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 BIOMETRICS 27, 857-74
 December 1971

 A GENERAL COEFFICIENT OF SIMILARITY AND
 SOME OF ITS PROPERTIES

 J. C. GOWER

 Rothamsted Experimental Station, Harpenden, Herts., U. K.

 SUMMARY

 A general coefficient measuring the similarity between two sampling units is defined.
 The matrix of similarities between all pairs of sample units is shown to be positive semi-
 definite (except possibly when there are missing values). This is important for the multi-
 dimensional Euclidean representation of the sample and also establishes some inequalities
 amongst the similarities relating three individuals. The definition is extended to cope with a
 hierarchy of characters.

 1. INTRODUCTION

 A similarity coefficient measures the resemblance between two individuals

 based on either or both of two logically distinct kinds of information pertaining
 to v variables and allowing for possible missing information.

 First there is information on the existence, or not, of the variables. In
 taxonomy, where similarity coefficients are often used, this may be the only
 kind of information used to build up a taxonomic classification. The
 taxonomist has the problem of deciding whether a character occurring in
 one group of organisms also occurs in another group; this is the so-called
 homology problem. A missing character should not be confused with missing
 information because it is known that the character definitely does not exist.

 Missing information can occur, for example, with incomplete fossil material
 or with poor descriptions in the literature, from which the existence or other-
 wise of a character cannot be inferred.

 The other type of information pertains to observed values of qualitative
 or quantitative properties of existing characters. An absent character cannot
 have any associated properties and this suggests that the two types of in-
 formation might be viewed hierarchically, a topic returned to in section 4.

 A common simple situation occurs when all information is of the presence/
 absence type (or from 2-level qualitative characters). This gives the familiar
 2 X 2 association table shown in Table 1, where presence is denoted by +

 and absence by -.
 Many different coefficients have been derived from Table 1. Yule's early

 work on this subject was reviewed by Yates [1952]. More recently Sokal
 and Sneath [1963] discussed numerous association coefficients, not all of
 which have yet been used. We are not concerned here with recommending
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 858 BIOMETRICS, DECEMBER 1971

 TABLE 1

 NUMBERS OF CHARACTERS OCCURRING IN, OR ABSENT FROM, TWO INDIVIDUALS: a (+, +)
 COMMON TO BOTH INDIVIDUALS; b (-, +) AND C (+, -) OCCURRING IN ONLY

 ONE INDIVIDUAL; AND d (-, -) ABSENT FROM BOTH

 Individual 1

 + - Totals

 Individual 2 + a b a + b
 - c d c+d

 Totals a + c b+ d v

 what coefficients should be used in different circumstances but merely wish

 to describe a general coefficient that includes several existing ones as special

 cases, and can therefore be used under many different circumstances. It is
 particularly suitable for including in computer programs because it can

 cope with a variety of different data-types without any reprogramming
 and also because the positive semi-definite property established in section 3

 is a prerequisite for certain types of statistical and numerical analyses (Gower

 [1966]).
 This coefficient has been used since 1960 in various computer programs.

 To find out how it has behaved the reader is referred to the asterisked ref-

 erences given at the end of this paper.

 2. THE DEFINITION OF SIMILARITY

 2.1. Terminology

 Dichotomous, qualitative, and quantitative variates are distinguished. The
 term dichotomous is reserved for characters that are either present or absent
 and whose absence in both of a pair of individuals is not taken as a match;
 when both levels of a two-level qualitative variate are to be treated on a par,
 the levels will be termed alternatives. A discussion of some of the considerations

 governing the choice of scoring the two levels of a response as dichotomous
 or as alternatives is deferred until section 4. Qualitative characters may have
 many levels (e.g. black, green, yellow, blue) but unlike the levels of quanti-
 tative characters they do not form an ordered set, although for convenience
 in computing, coded numerical values may be given.

