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Exponential random graph models 

p(x) = exp{θTz(x)−ψ(θ)}

ERGM: probability model for adjacency matrices 
with pmf: 

… it is an exponential family distribution (hence ERGM) 

Parameter vector:  θ 
Graph statistics:  z(x) 
Normalising constant:  ψ(θ) 
 

x takes values in  
 ℵ= {0,1}V

(2)

z( ) can be chosen 
in many ways ψ( ) difficult function of θ 

 
  ψ(θ) = log eθ

Tz(x )

x∑



Part 1a 

Why an ERGM 



Networks matter – ERGMS matter 

6018 grade 6 children 1966 

FEMALE 
Male 
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Part 1b 

Minimum learning outcomes 



Social Networks 

•  Get a working handle on what we are trying 
to model 

•  Familiarise ourselves with common model 
specifications 

•  Fit our first models in statnet and PNet  
•  Fitting procedure 

q Estimation 
q Convergence check 
q Goodness of fit 

•  Orientation about future developments 



Part 1c 

Modelling graphs 



Social Networks 

•  Notational preliminaries 
•  Why and what is an ERGM 
•  Dependencies 
•  Estimation 

q   Geyer-Thompson 
q   Robins-Monro 
q   Bayes (The issue, Moller et al, LISA, exchange algorithm) 

•  Interpretation of effects 
•  Convergence and GOF 
•  Further issues 



Networks matter – ERGMS matter 

Numerous recent substantively driven studies 
•  Gondal, The local and global structure of knowledge 

production in an emergent research field, SOCNET 2011 
•  Lomi and Palotti, Relational collaboration among spatial 

multipoint competitors , SOCNET 2011 
•  Wimmer &  Lewis, Beyond and Below Racial Homophily, 

AJS 2010 
•  Lusher, Masculinity, educational achievement and social 

status, GENDER & EDUCATION 2011 
•  Rank et al. (2010). Structural logic of intra-organizational 

networks, ORG SCI, 2010. 

Book for applied researchers: Lusher, Koskinen, Robins 
ERGMs for SN, CUP, 2011  



Networks matter – ERGMS matter 



The exponential random graph model (p*) 
framework 

•  An ERGM (p*) model is a statistical model for the ties in a 
network 

•  Independent (pairs of) ties (p1, Holland and Leinhardt, 
1981; Fienberg and Wasserman, 1979, 1981) 

•  Markov graphs (Frank and Strauss, 1986) 
•  Extensions (Pattison & Wasserman, 1999; Robins, Pattison 

& Wasserman, 1999; Wasserman & Pattison, 1996) 
•  New specifications (Snijders et al., 2006; Hunter & 

Handcock, 2006) 



ERGMS – modelling graphs 



ERGMS – modelling graphs 

•  We want to model tie variables 
•  But structure – overall pattern – is 

evident 

•  What kind of structural elements can 
we incorporate in the model for the tie 
variables? 



ERGMS – modelling graphs 

If we believe that the frequency of interaction/density is an 
important aspect of the network l i 

j k 

Counts of the number of ties in our model 

We should include 



ERGMS – modelling graphs 

If we believe that the reciprocity is an important aspect of the 
(directed) network l i 

j k 

Counts of the number of mutual ties in our model 

We should include 



ERGMS – modelling graphs 

If we believe that an important aspect of the network is that 

i 

j 

k 

two edge indicators {i,j} and {i’,k} are 

conditionally dependent if {i,j} ∩ {i’,k} ≠∅ 

We should include counts of 

degree distribution; preferential attachment, 
etc 

friends meet through friends; clustering; etc 



ERGMS – modelling graphs 

If we believe that the attributes of the actors are 
important (selection effects, homophily, etc) 

Heterophily/homophily 

We should include counts of 

Distance/similarity 



ERGMS – modelling graphs 

If we believe that (Snijders, et al., 2006) 

i

j 

k 

two edge indicators {i,k} and {l,j} are conditionally 

dependent if {i,l} , {l,j} ∈E 
l 

clustered regions 



ERGMS – modelling graphs 

l i 

j k 

m n 

log 

σ1 Δ # +σ2 Δ # 

i k Pr 

i k Pr 

given the rest 

given the rest 

≈ +τ Δ # +σ3 Δ # + 

li

j k

m n

li

j k

m n

l i 

k 

i 

j k 

+ τ 2×  = adding edge, e.g.: 



ERGMS – modelling graphs 

log i k Pr 
i k Pr 

given the rest 
given the rest 

)()()()()Pr(log 2211 θψθθθ ++++== xzxzxzxX pp

The conditional formulation 

)()()( 2
2

1
1 xxx p

ikpikik δθδθδθ +++= 

May be ”aggregated” for all dyads so that the model for the 
entire adjacency matrix can be written 

)()()( xzxzx rijr
r
ik −Δ=δwhere  Is the difference in counts of 

structure type k 



ERGMS – modelling graphs 

For a model with edges and triangles 

The model for the adjacency matrix X is a weighted sum 

The parameters σ1  and τ weight the relative importance of 
ties and triangles, respectively 

- graphs with many triangles but not too dense are more 
probable than dense graphs with few triangles 

)()()()Pr(log 1 θψτσ ++== xTxLxX
where  #)( =xL #)( =xT



ERGMS – modelling graphs: example 

Padgett’s Florentine families (Padgett and Ansell, 1993)  
network 
BusyNet <- as.matrix(read.table(	

	 	 	”PADGB.txt”,header=FALSE)) 



ERGMS – modelling graphs: example 

BusyNetNet <- network(BusyNet, directed=FALSE)!
plot(BusyNetNet) 

Requires libraries 
'sna’,'network’ 



ERGMS – modelling graphs: example 
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ERGMS – modelling graphs: example 

