood Chi Square = 88.89 with prob < 0.8
Tucker Lewis Index of factoring reliability = 1.084
RMSEA index = 0 and the 90 % confidence intervals are 0 0.049
BIC = -312.11
Fit based upon off diagonal values = 0.97
Measures of factor score adequacy
MR4 MR1 MR3 MR2
Correlation of (regression) scores with factors 0.93 0.92 0.95 0.87
Multiple R square of scores with factors 0.87 0.85 0.90 0.76
Minimum correlation of possible factor scores 0.75 0.70 0.81 0.51
Loadings:
MR4 MR1 MR3 MR2
UTAUT_1 0.732
UTAUT_2 0.811
LDBDP_5 0.585
UTAUT_7 0.527
UTAUT_11 0.548
LDBDP_6 0.613
LDBDP_7 0.744
UTAUT_4 -0.601
UTAUT_5 0.854
UTAUT_9 0.687
LDBDP_2 0.657
LDBDP_3 0.732
UTAUT_3 0.497
UTAUT_6 0.404
UTAUT_8 0.480
UTAUT_10 0.451
LDBDP_1 0.489
LDBDP_4
LDBDP_8 0.456
MR4 MR1 MR3 MR2
SS loadings 2.513 2.513 2.253 1.348
Proportion Var 0.132 0.132 0.119 0.071
Cumulative Var 0.132 0.265 0.383 0.454
MR4 MR1 MR3 MR2
[1,] 1.03762326 -0.69396273 0.38238137 0.9066770105
[2,] 0.42175558 1.22593030 0.88626792 0.6450174299
[3,] -0.41824842 -1.34543639 0.30541006 0.7895925441
[4,] -3.03501623 -2.06951557 -2.36008145 1.0821168405
[5,] 0.29778941 1.09599358 -1.23273297 -0.0685897712
[6,] 0.71416280 -0.19924109 -1.83929476 -0.2658378116
[7,] -1.01061054 0.55815140 -0.50625433 -2.8977371386
[8,] -1.75208392 -0.86431295 -0.08990414 0.7566424858
[9,] 1.79810470 1.66961057 0.86706068 0.1335881097
[10,] -0.62418063 -0.74347623 -1.61785956 -1.1832702627
[11,] 0.70398121 0.61971998 1.04857617 0.3655970624
[12,] -0.55274402 -0.31655955 0.02978198 0.6899426448
[13,] 0.36377605 0.82992127 0.51710892 0.3499453499
[14,] -0.50841564 -1.32456814 -1.14980295 -1.0313184973
[15,] 1.05643204 0.03684593 0.51615076 -0.1955798940
[16,] -0.30113298 1.05694787 0.24272826 0.8612397564
[17,] -0.80366052 -0.21721145 0.22420090 -2.4006789459
[18,] -0.13368720 -0.60456474 0.30820421 -0.5976476201
[19,] 0.66540030 1.09441774 0.26502462 -0.0681079523
[20,] 1.03304908 1.28707851 0.85725361 -0.5279462790
[21,] -0.20463542 -0.22393782 -1.11008398 -0.7150797883
[22,] -0.99065315 0.84569944 0.31173269 -1.1467237444
[23,] -0.36968468 0.16084524 -2.14993569 0.8120744355
[24,] -0.01153636 -0.66074495 -0.34186780 -0.8742864578
[25,] -0.04961144 -0.25939267 0.99106823 0.7495927483
[26,] 1.04869284 1.28550419 1.14108000 0.2617876028
[27,] -0.09063656 -0.54701703 0.43223317 0.7386794159
[28,] 0.42751961 0.83047911 0.52038682 -0.1581045357
[29,] -0.27403603 -1.77832004 -0.61695596 0.2545059163
[30,] -0.35719441 -0.57749950 0.55767163 -1.2088988236
[31,] 1.39679771 -1.85555952 -1.61237797 1.0866226841
[32,] -0.05644894 -0.89555367 -1.26775828 -0.6109054936
[33,] -0.63360274 -0.42563799 0.49150434 0.5665095552
[34,] -0.07280599 -0.43155942 -0.28107370 1.0695385965
[35,] -0.55018739 0.48404329 -0.38783291 -0.3286454431
[36,] 0.23504737 -1.18140793 0.28269897 0.4454203857
[37,] -0.65460640 -0.15531624 0.20688134 -0.6808826589
[38,] 0.02150890 -0.48118850 0.25955262 0.0279616225
[39,] 1.79448629 1.56411132 0.93984981 0.2057769279
[40,] 1.62161482 1.15002609 0.08940142 0.6839586650
[41,] 1.56672277 0.92483756 1.24226324 -0.2070757338
[42,] -1.34371323 0.70310411 0.10103427 0.4486205351
[43,] -0.88210202 -0.08952680 -1.35489039 0.8830857343
[44,] 0.01714652 -0.61769188 0.42500210 -1.3602295974
[45,] -1.40400302 0.81320404 -1.52786872 0.6411731066
[46,] 0.35188067 0.11056511 -0.48964486 0.3709939553
[47,] 0.26942651 1.17111877 1.28524280 0.0001116584
[48,] -0.60040305 0.09799475 1.66996052 -0.2358104636
[49,] -0.58000950 -0.86322185 0.32342085 -0.0263334298
[50,] 0.40635734 -0.26529600 0.14421036 -0.0906882899
[51,] 0.90725459 0.05425571 1.20810008 0.9777811399
[52,] 0.87125544 0.67320647 0.61127143 1.0730033045
[53,] -0.76213538 -0.65589169 0.25150426 -0.9971785912
Factor Analysis using method = minres
Call: fa(r = BDP_kor, nfactors = 5)
Standardized loadings (pattern matrix) based upon correlation matrix
MR1 MR4 MR3 MR2 MR5 h2 u2 com
UTAUT_1 0.74 0.09 0.04 0.06 0.00 0.66 0.344 1.0
UTAUT_2 0.81 -0.07 -0.03 0.16 -0.05 0.67 0.335 1.1
UTAUT_3 0.51 0.04 0.27 0.13 -0.06 0.49 0.506 1.7
UTAUT_4 0.18 -0.06 -0.65 -0.05 -0.04 0.39 0.611 1.2
UTAUT_5 0.04 0.08 0.91 0.10 -0.02 0.92 0.079 1.0
UTAUT_6 -0.03 0.00 0.01 -0.01 0.86 0.74 0.258 1.0
UTAUT_7 0.18 0.31 -0.08 -0.15 0.36 0.33 0.672 3.0
UTAUT_8 0.50 0.18 0.02 -0.40 0.01 0.48 0.525 2.2
UTAUT_9 0.43 -0.06 0.63 -0.20 -0.09 0.78 0.225 2.1
UTAUT_10 0.08 0.49 0.20 -0.06 -0.38 0.55 0.447 2.3
UTAUT_11 0.17 0.60 -0.09 0.03 0.01 0.44 0.564 1.2
LDBDP_1 0.15 0.62 -0.26 0.17 -0.06 0.42 0.579 1.7
LDBDP_2 -0.10 0.07 0.07 0.63 -0.14 0.42 0.579 1.2
LDBDP_3 0.19 0.01 0.06 0.77 0.05 0.68 0.321 1.1
LDBDP_4 0.33 0.34 0.08 0.15 0.10 0.41 0.594 2.7
LDBDP_5 0.61 0.29 0.12 -0.07 0.04 0.69 0.312 1.6
LDBDP_6 -0.18 0.67 0.25 -0.14 -0.01 0.58 0.417 1.5
LDBDP_7 0.09 0.62 0.25 0.04 0.21 0.69 0.309 1.6
LDBDP_8 0.12 0.42 0.04 0.10 0.08 0.28 0.720 1.4
MR1 MR4 MR3 MR2 MR5
SS loadings 3.01 2.78 2.28 1.38 1.15
Proportion Var 0.16 0.15 0.12 0.07 0.06
Cumulative Var 0.16 0.30 0.43 0.50 0.56
Proportion Explained 0.28 0.26 0.22 0.13 0.11
Cumulative Proportion 0.28 0.55 0.76 0.89 1.00
With factor correlations of
MR1 MR4 MR3 MR2 MR5
MR1 1.00 0.41 0.35 0.13 -0.07
MR4 0.41 1.00 0.40 -0.01 0.09
MR3 0.35 0.40 1.00 -0.03 -0.15
MR2 0.13 -0.01 -0.03 1.00 -0.04
MR5 -0.07 0.09 -0.15 -0.04 1.00
Mean item complexity = 1.6
Test of the hypothesis that 5 factors are sufficient.