 2.2. The calculation of similarity

 Two individuals i and j may be compared on a character k and assigned

 a score 8i,k z zero when i and j are considered different and a positive fraction,
 or unity, when they have some degree of agreement or similarity. There

 are many ways of calculating sjk , some of which are described below. Some-
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 A GENERAL COEFFICIENT OF SIMILARITY 859

 times no comparison is possible because information is missing, or in the
 case of dichotomous variables a character is non-existent in both i and j.
 The possibility of making comparisons can be represented by a quantity

 Ai , equal to 1 when character k can be compared for i and j, and 0 otherwise.
 When 5i jk = Oy si ik is unknown but is conventionally set to zero. The similarity
 between i and j is defined as the average score taken over all possible com-
 parisons:

 sij =ESi jk/ E iiSk*(I

 When ijk 0 for all characters, Si; is undefined. When all comparisons are
 possible Ekl 3iji = v, the total number of characters; otherwise it is the
 number of characters over which the comparison is made. An alternative,
 but exactly equivalent, form to (1) is

 Sij -= Si j ik Z E iik * (2)
 k=l k-1

 This is in the form of a weighted average but it will not be interpreted in
 that fashion until weighted similarity coefficients are discussed in section 4;

 at present 3ij, indicates only when comparisons are possible. The scores
 8ijk are assigned as follows:

 (a) For dichotomous characters the presence of the character is denoted
 by + and its absence by -. When there are no unknown values of character
 k, four different combinations of its values may occur for two individuals
 and the score and validity assigned to each combination is given in Table 2.

 (b) For qualitative characters we set sijk = 1 if the two individuals i and
 j agree in the kth character and sijk = 0 if they differ.

 (c) For quantitative characters with values xl , x2, *--, x,, of character k

 for the total sample of n individuals we set sijk = 1 - Ixi- x/I . Here
 Rk is the range of character k and may be the total range in the population
 or the range in the sample.

 When xi = xi then sijk = 1, and when xi and xi are at opposite ends of
 their range, sijk is a minimum (O when Rk is determined from the sample).

 With intermediate values, 8iik is a positive fraction.

 TABLE 2

 SCORES AND VALIDITY OF DICHOTOMOUS CHARACTER COMPARISONS

 Values of character k

 Individual i + + - -

 j + - + -

 .ijk 1 0 0 0
 Oijk 1 1 1 0
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 860 BIOMETRICS, DECEMBER 1971

 Thus Si defined by (1) ranges between 0 and 1; a value of 1 means that
 the two individuals differ in no character whereas 0 means they differ maxi-
 mally in all their characters.

 2.3. Relationship with other similarity coefficients

 If all characters are dichotomous we have the similarity coefficient used,
 for example, by Sneath [1957] where the comparison of negative characters
 between two individuals is not considered a valid match. This coefficient
 is denoted by SJ in Sokal and Sneath [1963] and in terms of Table 1 is defined
 by SJ = a/(a + b + c). The treatment for qualitative variates has also
 been proposed by Silvestri et al. [1962]. When all characters are qualitative
 with two levels (i.e. alternatives) we have the simple matching coefficient
 denoted by SSM in Sokal and Sneath [1963], defined by SSM = (a + d)/v.

 The treatment in 2.2(c) for quantitative characters resembles the mean
 character difference of Cain and Harrison [1958], which is, however, a distance
 rather than a similarity. We have normalised the units of measurement of
 each quantitative variate by dividing by the range and not the standard
 deviation, because the range is easier to calculate and the standard deviation
 has little meaning for the heterogeneous populations where similarity co-
 efficients are usually employed (see also the Appendix).