For a model with only edges 

)()()Pr(log 11 σψσ +== xLxX
Equivalent with the model: 

heads 

tails 

For each pair flip a p-coin 

Where p is the probability coin comes up heads 



ERGMS – modelling graphs: example 

i.e., an estimated one in 8 pairs establish a tie 

The (Maximul likelihood) estimate of p is the 
density 

here: 

heads

tails

125.0)(ˆ == xdpMLE

For an ERGM model with edges )()()Pr(log 11 σψσ +== xLxX

and hence )(

)(

1

1

1 xL

xL

e
ep σ

σ

+
=



ERGMS – modelling graphs: example 

for σ1, we have that the density parameter 

Solving 

heads

tails

)(

)(

1

1

1 xL

xL

e
ep σ

σ

+
=

)1/1log(1 −−= pσ

and for the MLE 

)1ˆ/1log(ˆ ,1 −−= MLEMLE pσ

9451)11/8log( .−=−−=

125.0)(ˆ == xdpMLE

Let’s check in stanet!



ERGMS – modelling graphs: example 

Estim1 <- ergm(BusyNetNet ~ edges)	
summary(Estim1) 

125.0)(ˆ == xdpMLE

945.1ˆ ,1 −=MLEσ

MLE,1σ̂
Parameter corresponding to  #)( =xL

approx. standard error of MLE of σ1, 

Success: )1ˆ/1log(ˆ ,1 −−= MLEMLE pσ



ERGMS – modelling graphs: example 

Do we believe in the model: 

heads 

tails 

For each pair flip a p-coin 

Let’s fit a model that takes Markov dependencies into account 

)()()()()()Pr(log 33221 θψτσσσ ++++== xTxSxSxLxX

where  #)( =xL #)( =xT#)(2 =xS #)(3 =xS
statnet!



ERGMS – modelling graphs: example 

#)( =xL #)( =xT#)(2 =xS #)(3 =xS

MLEτ̂

approx. standard error of MLE of τ, 

Estim2 <- ergm(BusyNetNet ~ kstar(1:3) + triangles)	
summary(Estim2) 



Part 2 

Estimation 



Likelihood equations for exponential fam 

logPr(X = x) =θ1z1(x)+θ2z2(x)++θpzp(x)+ψ(θ)

”Aggregated” to a joint model for entire adjacency matrix X 

E
θ̂MLE
{z(X )} = z(xobs )

Sum over all 2n(n-1)/2 graphs 

The MLE solves the equation (cf. Lehmann, 1983): 



Likelihood equations for exponential fam 

Solving  Eθ̂MLE
{z(X )} = z(xobs )

•  Using the cumulant generating function 
(Corander, Dahmström, and Dahmström, 1998) 

•  Stochastic approximation (Snijders, 2002, based 
on Robbins-Monro, 1951) 

•  Importance sampling (Handcock, 2003; Hunter 
and Handcock, 2006, based on Geyer-
Thompson 1992) 



θ (m+1) =θ (m) −arD0
−1{z(x

θ (m )
(m) )− z(xobs)}

Robbins-Monro algorithm 

Solving  Eθ̂MLE
{z(X )} = z(xobs )

Snijders, 2002, algorithm 
- Initialisation phase 
- Main estimation 
- convergence check and cal. of standard errors 

MAIN:  

Draw using MCMC 



D0

Robbins-Monro algorithm 

Phase 1, Initialisation phase 
Find good values of the initial parameter state 
 
 
And the scaling matrix 
 
 
(use the score-based method, Schweinberger & 

Snijders, 2006) 
 

θ (0)



Robbins-Monro algorithm 

Phase 2, Main estimation phase 
Iteratively update θ 

θ (m+1) =θ (m) −arD0
−1{z(x

θ (m )
(m) )− z(xobs)}

by drawing one realisation   

x
θ (m )
(m)

from the model defined by the current θ(m) 

Repeated in sub-phases with fixed  ar
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Robbins-Monro algorithm 

Phase 2, Main estimation phase 
Relies on us being able to draw one realisation  

We can NOT do this directly 

x

from the ERGM defined by the current θ 

We have to simulate x 
More specifically use Markov chain Monte Carlo 



Robbins-Monro algorithm 

What do we need to know about MCMC? 
Method: 
Generate a sequence of graphs 

for arbitrary x(0), using an updating rule… so that 

x(0), x(1), x(2), x(3),…

N→∞p(x(N ) ) = eθ
T z(x(N ) )

eθ
T z(y)

y∑
as 



Robbins-Monro algorithm 

What do we need to know about MCMC? 
So if we generate an infinite number of graphs in 

the “right” way we have the ONE draw we need 
to update θ once? 

Typically we can’t wait an infinite amount of time so 
we settle for  

N→ very large

In Pnet very large is 

γ density(xobs )[1−density(xobs )]n
2

multiplication factor 



Robbins-Monro algorithm 

Phase 3, Convergence check and calculating 
standard errors 

At the end of phase 2 we always get a value 

θ̂
But is it the MLE? 

Does it satisfy 

E
θ̂
{z(X)} = z(xobs )              ? 



Robbins-Monro algorithm 

Phase 3, Convergence check and calculating 
standard errors 

Phase 3 simulates a large number of graphs 
And checks if 

E
θ̂
{z(X)} ≈ E

θ̂
{z(X)} ≈ z(xobs )

A minor discrepancy - due to numerical inaccuracy 
- is acceptable 

Convergence statistics: 
−.1<

E
θ̂
{z(X)}− z(xobs )
SD

θ̂
{z(X)}

< .1



{ })()()( obs1
)()(1)1()1()( xzxzwI M

m
mmggg −−= ∑ =

−−− θθθ

Geyer-Thompson 

Solving  )()}({ˆ obsxzXzE
MLE

=
θ

Handcock, 2003, approximate Fisher scoring 

MAIN:  

Approximated using importance sample from MCMC 



Bayes: dealing with likelihood 

The normalising constant of the posterior not essential for Bayesian 
inference, all we need is: 

∑ ∑
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Sum over all 2n(n-1)/2 graphs 



Bayes: MCMC? 

