Part |V:

Theory of Generalized Linear

Models




/I_ung cancer surgery \

Q: Is there an association between time spent in the operating room and

post-surgical outcomes?

e Could choose from a number of possible response variables, including:

* hospital stay of > 7 days

* number of major complications during the hospital stay

e The scientific goal is to characterize the joint distribution between both of

these responses and a p-vector of covariates, X

* age, co-morbidities, surgery type, resection type, etc

e The first response is binary and the second is a count variable

~Y € {0,1}

\ ~Y € {0,1,2,...} /
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/Q: Can we analyze such response variables with the linear regression model?\

* specify a mean model

E[Y;|Xi] = Xi'B

1

* estimate 3 via least squares and perform inference via the CLT

e Given continuous response data, least squares estimation works remarkably
well for the linear regression model
* assuming the mean model is correctly specified, 3, is unbiased

* OLS is generally robust to the underlying distribution of the error terms
x Homework #2

* OLS is ‘optimal’ if the error terms are homoskedastic
* MLE if ¢ ~ Normal(0, 0%) and BLUE otherwise

\_ /
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/o For a binary response variable, we could specify a linear regression model:\

E[Y;|Xi] = X'
Y;|X; ~ Bernoulli(u;)

where, for notational convenience, u; = X! 3

e As long as this model is correctly specified, BOLS will still be unbiased

e For the Bernoulli distribution, there is an implicit mean-variance
relationship:

VIV Xi] = pi(1 — pi)

* as long as u; # p V 7, study units will be heteroskedastic

\ * nhon-constant variance /
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/o lgnoring heteroskedasticity results in invalid inference

e \We've seen three possible remedies:

(1) transform the response variable

(3) use WLS

e Recall, 8,,. is the solution to

0

0 = %RSS(B;W)
N T 3)2
O T (9,6 ;wi<yz Xz ,8)

* naive standard errors (that assume homoskedasticity) are incorrect

(2) use OLS and base inference on a valid standard error

~
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e For a binary response, we know the form of V[Y;]

x estimate 3 by setting W = X!, a diagonal matrix with elements:

1
i (1 — ;)

w; —

e From the Gauss-Markov Theorem, the resulting estimator is BLUE

B, = X'y Ix)'XxTs" 1y
e Note, the least squares equations become

0=y = j (i = i)

— pi(1— g

% in practice, we use the IWLS algorithm to estimate 3. while
simultaneously accommodating the mean-variance relationship

~

/
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/o We can also show that BGLS, obtained via the IWLS algorithm, is the MLE\

* firstly, note that the likelihood and log-likelihood are:
L(Bly) = HW — )Y
((Bly) = Zyz log(pi) + (1 —y;)log(l — p;)
i=1

* to get the MLE, we take derivatives, set them equal to zero and solve

* following the algebra trail we find that

n

X;
,3 ((Bly) = ; o _,Uz')G/i — )

e The score equations are equivalent to the least squares equations

\ * 3&5 is therefore ML /
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/o So, least squares estimation can accommodate implicit heteroskedasticity\
for binary data by using the IWLS algorithm

* assuming the model is correctly specified, WLS is in fact optimal!

e However, when modeling binary or count response data, the linear
regression model doesn't respect the fact that the outcome is bounded

* the functional that is being modeled is bounded:
* binary: E[Y;|X;] € (0,1)
x count: E[Y;|X;] € (0,00)

* but our current specification of the mean model doesn’t impose any
restrictions

ElVi|X] = Xi' 6

1

\Q: Is this a problem? /

205 BIO 233, Spring 2015




/Summary \

e Our goal is to develop statistical models to characterize the relationship

between some response variable, Y, and a vector of covariates, X

e Statistical models consist of two components:
* a systematic component

* a random component

e \WWhen moving beyond linear regression analysis of continuous response
data, we need to be aware of two key challenges:

(1) sensible specification of the systematic component

(2) proper accounting of any implicit mean-variance relationships

arising from the random component

\_ /
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/ \Generalized Linear Models' \

Definition

e A generalized linear model (GLM) specifies a parametric statistical model
for the conditional distribution of a response Y; given a p-vector of
covariates X;

e Consists of three elements:

(1) probability distribution, Y ~ fy (y)
(2) linear predictor, X!'3
(3) link function, g(+)