 3. POSITIVE SEMI-DEFINITE PROPERTY OF THE SIMILARITY MATRIX

 With n individuals, the n X n matrix S can be formed whose element
 Si1 is the similarity, as described in section 2, between individuals i and j.
 We often require to represent the n individuals of a sample as a set of points
 in Euclidean space. Gower [1966] has discussed this problem and shown that
 a convenient representation can be obtained by taking the distance between
 the ith and jth individuals as proportional to (1 - Sij)*. The coordinates
 of points with these distances are the elements of the latent vectors of S
 scaled so that their sums of squares equal the latent roots. Thus to get a
 real Euclidean representation with distances (1 - Sij) it is sufficient for S
 to be positive semi-definite (p.s.d.). It is shown in the Appendix that when
 there are no missing values S is p.s.d. The law relating the lengths of the
 three s'ides of a triangle must therefore hold and we have

 (1 - Si j) + (1 - Si)* >_ (1 - Sik)'. (3)

 By Theorem 2 of the Appendix, the matrix, with elements Sr , where r is
 any positive integer, is p.s.d. because S is p.s.d. Consequently points can
 be found in Euclidean space with distances (1 - Srj)l and the triangle
 law becomes

 (1 - S, j)l + (1 SiO) >_ (1 S, k!). (4)

 The results (3) and (4) are true for the general similarity defined in
 section 2 and hence also for any of the more restricted, commonly used
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 A GENERAL COEFFICIENT OF SIMILARITY 861

 definitions contained in the general definition. Because correlation matrices
 are p.s.d. these results are also true for correlation coefficients.

 4. WEIGHTING AND HIERARCHIC CHARACTERS

 The decision to weight or not to weight character scores has become a
 controversial problem for taxonomists; in general those in favour of using
 numerical methods prefer not to weight but the traditional taxonomist
 holds that taxonomic classifications have always been constructed by
 recognising that certain characters are more important than others. At least
 part of the difficulty seems to arise from the fact that, with a new set of
 organisms completely unrelated to any known group, no a priori weighting
 would be acceptable, but once this set has been classified it becomes clear
 that certain characters are better than others for identification. In any
 subsequent reclassification, or when classifying related groups, these char-
 acters might be regarded as more important and assigned greater weights
 than the others.

 There is no problem in incorporating weights in the similarity coefficient
 of equation (1) or its equivalent, (2). How to decide on a rational set of
 weights is more difficult. The most simple weighting gives a constant weight
 Wk (say) to each character and, if all comparisons are possible, could be

 represented by (2) with bijk, = Wk . It is convenient, however, to distinguish
 3jk from more direct weighting and write, corresponding to (1),

 Sii =E SikEWk * ijkW. (5)
 k=1 k=1

 Arguments similar to those given in the Appendix show that equation (5)
 defines a p.s.d. similarity matrix provided there are no missing values and

 Wk 0.
 Alternatively weights may be regarded as a function of the result of the

 values of a character being compared. Thus differences in a character may be
 considered more important than agreement, or agreement between rare
 character states might be given more weight than agreement between common
 states. The similarity coefficient then takes the form

 sii E SiikWk(Xik X X,k) E 3iikWk(x-ik , Xk)) (6)
 kl1 k=1

 where wk(xi, , Xjk) indicates that the weight for character k is a function
 of the character values xie and xi,, for individuals i and j, and that the func-
 tional form is allowed to differ from character to character. Burnaby [19701
 suggested calculating wk(Xik , xjk) from the Shannon information in the
 sample values of the kth character. For 0/1 data this is a function of pi,
 the proportion of l's. Goodall [1966] proposed a probabilistic similarity
 coefficient based on the Pk's. Gower [1970] discussed various points to be
 considered before basing weights on the observed values of pk X
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 862 BIOMETRICS, DECEMBER 1971

 In equation (6) the indicator 3ii k is redundant as it can be completely
 absorbed in w,(Xik , Xjk) by defining wk(Xik , Xik) = 0 when either or both
 of xi, , Xik are missing, or if character k is dichotomous and both of xik, Xik
 are negative.