Consequently,  
in e.g. Metropolis-Hastings, acceptance probability of move to θ 
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Bayes: Linked Importance Sampler 
Auxiliary Variable MCMC 

LISA (Koskinen, 2008; Koskinen, Robins & Pattison, 2010): Based on 
Møller et al. (2006), we define an auxiliary variable ω 

And produce draws from the joint posterior 

{ } { }∏ =
××∈

m

j
K KK

1
,,1,,1 ……Xω

)(
})(exp{

)(
})(exp{
})(exp{

)|,( , θπ
τ

ω

θ

θ
θωπ θτ

∑ ∑∑ ∑
∑∝

yz
P

yz
xz

x
kk

B

kk

obskk
obs

using the proposal distributions 

),(~| )()(* Σtt N θθθ and 
∑ ∑ )}(exp{
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yz
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kk

F
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θω τθ



Bayes: alternative auxiliary variable 

LISA (Koskinen, 2008; Koskinen, Robins & Pattison, 2010): Based on 
Møller et al. (2006), we define an auxiliary variable ω 

Improvement: use exchange algorithm (Murray et al. 2006) 

{ } { }∏ =
××∈

m

j
K KK

1
,,1,,1 ……Xω

Many linked chains: 
-  Computation time 
-  storage (memory and time issues) 

),(~| )()(* Σtt N θθθ and )ERGM(~| *** θθx

Accept  θ*  with log-probability: ))}(*)((*)(,0min{ obs
T xzxz −−θθ

Caimo & Friel, 2011 



Bayes: Implications of using alternative 
auxiliary variable 

Improvement: use exchange algorithm (Murray et al. 2006) 

),(~| )()(* Σtt N θθθ and )ERGM(~| *** θθx

Accept  θ*  with log-probability: ))}(*)((*)(,0min{ obs
T xzxz −−θθ

Caimo & Friel, 2011 

•  Storing only parameters 
•  No pre tuning – no need for good initial values 
•  Standard MCMC properties of sampler 
•  Less sensitive to near degeneracy in estimation 
•  Easier than anything else to implement 
QUICK and ROBUST 



Bayes: Implications of using alternative 
auxiliary variable 

exchange algorithm (Murray et al. 2006) 

auxiliary variables: 

and 

h(θ* |θ)

p(x* |θ*) ~ ERGM(θ*)



Bayes: Implications of using alternative 
auxiliary variable 

exchange algorithm (Murray et al. 2006) 

auxiliary variables: 

and 

To draw from joint posterior 

h(θ* |θ)

p(x* |θ*) ~ ERGM(θ*)

∝ p(x* |θ*)h(θ* |θ)p(x |θ)π (θ)p(x |θ)



Bayes: Implications of using alternative 
auxiliary variable 

exchange algorithm (Murray et al. 2006) 

auxiliary variables: 

and 

To draw from joint posterior 

Gibbs-draw: 

h(θ* |θ)

p(x* |θ*) ~ ERGM(θ*)

(x* |θ*) ~ p(x* |θ*)h(θ* |θ)

∝ p(x* |θ*)h(θ* |θ)p(x |θ)π (θ)p(x |θ)



Bayes: Implications of using alternative 
auxiliary variable 

exchange algorithm (Murray et al. 2006) 

auxiliary variables: 

and 

To draw from joint posterior 

Gibbs-draw: 

h(θ* |θ)

p(x* |θ*) ~ ERGM(θ*)

then swap  θ*  and θ with probability min{1,H} 

H =
p(xobs |θ*)
p(xobs |θ)

π (θ*)
π (θ)

h(θ |θ*)p(x* |θ)
h(θ* |θ)p(x* |θ*)

(x* |θ*) ~ p(x* |θ*)h(θ* |θ)

∝ p(x* |θ*)h(θ* |θ)p(x |θ)π (θ)p(x |θ)



Part 3  

Interpretation of effects 



Problem with Markov models 

Markov dependence assumption: 

i 

j 

k 

two edge indicators {i,j} and {i’,k} are 

conditionally dependent if {i,j} ∩ {i’,k} ≠∅ 

We have shown that the only effects are: 

degree distribution; preferential attachment, 
etc 

friends meet through friends; clustering; etc 



Problem with Markov models 

Often for Markov model  

degree distribution; preferential attachment, 
etc 

friends meet through friends; clustering; etc 

)()}({ˆ obsxzXzE
MLE

=
θMatching  

hard 
Impossible! or  



Problem with Markov models 

)()}({ˆ obsxzXzE
MLE

=
θMatching  

hard 
Impossible! or  

# triangles 	



# edges 	


z(xobs )

 

zk (xobs ) = 0 or  zk (xobs ) = zkmax
Some statistic k  



0 50 100 150 200 250 300 350 400
number of triangles

Problem with Markov models 

)()}({ˆ obsxzXzE
MLE

=
θMatching  

hard 

# triangles 	


z(xobs )

Eθ{z(X)}

The number of triangles for a 
Markov model with edges 

(-3), 2-stars (.5), 3-stars (-.2) 
and triangles (1.1524)  
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Problem with Markov models 

)()}({ˆ obsxzXzE
MLE

=
θMatching  

hard 

Exp. # triangles and 
edges for a Markov 
model with edges, 2-

stars, 3-stars and 
triangles 

Eθ{z(X)}



Problem with Markov models 

)()}({ˆ obsxzXzE
MLE

=
θMatching  Impossible! 

# 2-stars 	

# edges 	



 

zk (xobs ) = 0If for some statistic k  

Similarly for max  
(or conditional min/max) 
e.g. A graph on 7 vertices with 5 
edges  

Implies:  

Eθ{z(X)} = zk (y)p(y |θ )
y
∑ = zk (xobs )

p(y |θ ) = 1 if zk (y) = zk (xobs ) = 0
0 otherwise

!
"
#

$#



Problem with Markov models 

)()}({ˆ obsxzXzE
MLE

=
θMatching  Impossible! 