The degrees of freedom for the null model are 171 and the objective function was 9.84 with Chi Square of 441.13
The degrees of freedom for the model are 86 and the objective function was 1.71
The root mean square of the residuals (RMSR) is 0.05
The df corrected root mean square of the residuals is 0.06
The harmonic number of observations is 53 with the empirical chi square 38.26 with prob < 1
The total number of observations was 53 with Likelihood Chi Square = 71.13 with prob < 0.88
Tucker Lewis Index of factoring reliability = 1.125
RMSEA index = 0 and the 90 % confidence intervals are 0 0.04
BIC = -270.32
Fit based upon off diagonal values = 0.98
Measures of factor score adequacy
MR1 MR4 MR3 MR2 MR5
Correlation of (regression) scores with factors 0.94 0.92 0.97 0.88 0.89
Multiple R square of scores with factors 0.88 0.85 0.94 0.78 0.80
Minimum correlation of possible factor scores 0.76 0.69 0.89 0.56 0.60
Loadings:
MR1 MR4 MR3 MR2 MR5
UTAUT_1 0.744
UTAUT_2 0.808
UTAUT_3 0.508
UTAUT_8 0.502
LDBDP_5 0.613
UTAUT_11 0.601
LDBDP_1 0.618
LDBDP_6 0.670
LDBDP_7 0.620
UTAUT_4 -0.648
UTAUT_5 0.908
UTAUT_9 0.426 0.631
LDBDP_2 0.633
LDBDP_3 0.772
UTAUT_6 0.861
UTAUT_7
UTAUT_10 0.495
LDBDP_4
LDBDP_8 0.424
MR1 MR4 MR3 MR2 MR5
SS loadings 2.610 2.364 2.003 1.369 1.124
Proportion Var 0.137 0.124 0.105 0.072 0.059
Cumulative Var 0.137 0.262 0.367 0.439 0.498
MR1 MR4 MR3 MR2 MR5
[1,] 0.934289927 -0.38895082 0.14699999 0.80800425 -1.10505677
[2,] 0.523334321 0.98100864 1.22685168 0.70778901 0.48645454
[3,] -0.486853486 -1.20082364 0.37464023 0.82130525 -0.08467574
[4,] -3.036935993 -2.39627693 -1.96806228 1.16787304 0.31283292
[5,] 0.351573425 0.75418744 -1.03696664 0.10747697 1.47801634
[6,] 0.739953395 -0.66823564 -1.73539301 -0.03474148 1.16494649
[7,] -1.048909310 0.78163388 -0.78660287 -3.16717396 -0.14790392
[8,] -1.764713027 -0.79481445 -0.06335596 0.66954187 -0.73101500
[9,] 1.834351288 1.59851132 0.97138941 0.21151423 1.25928770
[10,] -0.676561453 -0.75454150 -1.70513773 -1.09496184 0.43743546
[11,] 0.687000650 0.72233604 1.06178415 0.26730067 -0.89792258
[12,] -0.503229973 -0.61591263 0.19973808 0.75748803 1.11095300
[13,] 0.345740644 1.12622493 0.24028968 0.28156694 -0.92016153
[14,] -0.575039902 -1.36874973 -0.99845967 -0.93814517 0.63027258
[15,] 1.094839397 -0.10643948 0.49378563 -0.19808176 -0.65272975
[16,] -0.256746548 1.02275070 0.25896349 0.84252764 0.54097450
[17,] -0.719710122 -0.44133115 0.45431287 -2.38534073 0.48608043
[18,] -0.168705646 -0.42335868 0.16680420 -0.66091192 -0.97187048
[19,] 0.721635830 0.94983106 0.37980972 0.01674351 1.06130978
[20,] 1.087331920 1.41486414 0.61718664 -0.50465249 -0.69831577
[21,] -0.205016369 -0.41747149 -1.01871751 -0.63682495 0.70998650
[22,] -0.877388243 0.60852815 0.51388537 -1.12394028 1.07492963
[23,] -0.395600816 -0.08338652 -2.02845681 0.94058792 1.71389805
[24,] -0.046144101 -0.49246944 -0.60609235 -0.90384254 -0.89088491
[25,] -0.061306711 -0.07560820 1.04930284 0.69687895 -1.11794333
[26,] 1.134923083 1.07952230 1.32815166 0.27897734 0.82607282
[27,] -0.173052665 -0.16644133 0.17527177 0.63445257 -1.18436462
[28,] 0.386446096 1.10909836 0.13949205 -0.37105759 -0.88951257
[29,] -0.315321259 -1.85273354 -0.59379034 0.34948170 -0.16980226
[30,] -0.341338980 -0.43721126 0.49108955 -1.25298674 -0.86465724
[31,] 1.194476320 -1.45559805 -2.09453801 1.09821923 -1.31810109
[32,] -0.099142851 -0.90516792 -1.53284564 -0.64479938 0.23556363
[33,] -0.642830621 -0.26870839 0.37915576 0.50013347 -0.99201274
[34,] -0.111015881 -0.34767741 -0.16506194 1.08506094 0.26899862
[35,] -0.472725486 0.09414585 -0.10681631 -0.30867389 0.92175620
[36,] 0.205284614 -1.18558681 0.26462134 0.39688834 -0.97501306
[37,] -0.630887931 -0.27850480 0.29958073 -0.76070110 0.32386910
[38,] -0.007523508 -0.34758218 0.19908631 0.08495569 -0.86686809
[39,] 1.814789439 1.56695090 0.96169885 0.24768531 0.81509134
[40,] 1.607033482 1.24119245 -0.10469312 0.63078269 -0.76107221
[41,] 1.636545690 0.83350774 1.30547939 -0.15094327 -0.66850546
[42,] -1.322683555 0.72905759 0.12010288 0.35437629 0.49909204
[43,] -0.861076613 -0.30817770 -1.06906397 1.01260219 0.62828446
[44,] 0.120893455 -0.89816285 0.60824994 -1.21799948 0.47463114
[45,] -1.474948717 1.18965924 -1.87336389 0.54984941 0.48883992
[46,] 0.289234088 0.36707242 -0.86789802 0.33686314 -0.83791968
[47,] 0.385628882 0.92280553 1.59069784 0.10873610 1.07319267
[48,] -0.619993076 0.52413217 1.42748605 -0.48513497 -1.39018507
[49,] -0.623426147 -0.66413773 0.20475967 -0.18707830 -1.12869601
[50,] 0.393125600 -0.33247453 0.26618453 0.03599806 0.69045976
[51,] 0.841295546 0.47048251 1.04783683 0.89655983 -1.22912968
[52,] 0.929490820 0.36459579 0.97565475 1.12296660 0.92793419
[53,] -0.740388924 -0.77556436 0.41497217 -0.99319535 0.85315573
Reliability analysis
Call: psych::alpha(x = BDP_aut, check.keys = TRUE)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.69 0.81 0.86 0.27 4.2 0.067 3.5 0.52 0.3
95% confidence boundaries
lower alpha upper
Feldt 0.55 0.69 0.80
Duhachek 0.56 0.69 0.82
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
UTAUT_1 0.66 0.78 0.84 0.26 3.5 0.074 0.041 0.30
UTAUT_2 0.66 0.79 0.84 0.27 3.7 0.074 0.041 0.33
UTAUT_3 0.64 0.77 0.84 0.25 3.4 0.078 0.043 0.30
UTAUT_4- 0.68 0.81 0.86 0.29 4.2 0.071 0.040 0.33
UTAUT_5 0.63 0.77 0.83 0.25 3.4 0.082 0.038 0.30