 Similarity matrices derived from (6) need not be p.s.d. as can be seen by
 considering three individuals a, b, and c each with two alternative qualitative
 characters taking the values a(-, -), b(-, +), c(+, -). Define Wk(-,-) =

 3 and Wk(-, +) = Wk(+,-) = 1. This gives a similarity matrix

 a 1 3 3

 b 3 1 0

 with determinant -8

 4.1. Hierarchic systems of characters

 In the introduction it was pointed out that when a character exists, its
 quantitative and/or qualitative properties can be observed. We may also
 observe the existence, or not, of subsidiary characters and their properties,
 and so on. The situation is similar to recording multi-phase information in
 sample surveys. Kendrick and Proctor [1964] discussed the case of primary
 and secondary characters, requiring that similarity coefficients should be
 designed so that secondary character results should never be allowed to
 outweigh agreements between primary characters. They demonstrated
 that this is not a property of existing coefficients (nor is it a property of
 similarity defined by equation (1)) by considering the following example:

 Individual X + xi(i = 1, 2,... , m) qi(i = 1, 2, .., n)
 Individual Y + yi(i = 1, 2, .., m) pi(i = 1, 2, .., n)
 Individual Z - pi(i = 1, 2, *---, n)
 Individual W - qi(i = 1, 2, **. , n)

 The individual W was not part of the original example but has been introduced
 here for further discussion. Here + represents a primary character present in
 X and Y but absent in Z and W. This primary character has m secondary

 character values xi, yi observed for X and Y; there are no secondary character
 values for Z and W because they lack the primary character and therefore
 missing values are assumed here. In addition, there are n other characters
 with values qi for X and W and values pi for Y and Z. All values are assumed
 alternative levels of two-level qualitative variables. The sets (xi) and (yi)
 are supposed to have s matches out of the m comparisons, and the sets (pi)
 and (q2) have k matches out of the n comparisons. We have the following
 similarities from equation (1):

 Sxy= (1 +s+lk)/(l + m+n),

 Swy = Sxz = k/(l + n), (7)

 Swz = (1 + k)/( + n).

This content downloaded from 
�����������161.53.120.253 on Mon, 22 May 2023 06:28:06 +00:00����������� 

All use subject to https://about.jstor.org/terms



 A GENERAL COEFFICIENT OF SIMILARITY 863

 Here Sw,, agreeing on the primary character of W and Z, is always greater
 than Sw, which differ, but Sxy is not greater than Sxz when (1 + s)/m < k/
 (n + 1). To avoid this difficulty Kendrick and Proctor suggested setting

 Wk = m + 1 in equation (5), that is weighting each primary character by

 one more than the number of its associated secondary characters. This gives

 Sxy= (m+ 1 +s+k)/(2m+ 1 +n),

 S' y = S'z = k/(m + I + n), (8)

 SI z = (m + 1 + k)/(m + 1 + n).

 Again SIz > S y but now we also have Sry, > Sfz so that comparisons
 amongst the secondary characters can never reverse the results of matches
 amongst the primary.

 The most unsatisfactory thing about this form of weighting is that the
 value of m is somewhat arbitrary; by a sufficiently diligent search we might
 be able to increase m to any desired value. An alternative scheme is to give

 each primary character unit weight but adjust its score by the similarity
 among its associated characters. In the above example this gives

 Sit' = (s/m + k)/(n + 1),

 Sty= sit = k/(n + 1), (9)

 Stz = (1 + k)/(n + 1).

 This method of weighting also ensures that SI' > SI'/ and also S'fz > Sl;
 it is simpler and has certain advantages in programming. The general form

 for S,i can now be written
 /
 k(k) ~

 Sii = E .iji2 / ijk * (10)

 Summation is over the v primary characters, which can be of any type
 (dichotomous, qualitative, quantitative) and the score for each primary
 character k is multiplied by the similarity S'k between its associated sec-
 ondary characters. If SV = 0/0 we conventially assign SV = 1. On a
 computer the subroutine for calculating Sii can also be used to calculate
 S'. Clearly when secondary characters themselves have subsidiary char-
 acters, or even whole hierarchies of characters, the subroutine for formula
 (10) requires recursive programming. Williams [1969], discussing Kendrick
 and Procter's ideas, has suggested a form of weighting similar to (10) where
 the secondary character agreements modify those of the primary characters
 which get unit weight.

