Support Vector Machines – Part 2

Scribes: Alexander Zhiliakov* and Sulaimon Oyeleye**

1 Non-linear SVMs

Recall that the standard linear SVM problem reads as follows. Find $(\mathbf{w}^*, b^*) \in \mathbb{R}^d \times \mathbb{R}$ such that

$$(\mathbf{w}^{\star}, b^{\star}) = \arg\min_{(\mathbf{w}, b) \in \mathbb{R}^{d} \times \mathbb{R}} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle$$
subject to $y_{i} (\langle \mathbf{w}, \mathbf{x}_{i} \rangle + b) \geq 1.$

$$(1)$$

We refer to the constrained optimization (1) as a *linear* SVM problem. The decision function associated with this problem is

$$f(\mathbf{x}) \coloneqq \operatorname{sgn}(\langle \mathbf{w}^{\star}, \mathbf{x} \rangle + b^{\star}) \tag{2}$$

and it is designed to find the maximum-margin hyperplane $\{\mathbf{x} : \langle \mathbf{w}^{\star}, \mathbf{x} \rangle + b^{\star} = 0\}$ separating a set of training points $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$.

There are two major issues with this classification approach [3, Chapter 1.3]:

- 1. The linear form of (2) may not be suitable for a classification task, i.e., the training set is *not* linearly separable. In this case (\mathbf{w}^*, b^*) simply does not exist.
- 2. Overfitting may be a serious problem for $d \ge n$ and we need to somehow misclassify some training points in order to avoid overfitting in the presence of noise.

^{*} Department of Mathematics, University of Houston, Houston, Texas 77204 (alex@math.uh.edu).

^{**} Department of Mathematics, University of Houston, Houston, Texas 77204 (soyel-eye@math.uh.edu).

1.1 Hard and soft margin SVM approaches and the 'kernel trick'

In order to resolve the first issue, we consider a *feature map* Φ that maps the input data $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in \mathbf{X}$ to some Hilbert space \mathcal{H} called *feature space*:

$$\boldsymbol{\Phi}: \mathbf{X} \to \mathscr{H} \tag{3}$$

The feature map Φ is typically nonlinear and $\mathscr H$ may be infinite dimensional.

Using a feature map Φ , one can build analogous problem to (1) by considering the mapped data $\Phi(\mathbf{x}_1)$, $\Phi(\mathbf{x}_2)$, ..., $\Phi(\mathbf{x}_n)$ and then solving the *nonlinear* SVM problem in the feature space \mathscr{H} as follows. Find $(\mathbf{w}^*, b^*) \in \mathscr{H} \times \mathbb{R} \times \mathbb{R}^n$ such that

$$(\mathbf{w}^{\star}, b^{\star}) = \arg\min_{(\mathbf{w}, b) \in \mathcal{H} \times \mathbb{R}} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle_{\mathcal{H}}$$

subject to $y_i (\langle \mathbf{w}, \boldsymbol{\Phi}(\mathbf{x}_i) \rangle + b) \ge 1.$ (4)

This approach is called *hard margin SVM* approach, and initially was proposed by Boser et al. [1].

To deal with the second issue, the so called *soft margin SVM* technique was introduced by Cortes and Vapnik [2]. While the constraints in (1) force the data set to be divided by a hyperplane exactly, the soft margin approach³ introduces a slack variables $\xi \in \mathbb{R}^n$ to relax this constraint leading to the following *nonlinear* SVM optimization problem. Find $(\mathbf{w}^*, b^*, \xi^*) \in \mathcal{H} \times \mathbb{R} \times \mathbb{R}^n$ such that

$$(\mathbf{w}^{\star}, b^{\star}, \boldsymbol{\xi}^{\star}) = \arg\min_{(\mathbf{w}, b) \in \mathcal{H} \times \mathbb{R}} \frac{1}{2} \langle \mathbf{w}, \mathbf{w} \rangle_{\mathcal{H}}$$
subject to $y_i (\langle \mathbf{w}, \boldsymbol{\Phi}(\mathbf{x}_i) \rangle + b) \ge 1 - \boldsymbol{\xi}_i, \quad \boldsymbol{\xi}_i \ge 0.$