UTAUT_6- 0.77 0.83 0.87 0.32 4.8 0.049 0.029 0.34
UTAUT_7 0.75 0.82 0.86 0.31 4.5 0.053 0.034 0.33
UTAUT_8 0.65 0.79 0.84 0.27 3.7 0.076 0.044 0.30
UTAUT_9 0.62 0.77 0.82 0.25 3.3 0.082 0.038 0.30
UTAUT_10 0.63 0.78 0.84 0.26 3.5 0.080 0.046 0.25
UTAUT_11 0.66 0.79 0.85 0.28 3.8 0.073 0.046 0.30
Item statistics
n raw.r std.r r.cor r.drop mean sd
UTAUT_1 53 0.60 0.69 0.67 0.538 4.3 0.54
UTAUT_2 53 0.54 0.61 0.58 0.446 3.8 0.72
UTAUT_3 53 0.69 0.72 0.69 0.615 4.0 0.71
UTAUT_4- 53 0.48 0.45 0.39 0.292 1.6 1.23
UTAUT_5 53 0.72 0.73 0.73 0.630 3.8 0.93
UTAUT_6- 53 0.32 0.23 0.14 0.014 3.0 1.78
UTAUT_7 53 0.37 0.32 0.23 0.074 2.2 1.71
UTAUT_8 53 0.59 0.62 0.58 0.484 3.2 0.86
UTAUT_9 53 0.76 0.78 0.79 0.685 3.8 0.86
UTAUT_10 53 0.71 0.69 0.65 0.618 4.1 0.86
UTAUT_11 53 0.53 0.57 0.50 0.443 4.3 0.62
Non missing response frequency for each item
0 1 2 3 4 5 miss
UTAUT_1 0.00 0.00 0.00 0.04 0.62 0.34 0
UTAUT_2 0.00 0.00 0.04 0.26 0.57 0.13 0
UTAUT_3 0.00 0.00 0.02 0.17 0.57 0.25 0
UTAUT_4 0.00 0.06 0.25 0.17 0.32 0.21 0
UTAUT_5 0.00 0.00 0.13 0.15 0.51 0.21 0
UTAUT_6 0.42 0.00 0.06 0.28 0.21 0.04 0
UTAUT_7 0.30 0.02 0.17 0.21 0.25 0.06 0
UTAUT_8 0.00 0.02 0.21 0.42 0.32 0.04 0
UTAUT_9 0.00 0.02 0.06 0.21 0.55 0.17 0
UTAUT_10 0.00 0.00 0.06 0.13 0.43 0.38 0
UTAUT_11 0.00 0.00 0.00 0.09 0.55 0.36 0
Split half reliabilities
Call: splitHalf(r = BDP_aut)
Maximum split half reliability (lambda 4) = 0.91
Guttman lambda 6 = 0.86
Average split half reliability = 0.81
Guttman lambda 3 (alpha) = 0.81
Guttman lambda 2 = 0.82
Minimum split half reliability (beta) = 0.62
Average interitem r = 0.27 with median = 0.3
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = BDP_aut)
Overall MSA = 0.73
MSA for each item =
UTAUT_1 UTAUT_2 UTAUT_3 UTAUT_4 UTAUT_5 UTAUT_6 UTAUT_7 UTAUT_8
0.80 0.73 0.85 0.72 0.72 0.42 0.60 0.69
UTAUT_9 UTAUT_10 UTAUT_11
0.74 0.74 0.80
Factor Analysis using method = minres
Call: fa(r = BDP_aut, nfactors = 2)
Standardized loadings (pattern matrix) based upon correlation matrix
MR1 MR2 h2 u2 com
UTAUT_1 0.47 0.38 0.47 0.53 1.9
UTAUT_2 0.42 0.31 0.34 0.66 1.8
UTAUT_3 0.59 0.22 0.48 0.52 1.3
UTAUT_4 -0.50 0.16 0.23 0.77 1.2
UTAUT_5 0.85 -0.12 0.68 0.32 1.0
UTAUT_6 -0.36 0.36 0.18 0.82 2.0
UTAUT_7 -0.13 0.67 0.41 0.59 1.1
UTAUT_8 0.32 0.47 0.41 0.59 1.8
UTAUT_9 0.82 0.02 0.69 0.31 1.0
UTAUT_10 0.60 0.05 0.38 0.62 1.0
UTAUT_11 0.23 0.46 0.33 0.67 1.5
MR1 MR2
SS loadings 3.17 1.44
Proportion Var 0.29 0.13
Cumulative Var 0.29 0.42
Proportion Explained 0.69 0.31
Cumulative Proportion 0.69 1.00
With factor correlations of
MR1 MR2
MR1 1.00 0.29
MR2 0.29 1.00
Mean item complexity = 1.4
Test of the hypothesis that 2 factors are sufficient.
The degrees of freedom for the null model are 55 and the objective function was 4.5 with Chi Square of 213.55
The degrees of freedom for the model are 34 and the objective function was 1.28
The root mean square of the residuals (RMSR) is 0.09
The df corrected root mean square of the residuals is 0.11
The harmonic number of observations is 53 with the empirical chi square 46.16 with prob < 0.08
The total number of observations was 53 with Likelihood Chi Square = 58.98 with prob < 0.005
Tucker Lewis Index of factoring reliability = 0.735
RMSEA index = 0.116 and the 90 % confidence intervals are 0.065 0.169
BIC = -76.01
Fit based upon off diagonal values = 0.93
Measures of factor score adequacy
MR1 MR2
Correlation of (regression) scores with factors 0.94 0.84
Multiple R square of scores with factors 0.88 0.70
Minimum correlation of possible factor scores 0.76 0.40
Loadings:
MR1 MR2
UTAUT_3 0.594
UTAUT_5 0.851
UTAUT_9 0.824
UTAUT_10 0.601
UTAUT_7 0.669
UTAUT_1 0.471
UTAUT_2 0.418
UTAUT_4 -0.497
UTAUT_6
UTAUT_8 0.471
UTAUT_11 0.461
MR1 MR2
SS loadings 3.065 1.340
Proportion Var 0.279 0.122
Cumulative Var 0.279 0.400
MR1 MR2
[1,] 0.60569742 -0.557213489
[2,] 0.55282567 0.423425277
[3,] -0.12134235 -1.194404986
[4,] -2.97973004 -1.786977946
[5,] -0.82526324 0.725389380
[6,] -1.25031664 0.771796484
[7,] -0.74079753 0.561383589
[8,] -0.71239120 -1.584746481
[9,] 1.39066949 2.051080601
[10,] -1.50915702 0.040913867
[11,] 1.16182726 0.926028860
[12,] -0.17760748 -0.884670131
[13,] 0.68525506 -0.174399372
[14,] -1.00527835 0.362072430
[15,] 0.80516604 1.002932089
[16,] 0.07860924 -0.027151365
[17,] -0.09373261 0.006230525
[18,] 0.16725242 -0.876738647
[19,] 0.46708476 0.744771949
[20,] 0.98497590 0.978911835
[21,] -0.96178768 0.188645632
[22,] -0.30843627 -0.285525519
[23,] -1.75103543 0.939271638
[24,] -0.24777302 -0.270565151
[25,] 0.78982606 -0.037845544
[26,] 1.42275686 1.212918648
[27,] 0.34706229 -0.900758901
[28,] 0.68413832 -0.189986591
[29,] -0.50351543 0.056662410
[30,] 0.08000130 -0.662583924
[31,] -0.46164671 0.234637995
[32,] -1.00922100 -0.365274338
[33,] 0.13215445 -1.093068113
[34,] -0.11379647 0.133075907
[35,] -0.58712611 -0.494957241
[36,] 0.29595101 -0.751499567
[37,] -0.01096343 -0.168028320
[38,] 0.20106084 -0.639223773
[39,] 1.45581340 1.758365716
[40,] 0.83086055 1.336758103
[41,] 1.57810362 1.333624232
[42,] -0.29510114 -0.209055635
[43,] -1.58853450 -0.361112709
[44,] 0.36502570 0.281023537
[45,] -1.61349401 -0.085815091
[46,] -0.13311741 0.328578432
[47,] 0.81098080 0.638442387
[48,] 1.15855998 -0.949213268
[49,] -0.16982361 -1.587510957
[50,] 0.30770228 0.042284910
[51,] 1.22594035 -0.135033452
[52,] 0.60423729 -0.029575671