* element (1) is the random component

\ * elements (2) and (3) jointly specify the systematic component /
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/Random component

associated (possible) distributions

~

e In practice, we see a wide range of response variables with a wide range of

Response type Range Possible distribution
Continuous (—o0, 00) Normal(u, 02)
Binary {0, 1} Bernoulli()
Polytomous .., K} Multinomial(my)
Count {0, 1, ..., n} Binomial(n, )
Count {0, 1, ...} Poisson( )
Continuous (0, o) Gamma(a, )

Continuous Beta(a, ()

\0 Desirable to have a single framework that accommodates all of these /
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/Systematic component \

e For a given choice of probability distribution, a GLM specifies a model for

the conditional mean:

pi = E[Y[X]

Q: How do we specify reasonable models for u; while ensuring that we respect

the appropriate range/scale of p;?

e Achieved by constructing a linear predictor X! 3 and relating it to y; via a

link function g(-):

g(ui)) = X8

x often use the notation 1, = X! 3 /
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‘The random component' \

e GLMs form a class of statistical models for response variables whose
distribution belongs to the exponential dispersion family

x family of distributions with a pdf/pmf of the form:

y0 — b(0)
a(Q)

fr(y;0,9) = exp{ + c(y, ¢)}

* 0 is the canonical parameter
* @ is the dispersion parameter

* b(0) is the cumulant function

e Many common distributions are members of this family /
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/o Y ~ Bernoulli(7) \

fr(ym) = p?(L—p)'™"

fy(y;0,6) = exp{yd — log(1+exp{0})}

0 = log(lw )
— T

a(¢) = 1

b(#) = log (1 + exp{6})

O
~~
<
-
~—

|

-

. | /
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/o Many other common distributions are also members of this family \

e The canonical parameter has key relationships with both E[Y| and V[Y]
* typically varies across study units

* index 6 by : 6;

e The dispersion parameter has a key relationship with V[Y]
* may but typically does not vary across study units
* typically no unit-specific index: ¢
% in some settings we may have a(-) vary with i: a;(¢)

x e.g. a;(¢) = ¢/w;, where w; is a prior weight

e \When the dispersion parameter is known, we say that the distribution is a

member of the exponential family

\_ /
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/Properties \

e Consider the likelihood function for a single observation

:0; — b(0;) }
,CHZ', ; i = X y C s
(6i, P;v:) ep{ i (0) + c(yi, @)
e The log-likelihood is
zei_b(ez)
00;, i) = 2
(0i, &5 i) (o) + c(yi, @)

e The first partial derivative with respect to 6; is the score function for 6,
and is given by

0 N N yi — 0'(0;)
g, (0iniyi) = U(0:) = 0:(0)

\_ /
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/o Using standard results from likelihood theory, we know that under \
appropriate regularity conditions:

E[U(0:)] = 0

VIU(@®)] = E[U®:)°] = —E [agéfi)]

h

* this latter expression is the (z,7)""* component of the Fisher information

matrix

e Since the score has mean zero, we find that

- [Ec;i;()@i)] -

and, consequently, that

E[Y;] = 0'(0s)

\_ /
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/0 The second partial derivative of £(0;, ¢;y;) is \

8—935(9@(/5,%) =

x the observed information for the canonical parameter from the ;"

observation

e This is also the expected information and using the above properties it
follows that

Y, — b’(@i)] b (0;)
so that

N - Y
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The variance of Y; is therefore a function of both 6; and ¢

Note that the canonical parameter is a function of p;

pe = 0'(0:;) = 0 = 0(m) = 0 (1)

so that we can write

VIY:] = b7(6(ks))ai(¢)

The function V' (u;) = b”"(6(u;)) is called the variance function

* specific form indicates the nature of the (if any) mean-variance

relationship

For example, for Y ~ Bernoulli(p)

a(¢)

/
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/ b(f#) = log(1+ exp{f}) \

E[Y] = (6)
- 1ixfx{§ge} - A
VY] = "(0)a(6)
= ey — M1

Vi(p) = p(l—p)

\_ /
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/ ‘The systematic component' \

e For the exponential dispersion family, the pdf/pmf has the following form:

Fy (yr: 05, 6) — exp{y”ﬁb”i) " c<yi,¢>}

a;(¢)

* this distribution is the random component of the statistical model

e \We need a means of specifying how this distribution depends on a vector

of covariates X

* the systematic component

e In GLMs we model the conditional mean, u; = E[Y;|X;]