 Another property seen from the similarities in (9) is that S'-z > SI' .
 With the weighting given in (8) Stz t St as (m + 1 + k)/(m + 1 + n) t
 s/m. It seems perverse that, all other things being equal, matches between
 non-existent primary characters should give higher similarities than matches

 between existing characters. Without secondary characters and with the
 primary character treated as qualitative, both similarities will be equal.

This content downloaded from 
�����������161.53.120.253 on Mon, 22 May 2023 06:28:06 +00:00����������� 

All use subject to https://about.jstor.org/terms



 864 BIOMETRICS, DECEMBER 1971

 With observed secondary character values associated with the positive
 primary characters, more information is available and just as we want Sxy.

 to exceed Sxz it seems natural to want Sxy to exceed Swz . That is, it would
 be preferred to have Sxy > Swz ? Sxz = Swy so that, all other things
 being equal, a positive match amongst primary characters gives greater
 similarity than a negative match, which itself is greater than a primary
 character mismatch. This cannot be achieved with any of these coefficients

 but is approximated with formula (10) when primary characters are treated
 as dichotomous. This would leave the results in (9) unchanged except for

 S'Fz which becomes k/n. We now have S"z t St' as k/n ; s/m which,
 although an improvement on (8), is not perfect.

 Yet another possibility, which exactly fulfills the requirements, is to

 use equation (6) setting Wk(Xik , Xk) = 1 + SV for the kth primary character
 and defining when S' = 0/0 to be zero. Also treat all primary characters
 as dichotomous. This gives for W, X, Y, and Z the following values:

 S... = [1 + (s/m) + k]/[l + (s/m) + n],

 sill = S"'-= k/(l + n), (11)

 S'ffi- k/n.

 Thus this last definition seems to fulfill best some of the intuitive ideas
 of how to deal with primary and secondary characters and also partially
 justifies coding primary characters as dichotomous, so excluding negative
 matches. In fact, if all the characters had been treated as dichotomous it
 would not have affected these results but merely changed the interpretation
 of m and n to refer to the number of valid comparisons between the sets
 (x), (y) and (p), (q), respectively; s and k refer to positive matches only.

 The whole question of whether it is reasonable to disregard negative
 matches is still unresolved. Taxonomists usually regard the classifications

 they build as approximations to some ideal genetic classification. Sometimes
 genes repress the formation of a character so that absence signifies the

 existence of a gene. Sometimes the levels of a qualitative character are
 clearly of equal status, as when they are black or white, and it would be
 difficult to justify disregarding either of the matches. At other times the
 levels might be black and not-black, and it is more reasonable to regard
 a not-black match as containing little useful information. Clearly the negative
 match question has no unique answer and each situation must be judged
 separately. The merit of the coefficients discussed here is that they give
 the option of treating each two-level character either as dichotomous or as
 having two levels of equal status.

 Taxonomists have objected to the idea of primary and secondary char-
 acters on the grounds that it is not easy to say what characters are primary
 and what are secondary; also because they regard, on genetic grounds, all
 characters to be equally useful a priori for classification purposes. The
 dictionary definition of taxonomy is that it is 'the science or technique of
 classification'; there is no restriction to biological classification. When dealing
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 A GENERAL COEFFICIENT OF SIMILARITY 865

 with inanimate objects, genetic arguments are invalid and it might then,
 if not with biological material, be valid to consider hierarchies of characters.