$$(5)$$

Assume that there is a *kernel* function $k : \mathbf{X} \times \mathbf{X} \to \mathbb{K}$ on the input space⁴ satisfying

$$k(\mathbf{x}_i, \mathbf{x}_j) = \left\langle \Phi(\mathbf{x}_i), \Phi(\mathbf{x}_j) \right\rangle_{\mathscr{H}}.$$
 (6)

Given (6), we can then formulate the SVM problem in the dual form as

$$\max_{\alpha \in \mathbb{R}^{n}} \left(\sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} k(\mathbf{x}_{i}, \mathbf{x}_{j}) \right)$$

subject to $\alpha_{i} \ge 0$, $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$, (7)

and correspondingly write the decision function for (5) as

³ The original approach by Cortes and Vapnik also includes a regularization of the objective func-

tional to deal with overrelaxation of the constraints. We omit it here for simplicity.

⁴ Here and further we will use \mathbb{K} for a field (either real \mathbb{R} or complex \mathbb{C}).

Support Vector Machines - Part 2

$$f(\mathbf{x}) = \operatorname{sgn}\left(\sum_{i=1}^{n} y_i \,\alpha_i \,\langle \Phi(\mathbf{x}), \Phi(\mathbf{x}_i) \rangle_{\mathscr{H}} + b\right) = \operatorname{sgn}\left(\sum_{i=1}^{n} y_i \,\alpha_i \,k(\mathbf{x}, \mathbf{x}_i) + b\right).$$

To conclude, the 'kernel trick' makes it possible to achieve nonlinear separation in the input space by implicitly mapping the input space into a feature space where features are linearly separable; see Figure 1. These observations motivates us to study kernels and their properties and this will be the topic of the following lectures.

Fig. 1: Illustration of the "kernel trick". Left: Initial input data $\mathbf{x}_1, \ldots, \mathbf{x}_7 \in \mathbf{X} = \mathbb{R}^2$ is *not* linearly separable. Right: Mapped data $\Phi(\mathbf{x}_1), \ldots, \Phi(\mathbf{x}_7) \in \mathcal{H}$ is separable in $\mathcal{H} = \Phi(\mathbf{X})$.

2 Kernels and Reproducing Kernel Hilbert Spaces (RKHS)

Definition 1. Let $\mathbf{X} \neq \emptyset$ be a set. A function $k : \mathbf{X} \times \mathbf{X} \to \mathbb{K}$ is called a *kernel* on \mathbf{X} iff there is a \mathbb{K} -Hilbert space \mathscr{H} and a feature map $\Phi : \mathbf{X} \to \mathscr{H}$ such that for any $\mathbf{x}, \mathbf{x}' \in \mathbf{X}$

$$k(\mathbf{x},\mathbf{x}') = \langle \boldsymbol{\Phi}(\mathbf{x}'), \boldsymbol{\Phi}(\mathbf{x}) \rangle_{\mathscr{H}}$$

holds.

Given a kernel k, neither Φ nor \mathscr{H} are uniquely determined.

Example 1. Let $\mathbf{X} := \mathbb{R}$ and k(x, x') := x'x. Obviously, k is a kernel on \mathbf{X} with $\Phi_1(x) := x$ being the identity map and $\mathscr{H}_1 := \mathbb{R}$. Consider $\Phi_2 : \mathbf{X} \to \mathbb{R}^2 =: \mathscr{H}_2$ given by

$$\Phi_2(x) \coloneqq \frac{1}{\sqrt{2}}(x, x).$$

We have

$$\langle \Phi_2(x'), \Phi_2(x) \rangle_{\mathbb{R}^2} = \frac{x'x}{\sqrt{2}} + \frac{x'x}{\sqrt{2}} = x'x =: k(x, x'),$$

and hence k is a kernel on **X** also for Φ_2 and \mathcal{H}_2 .