{z(x) : x ∈ℵ}Generally, let C be the convex hull of 

The MLE exists if and only if z(xobs) ∈ rint(C)  

Let rint(C) denote the relative interior of let C 

With constant prior, the posterior exists  
only if z(xobs) ∈ rint(C)  

See Handcock (2003) 



Problem with Markov models 

First solutions  
(Snijders et al., 2006)  

Markov: 

q  adding k-star adds (k-1) stars 

q  alternating sign compensates but eventually zk(x)=0 

Alternating stars: 

Ø  Restriction on star parameters - Alternating sign 

Ø  prevents explosion, and 

Ø  models degree distribution 



Problem with Markov models 

First solutions  
(Snijders et al., 2006)  

Markov: 

q  adding k-star adds (k-1) stars 

q  alternating sign compensates but eventually zk(x)=0 

#)( =xL #)( =xT#)(2 =xS #)(3 =xS



Problem with Markov models 

First solutions  
(Snijders et al., 2006)  

Alternating stars: 

Ø  Restriction on star parameters - Alternating sign 

Ø  prevents explosion, and 

Ø  models degree distribution 

Include all stars but restrict parameter: 

λσσ /23 −= λσσ /34 −= λσσ /45 −= 

);()()()( 113322 λσσσσ xAKSxSxSxS AKSnn =+++ −−new 



Problem with Markov models 

First solutions  
(Snijders et al., 2006)  

Include all stars but restrict parameters: 

λσσ /23 −= λσσ /34 −= λσσ /45 −= 

);()()()( 113322 λσσσσ xAKSxSxSxS AKSnn =+++ −−new 

λ = eα / (eα −1)

=
1

1− e−α
"

#
$

%

&
'
2

dj (x)e
−α j

j=0

n−1

∑ +
2L(x)
1− e−α

−
n

(1− e−α )2
Expressed in terms 
of degree distribution 

dj (x) = #{i : xi+ = j}



Problem with Markov models 

First solutions  
(Snijders et al., 2006)  

Include all stars but restrict parameters: 

λσσ /23 −= λσσ /34 −= λσσ /45 −= 

);()()()( 113322 λσσσσ xAKSxSxSxS AKSnn =+++ −−

Interpretation: 
Positive parameter (λ ≥ 1) – graphs with some high degree 
nodes and larger degree variance more likely than graphs 
with more homogenous degree distribution  
Negative parameter (λ ≥ 1) – the converse… 



Problem with Markov models 

Markov: 

v  triangles evenly spread out 

v but one edge can add many triangles… 

Alternating triangles: 

•  Restrictions on different order triangles – alternating sign 

•  Prevents explosion, and 

•  Models multiply clustered regions 

•  Social circuit dependence assumption 

First solutions  
(Snijders et al., 2006)  



Problem with Markov models 

Markov: 

v  triangles evenly spread out 

v but one edge can add many triangles… 

First solutions  
(Snijders et al., 2006)  

k-triangles: 

1-triangles: 2-triangles: 3-triangles: 



Problem with Markov models 

Alternating triangles: 

•  Restrictions on different order triangles – alternating sign 

•  Prevents explosion, and 

•  Models multiply clustered regions 

First solutions  

λττ /1−−= kk

);()()()( 223322 λττττ xAKTxTxTxT AKTnn =+++ −−

Weigh the k-triangles: 

Where: 



Problem with Markov models 

Alternating triangles: 

•  Restrictions on different order triangles – alternating sign 

•  Prevents explosion, and 

•  Models multiply clustered regions 

First solutions  

Underlying assumption: 

i 

j 

k 

two edge indicators {i,k} and {l,j} are 

conditionally dependent if {i,l} , {l,j} ∈E 

l 

Social circuit dependence 
assumption 
 



Problem with Markov models 

Alternative interpretation 

We may (geometrically) weight together : 

−τ1 / λ × #τ1 × # −τ 2 / λ × # 

zT (x;λ) =
eα

eα −1
xij

i< j
∑ − xij

1
eαS2 ij (x )i< j

∑
#
$
%

&%

'
(
%

)%

λ = eα / (eα −1) S2ij = #{k : i→ k, j→ k}
i j 





Problem with Markov models 

Alternative intrepretation 

We may also define the 
Edgewise Shared Partner Statistic: 
 

−τ1 / λ × #τ1 × # −τ 2 / λ × # 

i j 



ESPk = #{(i, j) : i ~ j,S2ij = k}

… and we can weigh together the ESP statistics 
using Geometrically decreasing weights: GWESP 
 



Part 3b  

Curved exponential family distributions for graphs 



Curved ERGM 

zS(x;α) =
1

1−e−α
"

#
$

%

&
'

2

d j (x)e
−α j

j=0

n−1

∑ +
2L(x)
1−e−α

−
n

(1−e−α )2

zT (x;α) =
eα

eα −1
xij

i< j
∑ − xij

1
eαS2 ij (x )i< j

∑
#
$
%

&%

'
(
%

)%

In an ERGM, alternating statistics 

alternating 
triangles 

alternating 
stars 

… are “dampened”  by a constant α 

why not estimate α? 