 5. DISCUSSION

 The similarity coefficient described in section 2 has been used in pro-
 grammes for hierarchial cluster analysis since 1960 and more recently in
 principal co-ordinate analysis and other ordination programmes. It has

 been found sufficiently flexible to cope with nearly all forms of character
 coding so far encountered, and unlike many coefficients currently in use
 does not require any recoding for multistate or quantitative characters.

 The p.s.d. property is important on two counts. First, just as with a
 correlation matrix, it allows numerical methods which operate only on p.s.d.
 matrices to be used with confidence, provided there are no missing values.
 Second, it aids interpretation of those methods of cluster and ordination
 analysis which are based on Euclidean metrics. Many of these methods will
 also operate on non-Euclidean metrics, but interpretation of the results is
 often difficult.

 The coefficient for hierarchies of characters, discussed in section 4, shares
 these advantages but I am more hesitant in recommending it because I
 myself have never used, or felt the need for, such a coefficient. However,
 there is current interest in this type of data and the coefficient described
 here is thought to be better than those previously described. McNeil [1971]
 has recently used the coefficient and reported his experiences.
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 UN COEFFICIENT GENERAL DE SIMILARITE ET Q-UELQUES
 UNES DE SES PROPRIETES

 RESUME

 L'auteur d6finit un coefficient gen6ral pour mesurer la similarit6 entre deux unit6s
 d'6chantillonnage; il montre que la matrice des similarites entre toutes les paires d'unit6s
 d'6chantillonnage est semi-d6finie positive (sauf, eventuellement, quand i] y a des donn6es
 manquantes). Ceci est important pour representer l'6chantillon dans un espace euclidien
 multidimensionnel et aussi pour etablir quelques inegalib6s entre les similarit6s reliant
 trois individus. L'auteur etend la definition pour couvrir le cas de caractAres hi6rarchises.
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 866 BIOMETRICS, DECEMBER 1971

 APPENDIX

 PROPERTIES OF POSITIVE SEMI-DEFINITE MATRICES

 In this Appendix it is shown that the matrix S defined in section 2 is
 p.s.d. A few properties of p.s.d. matrices are required. Except for Theorem 2,
 all the results given below are well known, but they are listed here for ease
 of reference. (Because the proofs of Theorems 1 and 4 are very short, they are
 included for completeness.)

 Definition 1. An n X n real matrix A is p.s.d. when for every real n X 1
 vector x, x'Ax > 0.

 Theorem 1. If both A and B are p.s.d. then so is A + B. This follows im-
 mediately from the equation x' (A + B) x = x'Ax + x'Bx > 0. Consequently
 any sum of p.s.d. matrices is p.s.d.

 Definition 2. If A and B are matrices with elements a,;, b,, (i, j = 1, 2, * , n),
 a matrix with elements ai1 X bij may be defined. This type of matrix product
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 A GENERAL COEFFICIENT OF SIMILARITY 867

 will be written A*B; the result is an n X n matrix not to be confused with
 the Kronecker product.

 Theorem 2. If A and B are p.s.d. and symmetric then so is C = A*B.
 To prove this theorem, let B have latent roots and column vectors

 1 A2 v ... * * n v ; VIv V2 v * * *v Vn . Because B is symmetric, we may write

 B = XvIvI' + X2v2v2 + ... + XnVnv',

 where each vector is normalised to have unit sum of squares. We have Xi =
 v'Bv, > 0 because B is p.s.d. Equating the elements of the rth row and sth
 column on both sides of the previous equation gives,

 bra = E XiVirvia
 i=1

 where vi, is the rth element of vi . Also

 x'Cx = E ar.br.xrx,
 r,a

 n n

 =Ea., E, xivirvi,@)xrXs
 r, L i,a
 n n

 X i E a,,(Vi,X,)(Vi,X,) 1.(Al)

 The expression in square brackets cannot be negative because A is p.s.d.;
 we shall write it as p2 so that (Al) becomes

 x'Cx >j @
 t 1

 This cannot be negative because no Xi is negative, proving that C is p.s.d.
 For a more general statement and proof of this theorem see Mirsky ([1955]
 p. 421).