Next we present one of the commonly used kernels that has series representation.

Example 2. Let $\mathbf{X} \neq \emptyset$ and $\{f_n\}_{n=1}^{\infty}$ be a set of functions $f_n : \mathbf{X} \to \mathbb{K}$ with the property that $f_n(\mathbf{x}) \in \ell^2$ for any $\mathbf{x} \in \mathbf{X}$. Then

$$k(\mathbf{x},\mathbf{x}') \coloneqq \sum_{i=1}^{\infty} f_n(\mathbf{x}) \overline{f_n(\mathbf{x}')}$$

is a kernel on **X** with $\Phi(\mathbf{x}) \coloneqq \overline{f_n(\mathbf{x})}, \Phi : \mathbf{X} \to \ell^2$, i.e., the sum

$$\langle \boldsymbol{\Phi}(\mathbf{x}'), \boldsymbol{\Phi}(\mathbf{x}) \rangle_{\ell^2} = \sum_{i=1}^{\infty} f_n(\mathbf{x}) \overline{f_n(\mathbf{x}')} =: k(\mathbf{x}, \mathbf{x}')$$

is well defined since $f_n(\mathbf{x}) \in \ell^2$ for any $x \in \mathbf{X}$ by Hölder's inequality.

2.1 Properties of kernels

- 1. Let k be a kernel on **X** and A be a map, $A : \overline{Y} \to X$, where \overline{Y} is another set. Then, $\overline{k}(x,x') := k(A(x),A(x')), x,x' \in \mathbf{X}$ is a kernel on \overline{Y} . This include the special case where A is a restriction map. Hence, if $\overline{Y} \subset \mathbf{X}$, then $k_{|\overline{Y} \times \mathbf{X}}$ is a kernel.
- 2. If k_1 , k_2 are kernels then $k_1 + k_2$ is a kernel.
- 3. If $\alpha \ge 0$ and k is a kernel, then αk is a kernel.

Remark: The space of kernels forms a cone but not a vector space. Let k_1, k_2 be kernels on **X** such that, for some $x \in \mathbf{X}$,

$$k_1(x,x) - k_2(x,x) < 0$$

If $k_1 - k_2$ is kernel, then there exist a map $\boldsymbol{\Phi} : \mathbf{X} \to H$ such that

$$0 \leq \langle \Phi(x), \Phi(x) \rangle = k_1(x, x) - k_2(x, x) < 0,$$

giving a contradiction. So $k_1 - k_2$ is not a kernel.

4. If k_1 is a kernel on \mathbf{X}_1 and k_2 is a kernel on \mathbf{X}_2 , then $k_1.k_2$ is a kernel on the tensor space $\mathbf{X}_1 \times \mathbf{X}_2$. In particular, if $\mathbf{X}_1 = \mathbf{X}_2 = \mathbf{X}$, then $k(x,x') := k_1(x,x')k_2(x,x')$, $x,x' \in \mathbf{X}$ defines a kernel on \mathbf{X} .

Example 3. For any n > 0, the map $k_n(x, x') := (xx')^n$, where $x, x' \in \mathbf{X}$ is a kernel. Hence, if $p : \mathbf{X} \to \mathbb{R}$ is of the form, Support Vector Machines - Part 2

$$p(t) = a_n t^n + \ldots + a_1 t + a_0$$

with non-negative coefficients a_i , then k(x,x') = p(xx'), with $x,x' \in \mathbf{X}$ is a kernel. In general, the function: $k(z,z_1) = (\langle z,z' \rangle + c)^m$ with $z,z' \in \mathbb{C}^d, c \ge 0$, is a polynomial kernel on \mathbb{C}^d .