Curved ERGM 

If we treat α as free parameters to be estimated 

p(x) = exp{θTz(x;α)−ψ(θ,α)}



Curved ERGM 

If we treat α as free parameters to be estimated 

p(x) = exp{θTz(x;α)−ψ(θ,α)}

We have more statistics than parameters 
… it is no longer an exponential family distribution 



Curved ERGM 

If we treat α as free parameters to be estimated 

p(x) = exp{θTz(x;α)−ψ(θ,α)}

We have more statistics than parameters 
… it is no longer an exponential family distribution 

For example, we no longer have the identity 

E
θ̂MLE
{z(X )} = z(xobs )

z(x;α) 



Curved ERGM 

If we treat α as free parameters to be estimated 

p(x) = exp{θTz(x;α)−ψ(θ,α)}

We have more statistics than parameters 
… it is no longer an exponential family distribution 

However, does not matter for Bayesian analysis  

π (θ,α | x)∝exp{θTz(x;α)−ψ(θ,α)}π (θ,α)



Curved ERGM 

If we treat α as free parameters to be estimated 

p(x) = exp{θTz(x;α)−ψ(θ,α)}

We have more statistics than parameters 
… it is no longer an exponential family distribution 

Formally it is a Curved exponential family distribution 
… and a Fisher scoring algoithm (using MCMC) can be  
applied (Hunter and Handcock, 2006) 



Part 4a  

Example Lazega’s law firm partners 



Bayesian Data Augmentation Lazega’s (2001) Lawyers 

Collaboration network among 36 lawyers in a  
New England law firm (Lazega, 2001) 

Boston office: 
Hartford office: 
Providence off.: 

least senior: 

most senior: 



Bayesian Data Augmentation Lazega’s (2001) Lawyers 

)()()()()Pr(log 2211 θψθθθ ++++== xzxzxzxX pp

Fit a model with ”new specifications” and covariates 

∑ ijx

)( jiij aax +∑
)( jiij bbx +∑
)( jiij bbx =∑ 1

)( jiij ccx =∑ 1

)( jiij ddx =∑ 1

3
23

1
2

1
)()1()()(3

−
−−−++− n
nn xtxtxt
λλ



Edges: 
Seniority: 

Practice: 

Homophily 

Sex: 

Office: 

GWESP: 

Practice: 

Main effect 



Bayesian Data Augmentation Lazega’s (2001) Lawyers 

Fit a model with ”new specifications” and covariates 

PNet: 



Bayesian Data Augmentation Lazega’s (2001) Lawyers 

Fit a model with ”new specifications” and covariates 

∑ ijx

)( jiij aax +∑
)( jiij bbx +∑

)( jiij bbx =∑ 1

)( jiij ccx =∑ 1

)( jiij ddx =∑ 1

3
23

1
2

1
)()1()()(3

−
−−−++− n
nn xtxtxt
λλ



Edges: 
Seniority: 

Practice: 

Homophily 

Sex: 

Office: 

GWESP: 

Practice: 

Main effect 



Part 4b  

Interpreting attribute-related effects 



Bayesian Data Augmentation Fitting an ERGM in Pnet: a business 
communications network 

 
office 

 
sales 

 
          office 

 
 
interaction for 
attribute 

 
activity for 
attribute 

 
          sales 

For ”wwbusiness.txt” we have recorded wheather the 
employee works in the central office or is a traveling 
sales represenative 



Bayesian Data Augmentation Fitting an ERGM in Pnet: a business 
communications network 

 
office 

 
sales 

 
          office 

 
 
interaction for 
attribute 

 
activity for 
attribute 

 
          sales 

Consider a dyad-independent model 

)()()Pr(log 1 θψθθσ ++++== jiijRbjiijRijijij OFFOFFxOFFOFFxxxX



Bayesian Data Augmentation Fitting an ERGM in Pnet: a business 
communications network 

 
office 

 
sales 

 
          office 

 
 
interaction for 
attribute 

 
activity for 
attribute 

 
          sales 

With log odds 

jiRbjiR
ij

ij OFFOFFOFFOFF
X
X

θθσ +++=
=

=
)(

)0Pr(
)1Pr(

log 1

1σ

Rθσ +1

1=jOFF 0=jOFF

1=iOFF

0=iOFF

)0Pr(
)1Pr(

log
=

=

ij

ij

X
X

RbR θθσ ++ 21

Rθσ +1



Part 4c  

Interpreting higher order effects 



Unpacking the alternating star effect 

Alternating stars a way of 
-  “fixing” the Markov problems (models all degrees) 
-  Controlling for paths in clustering 

);()()()( 113322 λσσσσ xAKSxSxSxS AKSnn =+++ −−

k-triangles measure clustering… 

1-triangles: 2-triangles: 3-triangles: 



Unpacking the alternating star effect 

Alternating stars a way of 
-  “fixing” the Markov problems (models all degrees) 
-  Controlling for paths in clustering 

);()()()( 113322 λσσσσ xAKSxSxSxS AKSnn =+++ −−

Is it closure or an artefact of many stars/2-paths? 

1-triangles: 2-triangles: 3-triangles: 



Unpacking the alternating star effect 

Interpreting the alternating star parameter: 

centralization  –   +  

Var(xi+ ) =
(xi+ − x )

2

n−1
=

i
∑ .21

variance of degree measure centralization 

Var(xi+ ) = 4.42



Unpacking the alternating star effect 

Interpreting the alternating star parameter: 

centralization  –   +  

alternating star parameter  –   +  
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Unpacking the alternating star effect 

Statistics for graph (n = 16); fixed density; alt trian: 1.17 

alternating star parameter  –   +  
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Unpacking the alternating star effect 

Statistics for graph (n = 16); fixed density; alt trian: 1.17 

alternating star parameter  –   +  
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Unpacking the alternating star effect 

Graphs (n = 16); fixed density; alt trian: 1.17 

alternating star parameter  –   +  



Problem with Markov models 

λ = eα / (eα −1)

=
1

1− e−α
"

#
$

%

&
'
2

dj (x)e
−α j

j=0

n−1

∑ +
2L(x)
1− e−α

−
n

(1− e−α )2
Alt, stars in terms 
of degree distribution 

dj (x) = #{i : xi+ = j}

Note also the influence of isolates: 
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Problem with Markov models 

Note also the influence of isolates: 

alternating star parameter  –   +  



Problem with Markov models 

Note also the influence of isolates: 