[53,] -0.01854969 -0.776290250
Factor Analysis using method = minres
Call: fa(r = BDP_aut, nfactors = 3)
Standardized loadings (pattern matrix) based upon correlation matrix
MR1 MR3 MR2 h2 u2 com
UTAUT_1 0.09 0.71 0.09 0.60 0.40 1.1
UTAUT_2 -0.06 0.83 -0.02 0.65 0.35 1.0
UTAUT_3 0.35 0.46 0.07 0.48 0.52 1.9
UTAUT_4 -0.76 0.29 -0.04 0.49 0.51 1.3
UTAUT_5 0.86 0.06 -0.03 0.77 0.23 1.0
UTAUT_6 -0.14 -0.24 0.49 0.28 0.72 1.6
UTAUT_7 -0.03 0.02 0.81 0.66 0.34 1.0
UTAUT_8 0.19 0.35 0.33 0.38 0.62 2.5
UTAUT_9 0.65 0.31 -0.02 0.67 0.33 1.4
UTAUT_10 0.46 0.25 0.01 0.38 0.62 1.6
UTAUT_11 0.21 0.21 0.39 0.33 0.67 2.1
MR1 MR3 MR2
SS loadings 2.37 2.09 1.21
Proportion Var 0.22 0.19 0.11
Cumulative Var 0.22 0.41 0.52
Proportion Explained 0.42 0.37 0.21
Cumulative Proportion 0.42 0.79 1.00
With factor correlations of
MR1 MR3 MR2
MR1 1.00 0.40 0.11
MR3 0.40 1.00 0.19
MR2 0.11 0.19 1.00
Mean item complexity = 1.5
Test of the hypothesis that 3 factors are sufficient.
The degrees of freedom for the null model are 55 and the objective function was 4.5 with Chi Square of 213.55
The degrees of freedom for the model are 25 and the objective function was 0.72
The root mean square of the residuals (RMSR) is 0.05
The df corrected root mean square of the residuals is 0.08
The harmonic number of observations is 53 with the empirical chi square 17.47 with prob < 0.86
The total number of observations was 53 with Likelihood Chi Square = 32.59 with prob < 0.14
Tucker Lewis Index of factoring reliability = 0.888
RMSEA index = 0.073 and the 90 % confidence intervals are 0 0.143
BIC = -66.67
Fit based upon off diagonal values = 0.97
Measures of factor score adequacy
MR1 MR3 MR2
Correlation of (regression) scores with factors 0.93 0.91 0.86
Multiple R square of scores with factors 0.87 0.82 0.74
Minimum correlation of possible factor scores 0.74 0.65 0.47
Loadings:
MR1 MR3 MR2
UTAUT_4 -0.758
UTAUT_5 0.857
UTAUT_9 0.648
UTAUT_1 0.713
UTAUT_2 0.829
UTAUT_7 0.809
UTAUT_3 0.456
UTAUT_6 0.487
UTAUT_8
UTAUT_10 0.463
UTAUT_11
MR1 MR3 MR2
SS loadings 2.179 1.877 1.172
Proportion Var 0.198 0.171 0.107
Cumulative Var 0.198 0.369 0.475
MR1 MR3 MR2
[1,] 0.02010009 1.16922230 -1.32523624
[2,] 0.86206340 0.23762453 0.77814036
[3,] 0.33207997 -0.68254446 -1.02323973
[4,] -2.32474022 -2.84652499 -0.87673957
[5,] -0.85537045 -0.12847200 0.87211481
[6,] -1.74903187 0.30929513 0.53489027
[7,] -0.54895128 -0.63011002 0.94755896
[8,] -0.31789997 -1.41917975 -0.95372125
[9,] 0.84468620 1.82587873 1.66551256
[10,] -1.42709197 -0.91510779 0.17816212
[11,] 1.45734393 0.74294116 0.92903979
[12,] 0.03530989 -0.85150906 -0.79141832
[13,] 0.46743746 0.69206146 -0.80646404
[14,] -1.08063634 -0.22690694 0.42721920
[15,] 0.49540496 0.98538025 0.88370769
[16,] 0.33283078 -0.27562655 0.34687410
[17,] 0.36758550 -0.82980675 0.72935673
[18,] 0.06069841 0.06394563 -1.22195094
[19,] 0.48295258 0.43014256 0.72960835
[20,] 0.74870870 0.97503460 0.87614877
[21,] -1.12868328 -0.18071852 0.25163079
[22,] 0.11103088 -0.96693602 0.37215382
[23,] -1.80023084 -0.51359353 1.36837351
[24,] -0.51988742 0.10585772 -0.40487461
[25,] 1.08028822 0.11118249 0.30847312
[26,] 1.58590179 0.76921467 1.27597496
[27,] 0.31400214 0.05359997 -1.22950986
[28,] 0.72652217 0.34540188 -0.76877004
[29,] -0.51486288 -0.17652812 0.23850918
[30,] 0.10931022 -0.49345353 -0.28048260
[31,] -1.48845504 1.38856852 -1.02584300
[32,] -1.36741282 -0.26724177 -0.35200463
[33,] 0.49310422 -0.71457150 -1.06185234
[34,] -0.22008016 -0.02998291 0.39167350
[35,] -0.45081210 -0.43127062 -0.30252692
[36,] -0.02612636 0.51739844 -1.27802406
[37,] 0.44262272 -0.72915605 0.12360873
[38,] 0.28431880 0.05724281 -1.02443009
[39,] 0.88388806 1.86436112 1.19578712
[40,] 0.29576911 1.67072389 0.78274868
[41,] 1.43514722 1.59494366 1.18634166
[42,] 0.21068014 -0.91363779 0.30439734
[43,] -1.33966559 -1.13094403 -0.06853394
[44,] 0.33947880 -0.22376986 0.49382089
[45,] -1.57004365 -1.46591299 0.43591894
[46,] -0.50495585 0.40721400 -0.04620102
[47,] 1.23052319 0.02760278 1.07638803
[48,] 1.52060093 -0.38507282 -0.92590164
[49,] -0.35182161 -0.22785628 -1.68269076
[50,] 0.35687857 0.34064526 -0.45096957
[51,] 0.93655719 0.96435101 -0.87501875
[52,] 0.51939360 0.76817151 -0.17744515
[53,] 0.20353985 -0.76157143 -0.75028490
Factor Analysis using method = minres
Call: fa(r = BDP_aut, nfactors = 4)
Standardized loadings (pattern matrix) based upon correlation matrix
MR1 MR3 MR4 MR2 h2 u2 com
UTAUT_1 0.10 0.58 0.23 -0.02 0.57 0.4315 1.4
UTAUT_2 -0.01 0.95 -0.04 0.01 0.86 0.1372 1.0
UTAUT_3 0.33 0.36 0.19 -0.06 0.47 0.5274 2.6
UTAUT_4 -0.72 0.25 -0.01 -0.06 0.45 0.5452 1.2
UTAUT_5 0.93 0.06 -0.04 0.02 0.86 0.1353 1.0
UTAUT_6 0.03 0.01 0.02 1.01 1.00 -0.0025 1.0
UTAUT_7 -0.13 -0.01 0.58 0.28 0.41 0.5902 1.6
UTAUT_8 0.05 0.15 0.56 -0.03 0.43 0.5696 1.2
UTAUT_9 0.63 0.23 0.12 -0.07 0.66 0.3380 1.4
UTAUT_10 0.31 0.00 0.39 -0.31 0.46 0.5372 2.9
UTAUT_11 0.02 -0.02 0.66 -0.02 0.44 0.5593 1.0
MR1 MR3 MR4 MR2
SS loadings 2.18 1.68 1.55 1.23
Proportion Var 0.20 0.15 0.14 0.11
Cumulative Var 0.20 0.35 0.49 0.60
Proportion Explained 0.33 0.25 0.23 0.19
Cumulative Proportion 0.33 0.58 0.81 1.00
With factor correlations of
MR1 MR3 MR4 MR2
MR1 1.00 0.33 0.39 -0.18
MR3 0.33 1.00 0.40 -0.15
MR4 0.39 0.40 1.00 0.07
MR2 -0.18 -0.15 0.07 1.00
Mean item complexity = 1.5
Test of the hypothesis that 4 factors are sufficient.