Lemma (Taylor type kernels). Let $B_{\mathbb{C}}$, $B_{\mathbb{C}^d}$ be the open unit ball in \mathbb{C} , \mathbb{C}^d respectively. Let r > 0 and $f : rB_{\mathbb{C}} \to \mathbb{C}$ be a holomorphic function with Taylor series expansion;

$$f(z) = \sum_{n=0}^{\infty} a_n z^n; \quad z \in rB_{\mathbb{C}}$$

If $a_n \ge 0$ for all $n \in \mathbb{N}$, then

$$k(z,z') := f(\langle z,z' \rangle)_{\mathbb{C}^d} = \sum_{n=0}^{\infty} a_n \langle z,z' \rangle_{\mathbb{C}^d}^n, \qquad z,z' \in \sqrt{r} B_{\mathbb{C}^d}$$

defines a kernel on $\sqrt{rB_{\mathbb{C}^d}}$.

It follows that the restriction to $\mathbf{X} := \{x \in \mathbb{R}^d : ||x||_2 < \sqrt{r}\}$ is a real-valued kernel.

Example 4. For $d \in \mathbb{N}$, $x, x' \in \mathbb{R}^d$, $k(x, x') = exp(\langle x, x' \rangle)$ is a \mathbb{K} - valued kernel on \mathbb{R}^d .

Example 5. (Exponential kernel). Let $d \in \mathbb{N}$, $\gamma > 0$, $z = (z_1, ..., z_d)$, $z' = (z'_1, ..., z'_d) \in \mathbb{C}^d$. It follows from the lemma above that

$$k_{\gamma,\mathbb{C}^d}^{(z,z')} := exp(-\gamma^{-2}\sum_{j=1}^d (z_j,-\bar{z}_j')^2)$$

is a kernel on \mathbb{C}^d . Its restriction $k_{\gamma} := exp(-\frac{||x-x'||_2^2}{\gamma^2})$, for $x, x' \in \mathbb{R}^d$, is a kernel on \mathbb{R}^d .

2.2 Characterization of kernels

Definition: A function $k : \mathbf{X} \times \mathbf{X} \to \mathbb{R}$ is *positive definite* if for all $n \in \mathbb{N}$, $\alpha_1, ..., \alpha_n \in \mathbb{R}$, and all $x_1, ..., x_n \in \mathbf{X}$, we have

$$\sum_{i=1}^n \sum_{j=1}^m \alpha_i \alpha_j k(x_i, x_j) \ge 0$$

Furthermore, it is *strictly positive definite* if for mutually distinct $x_1, ..., x_n \in \mathbf{X}$, equality only occurs when $\alpha_1 = ... = \alpha_n = 0$. *k* is symmetric if k(x, x') = k(x', x), for all $x, x' \in \mathbf{X}$.

6 **X**.

NOTE: $K = (k(x_i, x_j))_{i,j}$ is the *Gram matrix*.

$$\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \alpha_j k(x_i, x_j) \ge 0 \iff K \text{ is positive definite.}$$

Theorem 1. A function $k : \mathbf{X} \times \mathbf{X} \to \mathbb{R}$ is a kernel if and only if it is symmetric and positive definite

Proof. (\Longrightarrow) If k is a \mathbb{R} -kernel, then $k(x,x') = \langle \Phi(x), \Phi(x') \rangle = \langle \Phi(x'), \Phi(x) \rangle = k(x',x)$ is symmetric.

Also, for any $n \in \mathbb{N}$, $\alpha_1, ..., \alpha_n \in \mathbb{R}$, $x_1, ..., x_n \in \mathbf{X}$

$$\sum_{i=1}^{n}\sum_{j=1}^{m}\alpha_{i}\alpha_{j}k(x_{i},x_{j}) = \left\langle\sum_{i=1}^{n}\alpha_{i}\Phi(x_{i}),\sum_{j=1}^{m}\alpha_{j}\Phi(x_{j})\right\rangle = \left|\left|\sum_{i=1}^{n}\alpha_{i}\Phi(x_{i})\right|\right|^{2} \ge 0$$

Hence, k is positive definite.