* provides a connection between X, and distribution of Y; via the

\ canonical parameter #; and the cumulant function b(6;) /
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/o Specifically, the relationship between p; and X; is given by \
g(wi) = Xi'B

* we ‘link’ the linear predictor to the distribution of of Y; via a
transformation of 1,

e Traditionally, this specification is broken down into two parts:
(1) the linear predictor, n; = X! 3
(2) the link function, g(u;) = n;

e You'll often find the linear predictor called the ‘systematic component’
x e.g., McCullagh and Nelder (1989) Generalized Linear Models

e In practice, one cannot consider one without the other

\ * the relationship between u; and X is jointly determined by 3 and g()/
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e Constructing the linear predictor for a GLM follows the same process one

he linear predictor, n; = X! 3

uses for linear regression

e Given a set of covariates X, there are two decisions
* which covariates to include in the model?

* how to include them in the model?

e For the most part, the decision of which covariates to include should be

driven by scientific considerations
* Is the goal estimation or prediction?
* Is there a primary exposure of interest?

* which covariates are predictors of the response variable?

\ * are any of the covariates effect modifiers? confounders? /
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/o In some settings, practical or data-oriented considerations may drive these\

decisions
* small sample sizes
* missing data

* measurement error/missclassification

e How one includes them in the model will also depend on a mixture of

scientific and practical considerations

e Suppose we are interested in the relationship between birth weight and risk

of death within the first year of life

* infant mortality

e Note: birth weight is a continuous covariate

* there are a number of options for including a continuous covariate into

\ the linear predictor /
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/o Let X,, denote the continuous birth weight measure \
e A simple model would be to include X, via a linear term
n = Bo + b1 Xw
* a ‘constant’ relationship between birth weight and infant mortality

e May be concerned that this is too restrictive a model

* include additional polynomial terms
n = Bo + 5iXw + BX, + B:3X,

* more flexible than the linear model

* but the interpretation of 55 and (3 is difficult

\_ /
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/o Scientifically, one might only be interested in the ‘low birth weight’ \
threshold

* let Xy = 0/1 if birth weight is >2.5kg/<2.5kg

n = Bo + L1 Xipw

* impact of birth weight on risk of infant mortality manifests solely
through whether or not the baby has a low birth weight

e The underlying relationship may be more complex than a simple linear or
threshold effect, although we don't like the (lack of) interpretability of the
polynomial model

* categorize the continuous covariates into K + 1 groups

* include in the linear predictor via K dummy variables

n = BO + BlXcat,l + ...+ BKXcat,K

\_ /
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KI'he link function, g(+) \

e Given the form of linear predictor X! 3 we need to specify how it is

related to the conditional mean p;

e As we've noted, the range of values that p; can take on may be restricted
* binary data: u; € (0,1)
* count data: u; € (0,00)

e One approach would be to estimate 3 subject to the constraint that all
(modeled) values of u; respect the appropriate range

Q: What might the drawbacks of such an approach be?

\_ /
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/o An alternative is to permit the estimation of 3 to be ‘free’ but impose a \
functional form of the relationship between p; and X3

* via the link function g(+)
Q(Mz') — XiT/B

e \We interpret the link function as specifying a transformation of the
conditional mean, u;

* we are not specifying a transformation of the response Y;

e The inverse of the link function provides the specification of the model on
the scale of y;

w = g (Xz'Tﬁ)

* link functions are therefore usually monotone and have a well-defined

\ Inverse /

225 BIO 233, Spring 2015




/o In linear regression we specify
pi = X B

* g(-) is the identity link

e In logistic regression we specify

*x ¢g(-) is the logit or logistic link

e In Poisson regression we specify

log(pi) = X8

* g(-) is the log link

\_

/
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/o For linear regression also we have that \
T
pi = X; 0

x g~ H(m;) = n; is the identity function

e For logistic regression

exp {XZT,B}
1 4+ exp {XzT,B}

Hi =

*x g~ 1(n;) = expit(n;) is the expit function

e For Poisson regression

i = €Xp {Xz'Tﬁ}

\ *x g~ (n;) = exp(n;) is the exponential function /
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KI'he canonical link \

e Recall that the mean and the canonical parameter are linked via the

derivative of the cumulant function

« EY] = i = b(0))
e An important link function is the canonical link:
g(ri) = 0(pi)