The degrees of freedom for the null model are 55 and the objective function was 4.5 with Chi Square of 213.55
The degrees of freedom for the model are 17 and the objective function was 0.43
The root mean square of the residuals (RMSR) is 0.04
The df corrected root mean square of the residuals is 0.07
The harmonic number of observations is 53 with the empirical chi square 7.69 with prob < 0.97
The total number of observations was 53 with Likelihood Chi Square = 19.33 with prob < 0.31
Tucker Lewis Index of factoring reliability = 0.949
RMSEA index = 0.047 and the 90 % confidence intervals are 0 0.14
BIC = -48.16
Fit based upon off diagonal values = 0.99
Loadings:
MR1 MR3 MR4 MR2
UTAUT_4 -0.718
UTAUT_5 0.927
UTAUT_9 0.628
UTAUT_1 0.580
UTAUT_2 0.948
UTAUT_7 0.583
UTAUT_8 0.558
UTAUT_11 0.664
UTAUT_6 1.006
UTAUT_3
UTAUT_10
MR1 MR3 MR4 MR2
SS loadings 2.005 1.504 1.356 1.201
Proportion Var 0.182 0.137 0.123 0.109
Cumulative Var 0.182 0.319 0.442 0.551
MR1 MR3 MR4 MR2
[1,] 0.10705833 1.411616811 -0.58748752 -1.10658666
[2,] 1.07751100 0.324417618 0.20534442 0.36658860
[3,] 0.39731535 -0.103426055 -1.02077156 0.52085204
[4,] -2.20543820 -2.640469052 -2.17742969 0.04835371
[5,] -0.88580326 0.136885067 0.29347754 1.17493609
[6,] -1.74742796 0.412479000 -0.33434186 0.54141217
[7,] -0.75876874 -1.021816517 0.85159029 -0.01279370
[8,] -0.20319249 -1.263840101 -1.50549923 -0.97120532
[9,] 0.98272374 1.790812616 1.96568564 1.66876649
[10,] -1.56932754 -0.967841694 -0.31155748 0.57156110
[11,] 1.36629769 0.447498564 1.21295037 -1.29912356
[12,] 0.22029796 -0.854152016 -1.04762077 1.24130820
[13,] 0.38991473 0.389879667 0.25461323 -1.16979151
[14,] -1.00895731 0.110978898 -0.01875794 1.12547870
[15,] 0.38461749 0.591881723 1.03271711 -1.24190463
[16,] 0.28741428 0.006576208 0.09887471 0.58856111
[17,] 0.31716927 -1.004419832 0.11183401 0.56281260
[18,] 0.12785747 0.228314916 -0.74044864 -1.07595473
[19,] 0.41079368 0.272973365 0.92414577 1.07123943
[20,] 0.52484515 0.506325408 1.27670760 -1.21741744
[21,] -1.04039851 0.159717198 -0.42443276 0.62518096
[22,] 0.18598758 -1.041183741 -0.14758829 1.08987245
[23,] -1.90703577 -0.089847071 0.15151047 1.78685024
[24,] -0.67269991 0.187286602 -0.35330990 -1.02601412
[25,] 1.07823053 0.162582231 0.19790839 -1.11475833
[26,] 1.51486195 0.475197930 1.56362897 1.04825332
[27,] 0.26808513 0.142758601 -0.49645815 -1.05146754
[28,] 0.51369037 0.273613812 0.42231479 -1.03946863
[29,] -0.60943781 0.151287608 -0.34438421 0.03526473
[30,] 0.08617615 -0.924877046 -0.43976153 -1.03629783
[31,] -1.65425950 1.545216115 -0.38312597 -0.97156993
[32,] -1.53128147 0.039469462 -0.77024186 0.70056107
[33,] 0.43210502 -0.934157929 -0.66202137 -1.11649305
[34,] -0.16902486 0.044108272 0.03566436 0.74194380
[35,] -0.18653365 0.063110418 -0.92825228 0.57401316
[36,] 0.14042800 0.450390428 -0.97565474 -1.17161430
[37,] 0.40770413 -0.902571396 0.07137877 0.54924784
[38,] 0.29409503 0.266110182 -0.47647804 -1.14199598
[39,] 1.01346459 1.811092527 1.75901850 1.10481077
[40,] 0.18579005 1.632996264 1.21723599 -1.15616814
[41,] 1.34114087 1.626470737 1.42452086 -1.25719228
[42,] 0.17830621 -1.106475476 0.06582675 0.58590684
[43,] -1.16110895 -1.054583314 -0.79438478 0.52123078
[44,] 0.32904708 -0.629560927 0.28561376 0.67023288
[45,] -1.82924566 -2.309420935 0.24432261 0.72893839
[46,] -0.69409106 0.328022303 0.41036357 -1.04868066
[47,] 1.28269609 0.245618788 0.90004224 1.04138554
[48,] 1.44163887 -0.868668337 0.13838498 -1.10974032
[49,] -0.11774776 0.097459705 -1.65922157 -1.08795364
[50,] 0.45031366 0.412068681 -0.01057474 1.02972774
[51,] 1.04865471 0.537809637 0.34012807 -1.12812934
[52,] 0.88668292 1.366664139 -0.39851232 1.02010152
[53,] 0.27886534 -0.932380062 -0.44748657 1.21692936
---
title: "BDP"
output:
flexdashboard::flex_dashboard:
social: menu
orientation: columns
vertical_layout: fill
source_code: embed
---
```{css, echo=FALSE}
.sidebar { overflow: auto; }
.dataTables_scrollBody {
height:95% !important;
max-height:95% !important;
}
.chart-stage-flex {
overflow:auto !important;
}
```
```{r setup, include=FALSE}
library(flexdashboard)
library(psych)
library(tidyverse)
library(readxl)
library(knitr)
library(kableExtra)
library(corrplot)
library(ClustOfVar)
library(cluster)
library(dendextend)
library(factoextra)
library(circlize)
library(NbClust)
library(gridExtra)
BDP <- read_excel("BDP_po_sudionicima.xlsx") %>%
rename(Osoba = `Puno ime`) %>%
select(-c(3,4,24:30,39,40))
imena <- names(BDP)
BDP <- BDP %>% rename_with(.fn = ~paste0("UTAUT_", which(imena[3:13] == .)), .cols = 3:13) %>%
rename_with(.fn = ~paste0("LDBDP_", which(imena[14:21] == .)), .cols = 14:21) %>%
rename_with(.fn = ~paste0("Q", which(imena[22:29] == .)), .cols = 22:29) %>%
mutate_at(vars(UTAUT_1:LDBDP_8), factor,
levels = c("I do not know", "Strongly disagree",
"Disagree", "Neither agree nor disagree",
"Agree", "Strongly agree")) %>%
mutate(Q2 = case_when(
Q2 == "curriculum developers\neducational decision-makers\nresearcher\nteacher" ~
"curriculum developers, educational decision-makers\nresearcher, teacher",
Q2 == "curriculum developers\neducational decision-makers\ninstructional designer, learning designer\nresearcher\nteacher" ~
"curriculum developers, educational decision-makers\ninstructional designer, learning designer, researcher, teacher",
Q2 == "instructional designer, learning designer\nresearcher\nteacher" ~
"instructional designer, learning designer\nresearcher, teacher",
Q2 == "curriculum developers\ninstructional designer, learning designer\nresearcher\nteacher" ~
"curriculum developers, instructional designer\nlearning designer, researcher, teacher",
Q2 == "instructional designer, learning designer\nresearcher\nteacher\ntechnical expert" ~
"instructional designer, learning designer\nresearcher, teacher, technical expert",
Q2 == "educational decision-makers\ninstructional designer, learning designer\nresearcher\nteacher\ntechnical expert" ~
"educational decision-makers, instructional designer\nlearning designer, researcher, teacher, technical expert",
.default = Q2
))
kodovi_varijable <- data.frame(varijabla=names(BDP)[-(1:2)], opis=imena[-(1:2)])
likert <- data.frame(Opis = c("I do not know", "Strongly disagree",
"Disagree", "Neither agree nor disagree",
"Agree", "Strongly agree"),
`Numerički kod` = 0:5)
pvalues_stars <- data.frame(interval = c("[0, 0.001)", "[0.001, 0.01)", "[0.01, 0.05)"),
oznaka = c('***', '**', '\\*'))
tablica_UTAUT <- BDP %>% select(Osoba, UTAUT_1:UTAUT_11) %>%
pivot_longer(UTAUT_1:UTAUT_11, names_to = "varijabla", values_to = "odgovor")
tablica_LDBDP <- BDP %>% select(Osoba, LDBDP_1:LDBDP_8) %>%
pivot_longer(LDBDP_1:LDBDP_8, names_to = "varijabla", values_to = "odgovor")