 Theorem 3. A set of necessary and sufficient conditions for a n X n symmetric
 matrix A to be p.s.d. is that all the principal leading minors A,,(p= 1, 2, * *, n)
 of A must be non-negative. For a proof of this result see e.g. Ferrar ([1941]
 p. 138).

 Theorem 4. All sums of squares and products (SSP) matrices X'X are p.s.d.
 We have

 x'(X'X)x = (Xx)'(Xx) = E u. 20,
 i =1

 where (ul, .U2 , un) is the row vector (Xx)'.

 PROOF THAT THE SIMILARITY MATRIX IS P.S.D

 We now prove that various special cases of the similarity matrix defined
 in section 2 are p.s.d. and then combine these results to show that the general
 matrix is p.s.d., assuming no missing values.
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 868 BIOMETRICS, DECEMBER 1971

 In the association data of Table 1, + and - may be given arbitrary
 numerical scores. Writing Table 1 in the form below and considering various

 SSP matrices derived from it, we see that two elementary matrices are p.s.d.

 Individual i Individual j Frequency

 + + aii
 + -bi
 _ + Cii

 Total v

 (i) Scoring + as 1 and - as 0 and forming the n X n SSP matrix of

 scores for the n individuals, gives a p.s.d. matrix with general element ai1 .
 (ii) Scoring + as 0 and - as 1 and forming the n X n SSP matrix gives

 a p.s.d. matrix with general element dii .
 In the following we shall drop the suffices i, j and refer to the matrices

 ao , do etc. with general elements a, d etc. The ith diagonal term aii of ao
 gives the number of + responses for the ith character, a number not greater
 than v. Therefore the matrix diag (v - aii) is p.s.d. and when added to ao
 shows that the matrix a with constant diagonal term v and off-diagonal

 elements aii is also p.s.d. Similarly d with constant diagonal term v and
 off-diagonal elements dii is p.s.d.

 The matrix of simple matching coefficients

 From section 2.3, SSM = (a + d)/v and from (i) and (ii) above, ao and
 do are p.s.d. with aii + dii = v. Hence SsM = (aO + do)/v and by Theorem 1
 is p.s.d.

 The matrix formed from dichotomous variates

 Provided d < v, S- = a/(v - d) = (a/v)(1 + d/v + d2/v2 + d3/v3 + *).
 Writing A = a/v and D = d/v and forming quadratic forms in x we have

 X'S,x = x'[A + A*(D + D*D + D*D*D ... )]x.

 Since A and D are p.s.d., repeated application of Theorems 1 and 2 shows
 that so is every term on the right hand side of the series expansion of SJ .
 That x'S,x is the limit of the right hand side is elementary, and as every
 term on the right hand side is non-negative, so is x'SJx. This proves that
 S, is p.s.d.

 The matrix formed from qualitative variates

 If there are A matches and B mis-matches amongst the v variates (vu
 A + B) then the similarity SQ = A/(A + B) = A/v. To show that A is
 p.s.d., note that a qualitative variate with q levels could be scored as q
 different dichotomous variates by setting the qth variate + when the qth
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 A GENERAL COEFFICIENT OF SIMILARITY 869

 level is attained and - otherwise. There would then be A positive matches
 and by (i) above, A is p.s.d. The ith diagonal element of A is the number

 of + responses for the ith individual, and thus must be v because each

 qualitative variate is at some level. Therefore SQ is p.s.d.

 The matrix formed from quantitative variates

 Suppose xi , x2 , ... , x" are the values taken by a single quantitative
 variate for each of a set of n objects. Then

 si; = 1 - lxi -xlR,

 where R > max ixu- x,j; i.e., it is not less than the sample range. We shall
 first prove the theorem for R = max Ix,- x,1.