=
1

1− e−α
"

#
$

%

&
'
2

dj (x)e
−α j

j=0

n−1

∑ +
2L(x)
1− e−α

−
n

(1− e−α )2

This is because we impose a particular shape on the degree 
distribution 

);()()()( 113322 λσσσσ xAKSxSxSxS AKSnn =+++ −−
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Unpacking the alternating triangle effect 

Alternating triangles measure clustering 

We may also define the 
Edgewise Shared Partner Statistic: 
 

−τ1 / λ × #τ1 × # −τ 2 / λ × # 

i j 



ESPk = #{(i, j) : i ~ j,S2ij = k}

… and we can weigh together the ESP statistics 
using Geometrically decreasing weights: GWESP 
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Unpacking the alternating triangle effect 

Statistics for graph (n = 16); fixed density; alt star: 2.37 

alternating Triangle parameter  –   +  
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Unpacking the alternating triangle effect 

Statistics for graph (n = 16); fixed density; alt star: 2.37 

alternating Triangle parameter  –   +  
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Unpacking the alternating triangle effect 

Statistics for graph (n = 16); fixed density; alt star: 2.37 

alternating Triangle parameter  –   +  
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Unpacking the alternating triangle effect 

Statistics for graph (n = 16); fixed density; alt star: 2.37 
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Unpacking the alternating triangle effect 

Alternating triangles model multiply clustered areas 

For multiply clustered areas triangles stick together 
We model how many others tied actors have 
 
Edgewise Shared Partner Statistic: 
 

i j 



ESPk = #{(i, j) : i ~ j,S2ij = k}
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Unpacking the alternating triangle effect 

Statistics for graph (n = 16); fixed density; alt star: 2.37 
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Part 5  

Convergence check and goodness of fit 



Revisiting the Florentine families 

#)( =xL #)( =xT#)(2 =xS #)(3 =xS

PNet 

statnet!

Why difference?!



Revisiting the Florentine families 

#)( =xL #)( =xT#)(2 =xS #)(3 =xS

Pnet checks convergence 
 
in 3rd phase  

)()}({ˆ obsxzXzE
MLE

=
θ



Revisiting the Florentine families 

#)( =xL #)( =xT#)(2 =xS #)(3 =xS

Lets check  
For statnet!

)()}({ˆ obsxzXzE
MLE

=
θ



#)( =xL

#)( =xT

#)(2 =xS

#)(3 =xS

Estim3 <- ergm(BusyNetNet ~ kstar(1:3) + triangles , 
verbose=TRUE) 
mcmc.diagnostics(Estim3) 
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Simulation, GOF, and Problems 

Given a specific model we can simulate potential 
outcomes under that model. This is used for 

•  Estimation:  
(a) to match observed statistics and expected 
statistics 
(b) to check that we have “the solution” 

•  GOF: to check whether the model can replicated 
features of the data that we not explicitly modelled 

•  Investigate behaviour of model, e.g.: degeneracy 
and dependence on scale 



Simulation, GOF, and Problems 

Standard goodness of fit procedures are not valid for 
ERGMs – no F-tests or Chi-square tests available 

If indeed the fitted model adequately describes the 
data generating process, then the graphs that the 
model produces should be similar to observed 
data 

For fitted effects this is true by construction 
For effects/structural feature that are not fitted this 

may not be true 
If it is true, the modelled effects are the only effects 

necessary to produce data – a “proof” of the 
concept or ERGMs 



Simulation, GOF, and Problems 

Example: for our fitted model for Lazega 

g(xobs )
For arbitrary function g 

We can look at how well the model reproduces 



Simulation, GOF, and Problems 

From the goodness-of-fit tab in Pnet we get 



Simulation, GOF, and Problems 

Effect MLE s.e. 

Density  -6.501 0.727 

Main effect seniority  1.594 0.324 

Main effect practice  0.902 0.163 

Homophily effect practice  0.879 0.231 

Homophily sex  1.129 0.349 

Homophily office  1.654 0.254 



Simulation, GOF, and Problems 
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Simulation, GOF, and Problems 

Effect MLE s.e. MLE s.e. 

Density  -6.501 0.727 -6.510 0.637 

Main effect seniority  1.594 0.324 0.855 0.235 

Main effect practice  0.902 0.163 0.410 0.118 

Homophily effect practice  0.879 0.231 0.759 0.194 

Homophily sex  1.129 0.349 0.704 0.254 

Homophily office  1.654 0.254 1.146 0.195 

GWEPS 0.897 0.304 

Log-lambda  0.778 0.215 



Simulation, GOF, and Problems 
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Part 6 

Dependencies – Sufficient statistics - 
homogeneity 



Independence - Deriving the ERGM 
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Independence - Deriving the ERGM 
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Independence - Deriving the ERGM 

i

i

k 

Knowledge of AUD, e.g. does not help us predict SEK 

e.g. whether or 

even though dyad {i,l} l i

and dyad {i,k} 

have vertex i 

in common 



Independence - Deriving the ERGM 
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May we find model such that knowledge of AUD, 
e.g. does help us predict SEK 

e.g. whether or ? 



Deriving the ERGM: From Markov graph 
to Dependence graph 

john 
pete 

mary 

paul 

Consider the tie-variables that have Mary in 
common 

How may we make these “dependent”? 



Deriving the ERGM: From Markov graph 
to Dependence graph 
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Deriving the ERGM: From Markov graph 
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Deriving the ERGM: From Markov graph 
to Dependence graph 
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The “probability structure” of a Markov graph is described by 
cliques of the dependence graph (Hammersley-Clifford)…. 
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Deriving the ERGM: From Markov graph 
to Dependence graph 

mary 

john 
pete 

paul 
m,pa 

pa,pe pa,j 

m,pe 

pe,j 

m,j 



From Markov graph to Dependence graph 
– distinct subgraphs? 