BDP_kor <- BDP %>% select(UTAUT_1:LDBDP_8) %>%
mutate_all(~case_when(
. == "I do not know" ~ 0,
. == "Strongly disagree" ~ 1,
. == "Disagree" ~ 2,
. == "Neither agree nor disagree" ~ 3,
. == "Agree" ~ 4,
. == "Strongly agree" ~ 5
))
kor_holm <- corr.test(BDP_kor, method = "kendall", adjust = "holm")
kor_none <- corr.test(BDP_kor, method = "kendall", adjust = "none")
par_var1 <- as_tibble(kor_holm$ci, rownames = "parovi varijabli") %>%
select(`parovi varijabli`)
par_var2 <- as_tibble(kor_holm$ci2) %>%
select(korelacija = r, `p-value (Holm)` = p.adj, `p-value (bez korekcije)` = p)
par_var <- par_var1 %>% bind_cols(par_var2) %>% arrange(desc(abs(korelacija)))
BDP_klast <- BDP %>% select(UTAUT_1:LDBDP_8)
X_quanti <- PCAmixdata::splitmix(BDP_klast)$X.quanti
X_quali <- PCAmixdata::splitmix(BDP_klast)$X.quali
tree <- hclustvar(X_quanti, X_quali)
stab <- readRDS("stability.rds")
matCR <- as_tibble(stab$matCR) %>%
pivot_longer(everything(), names_to = "varijabla", values_to = "vrijednost")
P3 <- cutreevar(tree, 3, matsim = TRUE)
P4 <- cutreevar(tree, 4, matsim = TRUE)
P5 <- cutreevar(tree, 5, matsim = TRUE)
P6 <- cutreevar(tree, 6, matsim = TRUE)
P7 <- cutreevar(tree, 7, matsim = TRUE)
udaljenost <- daisy(BDP_klast, metric = c("gower"))
hc_ward <- hclust(udaljenost, method = "ward.D2")
ward_dend <- as.dendrogram(hc_ward)
ward_dend_color3 <- color_branches(ward_dend, k=3,
col=c("#00BA38","#F8766D","#619CFF"))
ward_dend_color4 <- color_branches(ward_dend, k=4,
col=c("#7CAE00","#F8766D","#C77CFF","#00BFC4"))
ward_dend_color5 <- color_branches(ward_dend, k=5,
col=c("#A3A500","#E76BF3","#F8766D","#00B0F6","#00BF7D"))
info <- NbClust(diss = udaljenost, distance = NULL,
method = "ward.D2", index = "silhouette")
info_tib <- info$All.index %>% as_tibble(rownames = "broj") %>%
mutate_at(vars(broj), as.numeric)
klasteri3 <- cutree(hc_ward, k = 3)
klasteri4 <- cutree(hc_ward, k = 4)
klasteri5 <- cutree(hc_ward, k = 5)
BDP_cluster3 <- BDP_klast %>% mutate(Cluster = klasteri3)
BDP_cluster4 <- BDP_klast %>% mutate(Cluster = klasteri4)
BDP_cluster5 <- BDP_klast %>% mutate(Cluster = klasteri5)
sil3 <- silhouette(BDP_cluster3$Cluster, udaljenost)
sil4 <- silhouette(BDP_cluster4$Cluster, udaljenost)
sil5 <- silhouette(BDP_cluster5$Cluster, udaljenost)
klaster4_UTAUT <- BDP_cluster4 %>% select(UTAUT_1:UTAUT_11, Cluster) %>%
pivot_longer(UTAUT_1:UTAUT_11, names_to = "varijabla", values_to = "odgovor")
klaster4_LDBDP <- BDP_cluster4 %>% select(LDBDP_1:LDBDP_8, Cluster) %>%
pivot_longer(LDBDP_1:LDBDP_8, names_to = "varijabla", values_to = "odgovor")
BDP_cluster4_deskriptiva <- BDP %>% select(Q1:Q8) %>% mutate(Cluster = klasteri4)
EFA_model3 <- fa(BDP_kor, nfactors = 3)
EFA_model4 <- fa(BDP_kor, nfactors = 4)
EFA_model5 <- fa(BDP_kor, nfactors = 5)
BDP_aut <- BDP_kor %>% select(UTAUT_1:UTAUT_11)
EFAaut_model2 <- fa(BDP_aut, nfactors = 2)
EFAaut_model3 <- fa(BDP_aut, nfactors = 3)
EFAaut_model4 <- fa(BDP_aut, nfactors = 4)
```
Informacije {data-navmenu="Deskriptiva"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Opis varijabli
```{r}
kodovi_varijable %>%
kbl(caption = "Opis varijabli") %>%
kable_classic("hover",full_width = F, html_font = "Cambria")
```
Column 2
-----------------------------------------------------------------------
### Likert skala
```{r}
likert %>%
kbl(caption = "Kodiranje Likertove skale") %>%
kable_classic("hover",full_width = F, html_font = "Cambria")
```
### Zvjezdica oznake za p-vrijednosti
```{r}
pvalues_stars %>%
kbl(caption = "Oznake za p-vrijednosti ako je $\\alpha=0.05$") %>%
kable_classic("hover",full_width = F, html_font = "Cambria")
```
UTAUT, LDBDP frekvencije {data-navmenu="Deskriptiva"}
=======================================================================
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Frekvencije varijabli UTAUT
```{r}
ggplot(tablica_UTAUT, aes(x = odgovor)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
facet_wrap(vars(fct_relevel(factor(varijabla), "UTAUT_10", "UTAUT_11", after = 9))) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
coord_flip() + ylim(0,38)
```
### Frekvencije varijabli LDBDP
```{r}
ggplot(tablica_LDBDP, aes(x = odgovor)) +
geom_bar(fill="#F8766D", alpha = 0.9) + facet_wrap(vars(varijabla)) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
scale_x_discrete(drop = FALSE) +
coord_flip() + ylim(0,39)
```
Q1, Q8, Q4, Q5 frekvencije {data-navmenu="Deskriptiva"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Frekvencije varijable Q1
```{r}
ggplot(BDP, aes(x = Q1)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
coord_flip() + ylim(0,15) +
theme(
axis.title = element_text(size = 12),
axis.text = element_text(size = 12)
)
```
### Frekvencije varijable Q4
```{r}
ggplot(BDP, aes(x = Q4)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
coord_flip() + ylim(0,38) +
theme(
axis.title = element_text(size = 14),
axis.text = element_text(size = 14)
)
```
Column 2
-----------------------------------------------------------------------
### Frekvencije varijable Q8
```{r}
ggplot(BDP, aes(x = Q8)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
coord_flip() + ylim(0,18) +
theme(
axis.title = element_text(size = 14),
axis.text = element_text(size = 14)
)
```
### Frekvencije varijable Q5
```{r}
ggplot(BDP, aes(x = Q5)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 5) +
coord_flip() + ylim(0,22) +
theme(
axis.title = element_text(size = 14),
axis.text = element_text(size = 14)
)
```
Q3, Q7 frekvencije {data-navmenu="Deskriptiva"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Frekvencije varijable Q3
```{r}
ggplot(BDP, aes(x = Q3)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3.5) +
coord_flip()
```
Column 2
-----------------------------------------------------------------------
### Frekvencije varijable Q7
```{r}
ggplot(BDP, aes(x = Q7)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3.5) +
coord_flip()
```
Q2, Q6 frekvencije {data-navmenu="Deskriptiva"}
=======================================================================
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Frekvencije varijable Q2
```{r}
ggplot(BDP, aes(x = Q2)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
coord_flip() + ylim(0,15) +
theme(axis.text.y=element_text(size=rel(0.8)))
```
### Frekvencije varijable Q6
```{r}
ggplot(BDP, aes(x = Q6)) + geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
coord_flip() + ylim(0,20) +
theme(axis.text.y=element_text(size=rel(0.6)))
```
Korelacije {data-navmenu="Deskriptiva"}
=======================================================================
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Korelacije (Kendall)
```{r}