(\Leftarrow) Assume $k : \mathbf{X} \times \mathbf{X} \to \mathbb{R}$ is symmetric and positive definite. Define

$$\mathscr{H}_{pre} := \left\{ \sum_{i=1}^{n} \alpha_{i} k(., x_{i}) : n \in \mathbb{N}, \alpha_{i} \in \mathbb{R}, x_{i} \in \mathbf{X} \right\}.$$

For any $f = \sum_{i=1}^{n} \alpha_i k(., x_i), \ g = \sum_{j=1}^{m} \alpha_j k(., x'_j) \in H_p$, set

$$\langle f,g \rangle := \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \beta_j k(x'_j, x_j).$$

We want to show that this operation defines an inner product on \mathscr{H}_{pre} , hence we will show that $\langle .,. \rangle$ is bilinear, symmetric and positive definite.

First we observe that, for any $x'_j \in \mathbf{X}$, we have $f(x'_j) = \sum_{i=1}^n \alpha_i k(x'_j, x_i)$, hence we can write $\langle f, g \rangle = \sum_{j=1}^m \beta_j f(x'_j)$. Similarly, we can write $\langle f, g \rangle = \sum_{i=1}^n \alpha_i g(x_i)$. This shows that $\langle f, g \rangle$ is independent of the representation of f and g.

By the assumption on *k*, it is straightforward tp verify that $\langle f, g \rangle$ is symmetric, bilinear and positive, that is $\langle f, f \rangle = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \alpha_j k(x_i, x_j) \ge 0$ for any $\alpha_1, ..., \alpha_n, x_1, ..., x_n, f \in \mathscr{H}_{pre}$. We remark that these properties also imply the Cauchy-Schwartz inequality, $|\langle f, g \rangle|^2 \le \langle f, f \rangle \langle g, g \rangle$ for all $f, g \in \mathscr{H}_{pre}$.

It is also clear that if f = 0, then $\langle f, f \rangle = 0$. It remains to show that $n \langle f, f \rangle$ implies f = 0. WE observe that $\langle f, g \rangle = \sum_{i=1}^{n} \alpha_i g(x_i)$, then $\sum_{i=1}^{n} \alpha_i k(x, x_i) = \langle f, k(x, x_i) \rangle \leq k(., x)k(., x) > \langle f, f \rangle$.

Using this observation and Cauchy-Schwartz inequality, for any $x \in \mathbf{X}$ we have

$$|f(x)|^{2} = |\sum_{i=1}^{n} \alpha_{i} k(x, x_{i})|^{2} = |\langle f, k(., x) \rangle|^{2} \le \langle k(., x), k(., x) \rangle . \langle f, f \rangle = 0$$

Support Vector Machines - Part 2

Thus, f(x) = 0 for any $x \in \mathbf{X}$ hence f = 0.

Let \mathscr{H} be a completion of \mathscr{H}_{pre} and $T : \mathscr{H}_{pre} \to H$ be the corresponding isometric embedding. Thus \mathscr{H} is a Hilbert space and for any $x \in \mathbf{X}$

$$\langle Tk(., x'), Tk(., x) \rangle_{H} = \langle k(., x'), k(., x) \rangle_{\mathcal{H}_{\text{pre}}} = k(x, x')$$

The map $x \mapsto Tk(., x)$ for $x \in \mathbf{X}$ defines a feature map of k, hence k is a kernel.

References

- 1. Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for optimal margin classifiers. In *Proceedings of the fifth annual workshop on Computational learning theory*, pages 144–152, 1992.
- Corinna Cortes and Vladimir Vapnik. Support-vector networks. *Machine learning*, 20(3):273– 297, 1995.
- Ingo Steinwart and Andreas Christmann. Support vector machines. Springer Science & Business Media, 2008.