* the function that results by viewing the canonical parameter 6; as a
function of p;

* inverse of b'(-)

o We'll see later that this choice results in some mathematical convenience

\_ /
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e In practice, there are often many possible link functions

~

hoosing ¢(-)

e For binary response data, one might choose a link function from among
the following:

identity: g(pi) = Hi
log: g(pi) = log(pi)

. i
logit: ) = |

gl g(pi) = log (1 - m)
probit: g(pi) = probit(u;)
complementary log-log: g(pi) = log{—log(1— p;)}

* note the logit link is the canonical link function
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(1) respect of the range of values that u; can take

(2) impact on the interpretability of 3

/o We typically choose a specific link function via consideration of two issues:\

e [here can be a trade-off between mathematical convenience and

interpretability of the model

e \We'll spend more time on this later on in the course

/
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/ ‘Frequentist estimation and inference' \

e Given an i.i.d sample of size n, the log-likelihood is

167 ¢7 Z y@ C(yia ¢)

where 60, is a function of 3 and is determined by
* the form of b/(0;) =
* the choice of the link function via g(u;) = n; = X!

e The primary goal is to perform estimation and inference with respect to 3

e Since we've fully specified the likelihood, we can proceed with

\ likelihood-based estimation /inference /
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/Estimation

e There are (p+2) unknown parameters: (3, ¢)

e To obtain the MLE we need to solve the score equations:

(c‘%(ﬂ,cb;y) B y) 5€(B,¢;y)>T _
650 9 9 aﬁp ) a¢

* system of (p+2) equations

e The contribution to the score for ¢ by the i*" unit is

B, dryi) _ a(9)

96 ey Wb T b0 + ¢y @)

\_

/
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/o We can use the chain rule to obtain a convenient expression for the " \
contribution to the score function for j3;:

ol(B, o, y:) _ oL(B, ¢;y;) 00; O; On;
05 d0;  Oup; On; 0B

e Note the following results:

OB, d;yi)  Yi —
00, ai(9)
a,uz' _ i lp.
00, b(0:)
_ V[Y]
- ai(@
on; B N
08, X

\_ /
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/o The score function for 3; can therefore be written as

3

1=1

oL(B, ¢, y)
0B,

a,uz j 7
on; V(us)a;

%) (yi — 4)

* depends on the distribution of Y; solely through E[Y;] = p; and

VY]

= V(ui)a;(¢)

e Suppose a; ()

= ¢/w;. The score equations become

+ C/(yi7¢) = 0

B, ¢;y) 2”: o ow; (Yt —

O P ¢
(B, dy) O X
5, = > Gy Vg Wi i) =0

\_
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/0 Notice that the (p+1) score equations for 3 do not depend on ¢

e Consequently, obtaining the MLE of 3 doesn't require knowledge of ¢
*x ¢ isn't required to be known or estimated (if unknown)

» for example, in linear regression we don't need o (or 62) to obtain
I/B\MLE — <XTX)_1XTY

* inference does require an estimate of ¢ (see below)

~

/
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/Asymptotic sampling distribution \

e From standard likelihood theory, subject to appropriate regularity

conditions,

V(Bues due) — (B,0)) — MVN (0, Z(B,¢)7")

e To get the asymptotic variance, we first need to derive expressions for the
second partial derivatives:

0*0(B, p3yi) O {am Xy (y‘—u‘)}
03;0Bk OB L O V(wi)ai(e) ™" 7

— (yi — 11:) 0 {8“75 Xji } B (3%)2 XjiXk,i
— S8 L oms Vi) ai(9) o) Vu)ai(9)
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0pOP B

.
g

o Xj,z‘

a;(¢) Ou; X

a;(¢)? On; V()

on; V(ui)ai(9) (% = M)}

(yi — i)
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/o Upon taking expectations with respect to Y, we find that \

_ 525(@(/5;3/)] R (5%)2 X,i X,
E[ 08,008 B Z on; ) V(pi)ai(o)

e [he second expression has mean zero, so that

B 525(@(/5;:1/)] N
E[ 0B;0¢ =Y

e Taking the expectation of the negative of the third expression gives:

E [@ %{Zéﬁ; ] ZK 20— b(6:) — E["(Yi,0)

\_ /
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block-diagonal form:

1(B,0) =

where the components of Zgg are given by the first expression on the
previous slide and the Z,, is given by the last expression on the previous

slide

Lap
0

V[BMLE7$MLE] — Z(IB, ¢)_1 —

Log |

/o The expected information matrix can therefore be written in

0

e The inverse of the information matrix is gives the asymptotic variance

—1
—1

~

/
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/o The block-diagonal structure V[3,, ., ¢w.e] indicates that for GLMs valid \
characterization of the uncertainty in our estimate of 3 does not require
the propagation of uncertainty in our estimation of ¢

e For example, for linear regression of Normally distributed response data we
plug in an estimate of o2 into

V[I/B\I\/ILE] — OQ(XTX)_l

» we typically don't plug in 62 . but, rather, an unbiased estimate:

n—p—lizl

* further, we don't worry about the fact that what we plug in is an
estimate of o

\_ /
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/o For GLMs, therefore, estimation of the variance of BMLE proceeds by \

plugging in the values of (BMLE, g/g) into the upper (p+1)x(p+1)

sub-matrix:

AN

V[Buel = Zgs

where ¢ is any consistent estimator of ¢

/
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/I\/Iatrix notation \

o |f we set

Wi (Z’;) e

then the (7, k)th element of Zgz can be expressed as
n
Z Wi X i Xk
i=1

e \We can therefore write:
A — XT"wXx
B3

where W is an n X n diagonal matrix with entries W,;, 7 =1, ..., n, and

\ X is the design matrix from the specification of the linear predictor /
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/Special case: canonical link function \

e For the canonical link function, 1; = g(u;) = 0;(14;), so that

00, Ot Op; 00; VY]
on, Ty T o ae V)

e The score contribution for 3; by the ' unit simplifies to

B, ¢;yi) _ O Xy (i — 1) = Xji (v — 13)
0B on; V(ui)ai(p) ' ai(¢) Z

and the components of the sub-matrix for 3 of the expected information
matrix, Zgg, are the summation of

E [82€</87§b5yi)] _ (Cfmz)z X X ) V() X X
08500k o) V(ui)ai(o) a;(9)

\_ /
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/Hypothesis testing \

e For the linear predictor X! 3, suppose we partition 3 = (3;,35) and we

are interested in testing:
Ho:B8,=08B19 vs Ha:B17# By

* length of B, isqg<(p+1)
* (3, is left arbitrary

e In most settings, 3, o = 0 which represents some form of ‘no effect’

* at least given the structure of the model

e Following our review of asymptotic theory, there are three common
hypothesis testing frameworks

\_ /
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/

\_

e \Wald test:

* let ,BMLE = (IBI,MLEHBZ,I\/ILE)

* under Hy

(161,MLE o IBl,O)TV[/Bl,MLE]_l(IBI,MLE o /31,0) —d Xg

where \7[,@1,MLE] is the inverse of the ¢ X g sub-matrix of Zgg

corresponding to (3, evaluated at 3, ,, .

e Score test:

* let ,@O,MLE = (Bl,O,BQ’MLE) denote the MLE under H

* under Hy

U(IBO,MLE;y)Z(IBO,MLE)_lU(IBO,MLE;y) —d Xg

/
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/o Likelihood ratio test: \

AN

* obtain the ‘best fitting model’ without restrictions: 6,

% obtain the ‘best fitting model’ under Hy: O¢ e

* under Hj

2(€<BMLE; y) o g(BO,MLE? y)) —d Xg

\_ /
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/Iteratively re-weighted least squares \

e We saw that the score equation for (3, is

IB7¢7 0,uz . )
95; - oV z(cb) e

1=1

* estimation of 3 requires solving (p 4+ 1) of these equations
simultaneously

* tricky because 3 appears in several places

e A general approach to finding roots is the Newton-Raphson algorithm

* Iterative procedure based on the gradient

e For a GLM, the gradient is the derivative of the score function with
respect to 3

\ * these form the components of the observed information matrix Igg /
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/o Fisher scoring is an adaptation of the Newton-Raphson algorithm that \
uses the expected information, Zgg, rather than Igg, for the update

e Suppose the current estimate of 3 is B(T)

* compute the following:

r A(T)
) = X[B
MZ(T) _ g_1 (m(r)>
9 S
Tl ) v (“z‘r )

T T T 57%‘
%>=7ﬁ)+(w—up)5—
i

i

* W, is called the ‘working weight’

\ * z; Is called the ‘adjusted response variable’ /
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/o The updated value of ,@ is obtained as the WLS estimate to the regression\
of Z on X:

B(T_H) _ (XTw(T)X)—l(XTw(T)Z(T))

*x X is the n x (p + 1) design matrix from the initial specification of the

model
* W) s a diagonal n X n matrix with entries {Wl(r), Cee qur)}
% Z'") is the n-vector (zy), Cee fof))

e lterate until the value of 3 converges

: : ~(r+1) ~(r) . | ,
* 1.e. the difference between 3 and 3~ is ‘small

\_ /
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/Fitting GLMs in R with glm()

e A generic call to glm() is given by

fit0 <- glm(formula, family, data, ...)
* many other arguments that control various aspects of the model /fit
* 7glm for more information

e ‘data’ specifies the data frame containing the response and covariate data

e ‘formula’ specifies the structure of linear predictor, n; = X! 3
* Input is an object of class ‘formula’

* typical input might be of the form:
Y ~ X1 + X2 + X3

\ *x ?formula for more information /
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/0 ‘family’ jointly specifies the probability distribution fy (-), link function \
g(+) and variance function V(+)

* most common distributions have already been implemented

* input is an object of class ‘family’

x object is a list of elements describing the details of the GLM

e The call for a standard logistic regression for binary data might be of the
form:

glm(Y ~ X1 + X2, family=binomial(), data=myData)
or, more simply,

glm(Y ~ X1 + X2, family=binomial, data=myData)

\_ /
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> ##
> ?family
> poisson()

Family: poisson

Link function: log

> ##

> myFamily <- binomial ()
> myFamily

Family: binomial
Link function: logit
> names (myFamily)

/o A more detailed look at family objects:

[1] "family" "link" "linkfun" "linkinv" "variance"
"dev.resids" "aic"
[8] "mu.eta" "initialize" "validmu" "valideta" "simulate"
> myFamily$link
[1] "logit"
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///’7

> myFamily$variance
function (mu)

mu * (1 - mu)

## Changing the link function

## * for a true ’log-linear’ model we’d need to make appropriate
## changes to the other components of the family object

##

myFamily$link <- "log"

>
>
>
>
>
>
>
> ## Standard logistic regression

> ##

> fit0 <- glm(Y ~ X, family=binomial)
>
>
>
>
>
>
>

## log-linear model for binary data
##
fitl <- glm(Y ~ X, family=binomial(link = "log"))

## which is (currently) not the same as
##

\\\i¥fit1 <- glm(Y ~ X, family=myFamily)

/
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/o Once you've fit a GLM you can examine the components of the glm object:\

> ##

> names (£fit0)
[1] "coefficients"
[5] "R" "rank"

[9] "linear.predictors" "deviance"

"residuals"

[13] "iter" "weights"
[17] "df.null" iy

[21] "model" "call"
[25] "data" "offset"
[29] "contrasts" "xlevels"
>
> ##t
> names (summary (£fit0))

[1] "call" "terms"

"df .residual"

[11] "deviance.resid" "coefficients"

[6] "contrasts"

[16] "cov.unscaled" "cov.scaled"

\_

llfamilyll
"null .deviance"

"aliased"

"fitted.values"
llqul
" aic "

"prior.weights"

"effects"
llfamilyll
"null .deviance"

"df .residual"

"converged" "boundary"

"formula" "terms"

"control" "method"
"deviance" "aic"
"df .null" "iter"
"dispersion" "df"

/
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KI'he deviance \

e Recall, the contribution to the log-likelihood by the i*" study unit is

e Implicitly, 8; is a function of u; so we could write the log-likelihood

contribution as a function of p;:

0(0;, &;y:) = (i, d;9:)

e Given 3,, ., we can compute each [i; and evaluate

(B, &; y) qumb i),

\ * the maximum log-likelihood /
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/o 0(p, ;) is the maximum achievable log-likelihood given the structure of\
the model

* p; is modeled via g(u;) = n; = X1

* any other value of 3 would correspond to a lower value of the
log-likelihood

e The overall maximum achievable log-likelihood, however, is one based on a

saturated model
* same number of parameters as observations

% each observation is its own mean: p; = y;

Uy, d;y) Z U(yir 3 9i),

* this represents the ‘best possible fit’
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/o The difference \