corrplot.mixed(kor_none$r, tl.col = "black", tl.srt = 90, tl.pos="lt",
mar=c(0,0,0.1,0), tl.cex=0.5, number.cex = 0.5)
```
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Značajnost (Holm korekcija)
```{r}
corrplot(kor_holm$r, p.mat = kor_holm$p, insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05),
type = "upper", diag = FALSE, tl.cex=0.5, tl.col = "black",
pch.cex = 0.65)
```
### Značajnost (bez korekcije)
```{r}
corrplot(kor_none$r, p.mat = kor_none$p, insig = 'label_sig', sig.level = c(0.001, 0.01, 0.05),
type = "upper", diag = FALSE, tl.cex=0.5, tl.col = "black",
pch.cex = 0.65)
```
### p-vrijednosti (tablica)
```{r}
par_var %>%
kbl(caption = "**p-vrijednosti:** tablica je sortirana silazno s obzirom na apsolutne vrijednosti korelacija") %>%
kable_classic("hover",full_width = F, html_font = "Cambria")
```
Dendrogram {data-navmenu="Klasteriranje varijabli"}
=======================================================================
Column
-----------------------------------------------------------------------
### Dendrogram
```{r}
plot(tree, cex=0.8)
```
Column {.tabset .tabset-fade}
-----------------------------------------------------------------------
### Rand indeksi (mean)
```{r}
plot(stab, main = "Stability of the partitions")
```
### Rand indeksi (boxplot)
```{r}
ggplot(matCR, aes(x = fct_relevel(varijabla, paste0("P",10:18), after = Inf),
y = vrijednost, fill = varijabla)) +
geom_boxplot() + theme(legend.position = 'none') + xlab("") + ylab("") +
ggtitle("Dispersion of the adjusted Rand index")
```
3 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Sličnost varijabli sa sintetičkom varijablom klastera
```{r}
summary(P3)
```
Column 2
-----------------------------------------------------------------------
### Sličnost varijabli unutar klastera {data-height=600}
```{r}
print(P3$sim, digits = 2, max.levels = NULL, width = 100)
```
### Homogenost klastera {data-height=100}
```{r}
print(P3$wss, digits = 3)
```
4 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Sličnost varijabli sa sintetičkom varijablom klastera
```{r}
summary(P4)
```
Column 2
-----------------------------------------------------------------------
### Sličnost varijabli unutar klastera {data-height=600}
```{r}
print(P4$sim, digits = 2)
```
### Homogenost klastera {data-height=100}
```{r}
print(P4$wss, digits = 3)
```
5 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Sličnost varijabli sa sintetičkom varijablom klastera
```{r}
summary(P5)
```
Column 2
-----------------------------------------------------------------------
### Sličnost varijabli unutar klastera {data-height=600}
```{r}
print(P5$sim, digits = 2)
```
### Homogenost klastera {data-height=100}
```{r}
print(P5$wss, digits = 3)
```
6 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Sličnost varijabli sa sintetičkom varijablom klastera
```{r}
summary(P6)
```
Column 2
-----------------------------------------------------------------------
### Sličnost varijabli unutar klastera {data-height=600}
```{r}
print(P6$sim, digits = 2)
```
### Homogenost klastera {data-height=100}
```{r}
print(P6$wss, digits = 3)
```
7 klastera {data-navmenu="Klasteriranje varijabli"}
=======================================================================
Column 1
-----------------------------------------------------------------------
### Sličnost varijabli sa sintetičkom varijablom klastera
```{r}
summary(P7)
```
Column 2
-----------------------------------------------------------------------
### Sličnost varijabli unutar klastera {data-height=600}
```{r}
print(P7$sim, digits = 2)
```
### Homogenost klastera {data-height=100}
```{r}
print(P7$wss, digits = 3)
```
Dendrogram, Silhouette {data-navmenu="Klasteriranje ispitanika"}
=======================================================================
Column {data-width=500 .tabset .tabset-fade}
-------------------------------------
### Dendrogram (3 klastera)
```{r}
circlize_dendrogram(ward_dend_color3, dend_track_height = 0.8)
```
### Dendrogram (4 klastera)
```{r}
circlize_dendrogram(ward_dend_color4, dend_track_height = 0.8)
```
### Dendrogram (5 klastera)
```{r}
circlize_dendrogram(ward_dend_color5, dend_track_height = 0.8)
```
### Silhouette (summary)
**3 klastera**
```{r}
summary(sil3)
```
**4 klastera**
```{r}
summary(sil4)
```
**5 klastera**
```{r}
summary(sil5)
```
### Silhouette (broj klastera)
```{r}
ggplot(info_tib, aes(x=broj, y=value, group = 1)) +
geom_point(color = "#0071bf") +
geom_line(color = "#0071bf") +
geom_vline(xintercept = info$Best.nc[1], color = "#0071bf", linetype = "dashed") +
ggtitle("Optimal number of clusters") +
labs(x = "Number of clusters", y = "Average silhouette width") +
scale_x_continuous(breaks = 2:15)
```
Column {data-width=500 .tabset .tabset-fade}
-------------------------------------
### Silhouette (3 klastera)
```{r}
fviz_silhouette(sil3, print.summary=FALSE)
```
### Silhouette (4 klastera)
```{r}
fviz_silhouette(sil4, print.summary=FALSE)
```
### Silhouette (5 klastera)
```{r}
fviz_silhouette(sil5, print.summary=FALSE)
```
### Silhouette (summary)
**3 klastera**
```{r}
summary(sil3)
```
**4 klastera**
```{r}
summary(sil4)
```
**5 klastera**
```{r}
summary(sil5)
```
### Silhouette (broj klastera)
```{r}
ggplot(info_tib, aes(x=broj, y=value, group = 1)) +
geom_point(color = "#0071bf") +
geom_line(color = "#0071bf") +
geom_vline(xintercept = info$Best.nc[1], color = "#0071bf", linetype = "dashed") +
ggtitle("Optimal number of clusters") +
labs(x = "Number of clusters", y = "Average silhouette width") +
scale_x_continuous(breaks = 2:15)
```
Vizualizacija 4 klastera {data-navmenu="Klasteriranje ispitanika"}
=======================================================================
Column {data-width=500 .tabset .tabset-fade}
-------------------------------------
### UTAUT varijable
```{r fig.width=14}
ggplot(klaster4_UTAUT, aes(x = odgovor)) +
geom_bar(alpha = 0.9, fill="#F8766D") +
facet_grid(cols =vars(fct_relevel(factor(varijabla), "UTAUT_10", "UTAUT_11", after = 9)),
rows = vars(Cluster)) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
coord_flip() + ylim(0,25)
```
### LDBDP varijable
```{r fig.width=14}
ggplot(klaster4_LDBDP, aes(x = odgovor)) +
geom_bar(alpha = 0.9, fill="#F8766D") +
facet_grid(cols =vars(varijabla), rows = vars(Cluster)) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 2.5) +
scale_x_discrete(drop = FALSE) + coord_flip() + ylim(0,25)
```
### Q1 Q4
```{r fig.width=12}
slQ1 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q1)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
scale_y_continuous(breaks = c(0,2,4,6,8), limits = c(0,9)) +
theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"))