The homogeneity assumption 

= 

= 

= 

= 



The homogeneity assumption 

Interpretation: the probability of a graph 
depends only on the structure of the graph 

= = 



A log-linear model (ERGM) for ties 

)()()()()Pr(log 2211 θψθθθ ++++== xzxzxzxX pp

”Aggregated” to a joint model for entire adjacency matrix 

Interaction terms in log-linear model of types 

ijX ikij XX jkikij XXX



A log-linear model (ERGM) for ties 

By definition of (in-) dependence 

)Pr()Pr(),Pr( ikikijijikikijij xXxXxXxX ==≠==

E.g.   and   co-occuring  
i

j 

i

j k 

i

k 

Main effects    interaction term  
ijX ikX ikij XX

More than is explained 
by margins 



Part 7  

Summary of fitting routine 



The steps of fitting an ERGM 

•  fit base-line model 
•  check convergence 
•  rerun if model not converged 
•  include more parameters? GOF 
•  candidate models 



Part 8  

Bipartite data 



Bi-partite networks: cocitation (Small 
1973) 
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Bi-partite networks: cooffending (. 
Sarnecki, 2001) 

offenders 

participating 

offences 



Bi-partite networks 

people participating in 

belonging to 

Social events 
(Breiger, 1974) 

voluntary organisations 
(Bonachich, 1978) 

people 

directors sitting on corporate boards 
(eg. Mizruchi, 1982 



One-mode projection 

Tie: If two directors share a board 

Two-mode 

one-mode 



Bi-partite networks 
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Bi-partite networks 

Researchers 

cite 

texts 



Bi-partite networks 

Researchers 

cite 

texts 



One-mode projection 

What mode given priority? (Duality of social actors and social 
groups; e.g. Breiger 1974; Breiger and Pattison, 1986) 
Loss of information 



ERGM for bipartite networks 

)()()()()Pr(log 2211 θψθθθ ++++== xzxzxzxX pp

The model is the same as for one-mode networks (Wang et 
al., 2007) 

i j 
i 

k 

j 
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Edges ”people” 
2-stars 

”affiliation” 
2-stars 

3-paths 4-cycles 



ERGM for bipartite networks 

i 
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ℓ 

4-cycles 

A form of bipartite clustering 
Also known as Bi-cliques 
One possible interpretation: 



ERGM for bipartite networks 

i 

k 

j 

ℓ 

4-cycles 

A form of bipartite clustering 
Also known as Bi-cliques 
One possible interpretation: 

Who to appoint? 

How about x? 

x 



ERGM for bipartite networks 

Fitting the model in (B)Pnet straightforward extension 
These statistics are all Markov: 

i j 
i 

k 

j 

ℓ 

i 

k 

j 

ℓ 

i 

k ℓ k 

j 

ℓ 

Edges ”people” 
2-stars 

”affiliation” 
2-stars 

3-paths 4-cycles 

<BPNet> 



Part 9  

Missing data 



Methods for missing network data 

Effects of missingness 
Perils 
Some investigations on the effects on indices of 
structural properties (Kossinets, 2006; 
Costenbader & Valente, 2003; Huisman, 2007) 
Problems with the “boundary specification issue” 
Few remedies 
Deterministically “complement” data (Stork & 
Richards, 1992) 
Stochastically Impute missing data (Huisman, 
2007) 
Ad-hoc “likelihood” (score) for missing ties (Liben-
Nowell and Kleinberg, 2007) 
 



Model assisted treatment of missing 
network data 

missing data 

observed data 

If you don’t have a model for what you have 
observed 

How are you going to be able to say 
something about what you have not 
observed using what you have observed 



Model assisted treatment of missing 
network data 

•  Importance sampling (Handcock & Gile 2010; 
Koskinen, Robins & Pattison, 2010) 

•  Stochastic approximation and the missing data 
principle (Orchard & Woodbury,1972) 
(Koskinen & Snijders, forthcoming)  

•  Bayesian data augmentation (Koskinen, Robins 
& Pattison, 2010) 



Subgraph of ERGM not ERGM 

i 

j 

k 

Dependence in ERGM We may also have dependence 

i 

j 

l k 

But if 

k 

?

j 

We should 
include 

counts of: 

Marginalisation (Snijders, 2010; Koskinen 
et al, 2010) 



Bayesian Data Augmentation 

With missing data: 

θSimulate parameters 

In each iteration 
simulate graphs 

θ

missing 

Bayesian Data Augmentation 
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Simulate parameters 

With missing data: 

θ

θ

In each iteration 
simulate graphs 

missing 

Most likely missing 
given current θ 

Bayesian Data Augmentation 



Bayesian Data Augmentation 

Simulate parameters 

With missing data: 

θ

θ

In each iteration 
simulate graphs 

missing 
and so on… 

Bayesian Data Augmentation 



Bayesian Data Augmentation 

Simulate parameters 

With missing data: 

θ

θ

In each iteration 
simulate graphs 

missing 

… until 

Bayesian Data Augmentation 



Bayesian Data Augmentation 

What does it give us? 
Distribution of parameters 

Distribution of missing data 

Subtle point 

Missing data does not depend on the 
parameters (we don’t have to choose 
parameters to simulate missing) 

θ

missing 

Bayesian Data Augmentation 



Bayesian Data Augmentation Lazega’s (2001) Lawyers 

Collaboration network among 36 lawyers in a  
New England law firm (Lazega, 2001) 

Boston office: 
Hartford office: 
Providence off.: 

least senior: 

most senior: 



Bayesian Data Augmentation Lazega’s (2001) Lawyers 

190 

∑ ijx

)( jiij aax +∑
)( jiij bbx +∑
)( jiij bbx =∑ 1

)( jiij ccx =∑ 1

)( jiij ddx =∑ 1

3
23

1
2

1
)()1()()(3

−
−−−++− n
nn xtxtxt
λλ



Edges: 
Seniority: 

Practice: 

Homophily 

Sex: 

Office: 

GWESP: 

with θ8 = log(λ) 

Practice: 

Main effect 

t1 : 

t2 : 

etc. 