D*(y,p) = 2[l(y,¢;y) — LB, ;)]
Is called the scaled deviance

o Let
* éz- be the value of 6, based on setting u; = y;
* éz be the value of 6; based on setting 1; = [i;

o If we take a;(¢) = ¢/w;, then

n

- 2w;
D*(y,p) = »_ Z
1=1

[yi(éi_éz') — b)) + b(dy)| = D(Z’ﬁ)

\o D(y, p) is the deviance for the current model /
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/o D(y, i) is used as a measure of goodness of fit of the model to the data\

* measures the ‘discrepancy’ between the fitted model and the data

e For the Normal distribution, the deviance is the sum of squared residuals:

D(y,p) = Z (yi — fui)”
i=1
x has an exact x? distribution

* compare two nested models by taking the difference in their deviances

« distribution of the difference is still a y?
x the likelihood ratio test

e Beyond the Normal distribution the deviance is not y?

e But we still can rely on a x? approximation to the asymptotic sampling
\ distribution of the difference in the deviance between two models /

258 BIO 233, Spring 2015



/Residuals \

e In the context of regression modeling, residuals are used primarily to

* examine the adequacy of model fit

x functional form for terms in the linear predictor
x link function

* variance function

* investigate potential data issues

x e.g. outliers

e Interpreted as representing variation in the outcome that is not explained
by the model

* variation once the systematic component has been accounted for

* residuals are therefore model-specific

\_ /
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\_

An ideal residual would look like an i.i.d sample when the correct mean \
model is fit

For linear regression, we often consider the raw or response residual
ri = Yi — [
* if the ¢; are homoskedastic then {ry, ..., .} will be i.i.d

For GLMs the underlying probability distribution is often skewed and
exhibits a mean-variance relationship

Pearson residuals account for the heteroskedasticity via standardization

p _ Yi— [L;
T = =
V(i)
* Pearson x? statistic for goodness-of-fit is equal to >, (7“%’)2 /
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/o The deviance residual is defined as \
rd = sign(y; — f1:)\/d;

where d; is the contribution to D(y, 1) from the i study unit

* why is this a reasonable quantity to consider?

e Pierce and Schafer (JASA, 1986) examined various residuals for GLMs
* conclude that deviance residuals are ‘a very good choice’

* very nearly normally distributed after one allows for the discreteness

* continuity correction which replaces

1
i = Vit
Y Y 5

In the definition of the residual

\ * +/— chosen to move the value closer to ji; /
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/o All three types of residuals are returned by glm() in R:

> ## generic (logistic regression) model

> fit0 <- glm(Y ~ X, family=binomial)

>

> args(residuals.glm)

function (object, type = c("deviance", "pearson", "working",
"response", "partial'"), ...)

NULL

>

> ## deviance residuals are the default

> residual (fit0)

\V4

## extracting the pearson residuals

A\

residual (fit0, type="pearson")

\_

/
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/

\_

‘The Bayesian squtionI

e A GLM is specified by:
Yi| X5 ~ fy(y; i, )
E[Y;|X;] = ¢ (X{'B) = 1
VIY;| X;] V(ui)ai(¢)

* fy () is a member of the exponential dispersion family
* (3 is a vector of regression coefficients

* @ Is the dispersion parameter

e (3, ¢) are the unknown parameters
* note there might not necessarily be a dispersion parameter

* e.g. for binary or Poisson data

/
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/0 Required to specify a prior distribution for (3, ») which is often factored \

Into

m(B,0) = n(B|o)m (o)

e For (3|¢, strategies include

* a flat, non-informative prior

x recover the classical analysis
x posterior mode corresponding to a uniform prior density is the MLE

* an informative prior

x e.g., B ~ MVN(B,, X5)
% convenient choice given the computational methods described below

e Unfortunately, specifying a prior for ¢ is less prescriptive

\ * consider specific models in Parts V-VII of the notes /
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/o Given an independent sample Y7, ..

n terms:

L(B,dly)

yz|,u’m

||::]:

e Apply Bayes' Theorem to get the posterior:

(B, ¢ly) o< L(B,oly)m(B

xo)

., Y,,, the likelihood is the product of\

/
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/Computation \

e For most GLMs, the posterior won't be of a convenient form

* analytically intractable
e Use Monte Carlo methods to summarize the posterior distribution

e We've seen that the Gibbs sampler and the Metropolis-Hastings algorithm
are powerful tools for generating samples from the posterior distribution