 No generality is lost by assuming that R = 1, i.e., that the xi are measured
 on a new scale in which R of the original units are one of the new units. We

 require to prove Sii 1 - {xi - xij is p.s.d. We can further assume that
 1 = xI 2 x2 2 , .., x.-1 2 xn = 0 since Sii can always be transformed
 into this form by permuting the rows of the data matrix and shifting the
 origin so that xn = 0; thus

 -(Xl - X2)1- (Xl - X3) ... 1-(x - X)

 -(X1 x2) 1 1-(X2 - X3) 1-(X2- X)

 SN= 1-(x- X3) 1 - (X2 -X3) 1 1 (X2 -Xn)

 -(XI Xn) 1 - (X2 - Xn) -(X3 - X,,)*** 1

 (A2)

 To prove that SN is p.s.d. requires the determinants of its principal leading
 minors. A series of elementary transformations gives A, , the principal
 p X p leading minor, as

 v-1

 2v-1[1 -(x - xp)] II (x- xi+1). (A3)
 i=1

 Since xi - x, < xi -x = 1 and xi -xi+1 > 0 we have A,, > 0 and
 therefore, by Theorem 3, SN is p.s.d.

 Now suppose SI is defined by S' = 1 - ix - xil/T, where
 T > max ixu - x. Then the above algebraic manipulation follows through,
 leading again to (A3). Now xi - xv < xl - x, < 1 and xi - xi+, 2 0 so
 that again A,, 2 0 and so SI is p.s.d.

 The above proof is for just one variate but if we have k quantitative
 variates, SN becomes the average of k p.s.d. matrices of the above type and
 by Theorem 1 remains p.s.d.

 Equation (A3) is still true when R < max Ixu - x1, but 1 - -(x- x)
 is no longer necessarily positive. It need not be positive, for example, if Rk
 were taken to be the standard error of variate k. In this case An". is likely
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 870 BIOMETRICS, DECEMBER 1971

 to be negative because the range (xl - x") is almost certainly greater than

 two standard deviations. Cain and Harrison's [19581 mean character difference
 normalises by dividing by the maximum value x" ; when standard errors
 are used the argument above suggests that the resulting coefficient is not
 suitable for the type of work briefly mentioned in section 3.

 The general similarity matrix

 The above has proved that the similarity matrix is p.s.d. when the variates
 are all qualitative, all quantitative, or all dichotomous. It is now shown that
 this remains true for any combination of these types.

 The similarity matrix derived from a combination of quantitative and
 qualitative variates is merely a weighted mean of matrices of type SN and

 SQ and by Theorem 1 is also p.s.d. Suppose that (1/V)ui, is the general
 element of such a p.s.d. matrix based on V variates and let ti = ai /(v -di j)
 be the general term of a similarity matrix based on v dichotomous variates.
 The similarity matrix obtained by combining these two matrices has elements

 v v-di? + V (V + V ( V + V V+ V

 Now the matrices with general terms given by ai , uii, and di; are all
 p.s.d., and it follows from repeated applications of Theorems 1 and 2 that
 the general similarity matrix must be p.s.d.

 The effect of missing values

 Missing values may cause the similarity matrix to loose its p.s.d. property
 as can be seen by considering the similarity matrix for three individuals
 derived from the following table.

 Variate number 1 2 3 4

 Individual 1 - - + +
 Individual 2 + + + *
 Individual 3 + + + +

 In this table * denotes a missing value and +/- may represent either
 presence/absence of dichotomous variates or alternative values of qualitative
 variates. In either case

 13

 S = i3 1 1 .

 E2 1 1

 The determinant is -A and S is therefore not p.s.d. Note that if the * is
 replaced by + we have
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 1 2

 s= 1 1 K

 I 1 l

 and if * is replaced by - we have

 1 i

 S = [ 1 4J

 both of which are p.s.d.

 Received March 1967, Revised May 1971
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