(bi = 1, if i corporate, 
0 litigation) 

t3 : 



Bayesian Data Augmentation Lazega’s (2001) Lawyers – ERGM 
posteriors (Koskinen, 2008) 



Bayesian Data Augmentation Cross validation (Koskinen, Robins & 
Pattison, 2010) 

Remove 200 of the 630 dyads at random 
Fit inhomogeneous Bernoulli model obtain the 

posterior predictive tie-probabilities for the 
missing tie-variables 

Fit ERGM and obtain the posterior predictive tie-
probabilities for the missing tie-variables 
(Koskinen et al., in press) 

Fit Hoff’s (2008) latent variable probit model with 
linear predictor θTz(xij) + wiΛwj

T  

Repeat many times 
 

 



Bayesian Data Augmentation ROC curve for predictive probabilities combined 
over 20 replications (Koskinen et al. 2010) 
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Bayesian Data Augmentation ROC curve for predictive probabilities combined 
over 20 replications (Koskinen et al. 2010) 
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Bayesian Data Augmentation ROC curve for predictive probabilities combined 
over 20 replications (Koskinen et al. 2010) 
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Bayesian Data Augmentation Snowball sampling 

•  Snowball sampling design ignorable for ERGM 
(Thompson and Frank, 2000, Handcock & Gile 
2010; Koskinen, Robins & Pattison, 2010) 

•  ... but snowball sampling rarely used when 
population size is known... 

•  Using the Sageman (2004) “clandestine” network 
as test-bed for unknown N 
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Spatial embedding 



Spatial embedding – Daraganova et al. 
2011 SOCNET 

 306 actors in Victoria, Australia 
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Spatial embedding – Daraganova et al. 
2011 SOCNET 

 306 actors in Victoria, Australia 

 ... all living within 14 kilometres of each other 

Bernoulli conditional on distance 
Empirical probability 



Spatial embedding – Daraganova et al. 
2011 SOCNET 

Spatial interaction function: Tie probability 
as a function of distance 

E.g. Attenuated Power-Law: 
Pr(Xij =1| dij ) =

p
1+αdij

γ



Spatial embedding – Daraganova et al. 
2011 SOCNET 

Spatial interaction function: Tie probability 
as a function of distance 

The Attenuated Power-Law: 

Pr(Xij =1| dij ) =
p

1+αdij
γ

Is equivalent to: 

Pr(X = x |D = (dij )) =
exp{θ1 xiji< j∑ +θ2 xij log(dij )i< j∑ }

exp{θ1 uiji< j∑ +θ2 uij log(dij )i< j∑ }
u∈X∑

p =1 α = e−θ1 γ = −θ2with: AND: log(dij )



Spatial embedding – Daraganova et al. 
2011 SOCNET 

Edges -4.87* (0.13) 

Alt. star 

Alt. triangel 

Log distance 

Age 

heterophily 
-0.07* (0.01) 

Gender 

homophily 
-1.13* (0.61) 
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Spatial embedding – Daraganova et al. 
2011 SOCNET 

Edges -4.87* (0.13) 1.56* (0.65) -4.79* (0.66) 

Alt. star -0.86* (0.18) 

Alt. triangel 2.74* (0.15) 

Log distance -0.78* (0.08) 

Age 

heterophily 
-0.07* (0.01) -0.07* (0.01) 0.001 (0.07) 

Gender 

homophily 
-1.13* (0.61) -1.13 (0.69) 0.09 (0.83) 



Spatial embedding – Daraganova et al. 
2011 SOCNET 

Edges -4.87* (0.13) 1.56* (0.65) -4.79* (0.66) -0.20 (0.87) 

Alt. star -0.86* (0.18) -0.86* (0.2) 

Alt. triangel 2.74* (0.15) 2.69* (0.14) 

Log distance -0.78* (0.08) -0.56* (0.07) 

Age 

heterophily 
-0.07* (0.01) -0.07* (0.01) 0.001 (0.07) 0.002 (0.06) 

Gender 

homophily 
-1.13* (0.61) -1.13 (0.69) 0.09 (0.83) 0.07 (0.47) 

ERGM: distance and endogenous 
dependence explain different things 



Part 8  

Further issues 



Other extensions 

There are ERGMs (ERGM-like models) for 
-  directed data 
-  valued data 
-  bipartite data 
-  multiplex data 
-  longitudinal data 
-  modelling actor autoregressive attributes 



Further issues – relaxing homogeneity 
assumption 

 ERGMs typically assume homogeneity 
=

=

=

=

(A) Block modelling and ERGM (Koskinen, 2009) 
(B)  Latent class ERGM (Schweingberger & Handcock) 



Further issues – model selection 

Assessing Goodness of Fit: 
-  Posterior predictive distributions (Koskinen, 
2008; Koskinen, Robins & Pattison, 2010; 
Caimo & Friel, 2011) 
-  Non-Bayesian heuristic GOF (Robins  et al., 
2007; Hunter et al., 2008; Robins et al., 2009; 
Wang et al., 2009) 
Model selection 
- Path sampling for AIC (Hunter & Handcock, 
2006); Conceptual caveat: model complexity 
when variables dependent? 
-  Bayes factors (Wang & Handcock…?) 
 



Wrap-up 

ERGMs 
-  Increasingly being used 
-  Increasingly being understood 
-  Increasingly being able to handle imperfect 
data (also missing link prediction) 
Methods 
- Plenty of open issues 
- Bayes is the way of the future 
Legitimacy and dissemination 
- e.g. Lusher, Koskinen, Robins ERGMs for 
SN, CUP, 2011  
 
 



Remaining question: used to be p*… 

... why ERGM? 
 