* need to specify a proposal distribution

* need to specify starting values for the Markov chain(s)

e Towards this, let 8 = (E, (5) denote the posterior mode

\_ /
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~

/o Consider a Taylor series expansion of the log-posterior at o:

logm(@ly) = log W(5|y)
0

+ (0-16) a—glogw(my)‘g >
- [[)2 -

+ %(H—H)T 5050 10g7f<9|y)] _(6-96)

+ ...

e Ignore the log 7(6|y) term because, as a function of 0, it is constant

e The linear term in the expansion disappears because the first derivative of

the log-posterior at the mode is equal to 0

e The middle component of the quadratic term is approximately the negative
\ observed information matrix, evaluated at the mode /
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/ e We therefore get \

1 ~ - ~
logm(6]y) ~ —5(0 - 6)"'1(0)(6 —0)
which is the log of the kernel for a Normal distribution

e So, towards specifying a proposal distribution for the Metropolis-Hastings
algorithm, we can consider the following Normal approximation to the
posterior

m(0|y) =~ Normal (5, 1(5)_1)

Q: How can we make use of this for sampling from the posterior w(3, ¢|y)?
* there are many approaches that one could take

x we'll describe three

\_ /
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/. First, we need to find the mode, (B: <f~5) \

* the value that maximizes 7 (3, ¢|y)

* given a non-informative prior:

(Ba (/B) = (IBMLEv(/gMLE)
x obtain the mode via the IRLS algorithm

* otherwise, use any other standard optimization technique

x e.g. Newton-Raphson
* could use (,BMLE,¢MLE) as a starting point

e Next, recall the block-diagonal structure of the information matrix for a
GLM:

S
7(8,¢) = gﬁ .
PP

\_ ' | /
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/o Exploit this and consider the approximation:

~ ~

m(Bly) ~ Normal (,5, Vg(,@,@)

to the marginal posterior of 3

* Vg(g,@ = Igﬁl evaluated at the mode
* denote the approximation by 7(3;y)

e Also consider the approximation:

~ ~

m(¢ly) ~ Normal (4, Vy(B.9))

to the marginal posterior of ¢

* ng(,é,é) = I(;; evaluated at the mode

\ x denote the approximation by 7(¢|y)

/
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@ N

e If we believe that 7w(3|y) is a good approximation, we could simply report

pproach #1

summary statistics directly from the multivariate Normal distribution
Bly ~ Normal (B, Vs(3,9))

* report the posterior mean (equivalently, the posterior median)

% posterior credible intervals using the components of V3 (E, gg)

e The approach conditions on gE
* uncertainty in the true value of ¢ is ignored

* this is what we do in classical estimation/inference for linear regression
anyway

e Similarly, we could summarize features of the posterior distribution of ¢

\ using the 7(¢|y) Normal approximation /
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/Approach 2

\_

e \We may not be willing to believe that the approximation is good enough
to summarize features of 7(3;vy)

* approximation may not be good in small samples

* approximation may not be good in the tails of the distribution

x away from the posterior mode

e We could use 7(3|y) as a proposal distribution in a Metropolis-Hastings
algorithm to sample from the exact posterior 7(3; y)
o |et B(T) be the current state in the sequence

(1) generate a proposal 3" from 7(8|y)

x straightforward since this is a multivariate Normal distribution

/
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/ (2) evaluate the acceptance ratio

i <1 (8" |y, ) %(ﬂ(”lﬁ*)>
- 7(B87y, ¢) 7(B°18")

- <1 m(8"ly. 9) (ﬁ(”)>
- w(B8" |y, ¢) T(B7)

=t

(3) generate a random U ~ Uniform(0, 1)

x reject the proposal if a, < U:

/3(7“+1) _ /3(7“)

x accept the proposal if a,, > U:

/
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/Approach #3 \

e While approach #2 facilitates sampling from the exact posterior

distribution of 3, 7w(3|y), uncertainty in the value of ¢ is still ignored

* condition on ¢ = ¢
e To sample from the full exact posterior 7w(3, ¢; y) we could implement a
Gibbs sampling scheme and iterate between the full conditionals

* for each, implement a Metropolis-Hastings step using the
approximations we've developed

x for the rt" sample:
(1) sample B from 7(B| ¢"~V: y) with 7(8|y) as a proposal

(2) sample ¢(") from w(¢| B'); y) with T(d|y) as a proposal

\o Use the approximations to generate starting values for the Markov chain(s)/
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