slQ4 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q4)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
coord_flip() + ylim(0,16) + facet_wrap(vars(Cluster), ncol = 4) +
theme(plot.margin = margin(0.5,0.2,0,0.2,"cm"))
grid.arrange(slQ1, slQ4, ncol = 1)
```
### Q5 Q8
```{r fig.width=12}
slQ5 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q5)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
scale_y_continuous(breaks = c(0,2,4,6,8), limits = c(0,8.5)) +
theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"))
slQ8 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q8)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 4) +
coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
scale_y_continuous(breaks = c(0,2,4,6,8,10,12), limits = c(0,12)) +
theme(plot.margin = margin(0.5,0.2,0,0.2,"cm"))
grid.arrange(slQ5, slQ8, ncol = 1)
```
### Q3 Q7
```{r fig.width=12}
slQ3 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q3)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"))
slQ7 <- ggplot(BDP_cluster4_deskriptiva, aes(x=Q7)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
coord_flip() + ylim(0,13) + facet_wrap(vars(Cluster), ncol = 4) +
theme(plot.margin = margin(0.5,0.2,0,0.2,"cm"))
grid.arrange(slQ3, slQ7, ncol = 1)
```
### Q2
```{r fig.width=12}
ggplot(BDP_cluster4_deskriptiva, aes(x=Q2)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"),
axis.text.y=element_text(size=rel(0.8)))
```
### Q6
```{r fig.width=10}
ggplot(BDP_cluster4_deskriptiva, aes(x=Q6)) +
geom_bar(fill="#F8766D", alpha = 0.9) +
geom_text(stat='count', aes(label=..count..), hjust=-0.3, size = 3) +
coord_flip() + facet_wrap(vars(Cluster), ncol = 4) +
scale_y_continuous(breaks = c(0,2,4,6,8,10,12), limits = c(0,12)) +
theme(plot.margin = margin(0,0.2,0.5,0.2,"cm"),
axis.text.y=element_text(size=rel(0.6)),
axis.title = element_text(size=rel(0.75)))
```
Unutarnja pouzdanost {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Cronbach alpha
```{r}
psych::alpha(BDP_kor, check.keys = TRUE)
```
Column {data-width=400 .tabset .tabset-fade}
-----------------------------------------------------------------------
### split-half & Kaiser-Meyer-Olkin
#### split-half
```{r}
splitHalf(BDP_kor)
```
#### Kaiser-Meyer-Olkin
```{r}
KMO(BDP_kor)
```
### SCREE plot
```{r warning=FALSE, fig.width=8, fig.height=7}
scree(BDP_kor)
```
EFA model - 3 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### EFA - 3 faktora
```{r}
EFA_model3
```
Column {data-width=400}
-----------------------------------------------------------------------
### Loadings (cutoff = 0.4)
```{r}
print(EFA_model3$loadings, sort=TRUE, cutoff=0.4)
```
Scores - 3 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Funkcija gustoće
```{r warning=FALSE}
plot(density(EFA_model3$scores, na.rm = TRUE),
main = "Factor Scores")
```
Column {data-width=400}
-----------------------------------------------------------------------
### tablica
```{r}
EFA_model3$scores
```
EFA model - 4 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### EFA - 4 faktora
```{r}
EFA_model4
```
Column {data-width=400}
-----------------------------------------------------------------------
### Loadings (cutoff = 0.4)
```{r}
print(EFA_model4$loadings, sort=TRUE, cutoff=0.4)
```
Scores - 4 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Funkcija gustoće
```{r warning=FALSE}
plot(density(EFA_model4$scores, na.rm = TRUE),
main = "Factor Scores")
```
Column {data-width=400}
-----------------------------------------------------------------------
### tablica
```{r}
EFA_model4$scores
```
EFA model - 5 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### EFA - 5 faktora
```{r}
EFA_model5
```
Column {data-width=400}
-----------------------------------------------------------------------
### Loadings (cutoff = 0.4)
```{r}
print(EFA_model5$loadings, sort=TRUE, cutoff=0.4)
```
Scores - 5 faktora {data-navmenu="EFA - UTAUT i LDBDP"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Funkcija gustoće
```{r warning=FALSE}
plot(density(EFA_model5$scores, na.rm = TRUE),
main = "Factor Scores")
```
Column {data-width=400}
-----------------------------------------------------------------------
### tablica
```{r}
EFA_model5$scores
```
Unutarnja pouzdanost {data-navmenu="EFA - UTAUT"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Cronbach alpha
```{r}
psych::alpha(BDP_aut, check.keys = TRUE)
```
Column {data-width=400 .tabset .tabset-fade}
-----------------------------------------------------------------------
### split-half & Kaiser-Meyer-Olkin
#### split-half
```{r}
splitHalf(BDP_aut)
```
#### Kaiser-Meyer-Olkin
```{r}
KMO(BDP_aut)
```
### SCREE plot
```{r warning=FALSE, fig.width=8, fig.height=7}
scree(BDP_aut)
```
EFA model - 2 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### EFA - 2 faktora
```{r}
EFAaut_model2
```
Column {data-width=400}
-----------------------------------------------------------------------
### Loadings (cutoff = 0.4)
```{r}
print(EFAaut_model2$loadings, sort=TRUE, cutoff=0.4)
```
Scores - 2 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Funkcija gustoće
```{r warning=FALSE}
plot(density(EFAaut_model2$scores, na.rm = TRUE),
main = "Factor Scores")
```
Column {data-width=400}
-----------------------------------------------------------------------
### tablica
```{r}
EFAaut_model2$scores
```
EFA model - 3 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### EFA - 3 faktora
```{r}
EFAaut_model3
```
Column {data-width=400}
-----------------------------------------------------------------------
### Loadings (cutoff = 0.4)
```{r}
print(EFAaut_model3$loadings, sort=TRUE, cutoff=0.4)
```
Scores - 3 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Funkcija gustoće
```{r warning=FALSE}
plot(density(EFAaut_model3$scores, na.rm = TRUE),
main = "Factor Scores")
```
Column {data-width=400}
-----------------------------------------------------------------------
### tablica
```{r}
EFAaut_model3$scores
```
EFA model - 4 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### EFA - 4 faktora
```{r}
EFAaut_model4
```
Column {data-width=400}
-----------------------------------------------------------------------
### Loadings (cutoff = 0.4)
```{r}
print(EFAaut_model4$loadings, sort=TRUE, cutoff=0.4)
```
Scores - 4 faktora {data-navmenu="EFA - UTAUT"}
=======================================================================
Column {data-width=400}
-----------------------------------------------------------------------
### Funkcija gustoće
```{r warning=FALSE}
plot(density(EFAaut_model4$scores, na.rm = TRUE),
main = "Factor Scores")
```
Column {data-width=400}
-----------------------------------------------------------------------
### tablica
```{r}
EFAaut_model4$scores
```