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Abstract

As the insurance industry is highly data driven it is no surprise that machine learn-

ing (ML) has made its way into the industry. While GLMs are still the comfort

zone of most actuaries, we have in recent years seen a surge in machine learning

algorithms. This study puts focus on developing and evaluating three tree-based

machine learning models, starting from simple decision trees and working up to the

more advanced ensemble methods random forests and gradient boosting machines.

We predict the claims frequency for an all-risk insurance tariff through a case study

based on a data set provided by a Swedish insurance company. The gradient boost-

ing machines and random forests are found to outperform the single decision trees,

and moreover, we use visualisation tools to uncover and gain insights from the mod-

els.
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Sammanfattning

Med tanke på att försäkringsbranschen i stor utsträckning förlitar sig på stora mäng-

der data, är det inte förvånande att maskininlärningstekniker har börjat göra avtryck

på industrin. Fastän det flesta aktuarier fortfarande jobbar med GLM modeller, har

vi på senare år sett ett uppsving av maskininlärning inom försäkringsmodellering.

Denna studie ämnar att utveckla och utvärdera tre trädbaserade maskininlärnings-

modeller, från ett enkelt beslutsträd till de mer avancerade ensemble metoderna

random forest och gradient boosting machines. Vi modellerar skadefrekvensen för

en allrisk försäkring genom en fallstudie på försäkringsdata från ett svenskt försäk-

ringsbolag. Gradient boosting machines och random forest visar sig överträffa de

simpla beslutsträden, och vidare använder vi visualiseringsmetoder för att tolka och

få insikter från modellerna.

Nyckelord

Beslutsträd, maskininlärning, frekvensmodellering, försäkringsdata, korsvalidering
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1 Introduction

Due to technological breakthroughs and the realisation of big data in many industries,

the popularity of using machine learning (ML) in business application has seen surge, and

the insurance industry is no exception. Although most research in the field of insurance

modelling is still focused on so called generalised linear models, there are notable papers

in which ML is used in rate making. Wütrich and Buser show how ML models can be

used to provide estimates for frequency in an insurance context [5]. Henckaerts et al.

predict both frequency and severity from an insurance portfolio, using tree based ML

methods, and shows how these methods can surpass the traditional GLM [8]. This paper

will largely follow in their footsteps, in hope of validating their results through a case

study of a non-life insurance tariff, but also to bring insights to a Swedish insurer who’s

data serves as the foundation for the models in this study. Moreover, this study differs

in that it focuses on a home insurance tariff rather than auto insurance. This paper is

outlined as follows: First, an overview of the business model and common practices of

insurance companies will be given. Second, the fundamentals of tree-based ML models

will be introduced. Third, we will apply this knowledge in the context of a case study,

with the purpose of evaluating and comparing the ML models.

2 Insurance Fundamentals

This section aims to, from a broad perspective, explain the industry of insurance and the

current state-of-the-art modelling techniques employed in this domain.

2.1 Underlying Principles of Insurance

The insurance industry is an industry concerned with hedging against the risk of uncertain

financial loss, and the business of insurance companies is therefore largely a risk man-

agement endeavour. The insured trades future risk with an insurer for a fixed premium

through a contract, known as the insurance policy, and if the policy holder is subject to a
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loss they can submit a claim to the insurer, if permitted by the policy. The premium is set

by the insurer in advance of any claims, and hence it is vital for the company to predict

the risks of their customers in order to set a profitable premium. With this in mind, it is

not surprising that predictive modelling is extensively used in insurance companies; both

in assessing customers and setting premiums.

Insurance companies make money through both underwriting and by investing the pre-

miums collected from customers, underwriting being the primary work carried out at the

insurance company, involving measuring the risk of insuring a customer and what pre-

mium should be charged in order to make a profit [1]. Any risk that can be quantified can

potentially be insured and specific kinds of risks that can give rise to claims are known

as perils in the insurance policy. For example, if we consider a home insurance policy

in the US, usually, damage to the home and the owner’s belongings are both covered

by the policy. In contrast, a Swedish home insurance always includes: movables (covers

theft, fire damage etc...), travel protection, liability protection, legal expenses and assault

protection [2]. Moreover, if the insurance undertaker wishes they can usually purchase

additional insurance, for example all-risk which covers all damage except specific perils

that are excluded. Examples of excluded perils are: damage due to war, a flood or an

earthquake.

2.2 Insurance Pricing

First, it is important to understand why setting a premium that rightfully corresponds to

the risk of the customer is so crucial for the insurer. We will highlight this with a simple

example. Assume two insurers, A and B, exist and A has a low premium relative to the

risk of loss, while B has an adequate premium in relation to the risk. In this scenario, a

high risk customers would opt for A since their premium is relatively low compared to

B, thus A would attract high risk customers and in effect see their margins being eaten

up. On the contrary, if A’s premiums are too high they would not attract any profitable
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customers and still lose money. In the light of this simple example, we see why a com-

petitive pricing strategy is paramount. Perhaps, the most common pricing strategy is the

frequency-severity strategy.

Opting for the frequency-severity strategy, we assume there are two factors influenc-

ing the price [3]:

1. Frequency (F ) - number of claims per exposure time

2. Severity (S) - average loss per claim

where exposure is the time for which a risk is insured. Now, assume that an insurer

has a total loss of L spread out over N claims and an exposure e. Then the effective, or

technical premium would be [4]:

τ = E
(
L

e

)
= E

(
L

N
|N > 0

)
× E

(
N

e

)
= E (S)× E (F ) (1)

Where we have assumed independence between the frequency and severity. By this re-

duction, insurance pricing becomes a problem of predicting S and F . Be that as it may,

in this paper we will restrict our study to the frequency.

2.3 Predictive Modelling in Insurance

In general, predicting the frequency can be scaled down to finding a function, or model,

fF (·), given features x, such that:

F = fF (x) (2)

where x is the training data of the model. In almost all cases this function fF (x) cannot

be found explicitly. Instead, we try to approximate fF as well as we can.
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The modelling cycle

Insurance companies usually rely on statistical methods to find approximations for fF .

There are of course many ways to approach modelling, however, we can summarise the

modelling cycle from a high-level perspective by the following six steps [5]:

The modelling cycle

1. Data collection, data cleaning, data pre-processing, data visualisation

2. Selection of model class and predictive variables

3. Choice of loss function

4. Solving an optimisation problem

• Choosing optimisation algorithm

• Choosing step length

• Choosing stopping criteria

• Choosing initial seed of the algorithm

5. Model validation

6. Possibly we have to move back to item 1. if we are not satisfied by the "solution"

If we are to look at these steps from an insurance companies perspective we can note

a few things. First, insurance companies generally have an abundance of data, however,

the data usually needs to be processed to provide useful insight. Second, the go-to model

for most insurance companies is, and has been for the last 30 years, the generalised linear

model (GLM), which generalises linear regression by allowing for non-linear relation be-

tween the predictive variables and the response via a so-called link function. GLMs can

be formulated as:

E(Y ) = g−1(X · β) (3)
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where Y is the response, g(·) the link function,X the predictive variables and β unknown

parameters. This paper does not aim to give an exhaustive exposition of GLMs, if the

reader is interested in reading more on the subject, please refer to [6] [7]. Be it implicitly

or explicitly, essentially all models have underlying assumptions, and models used in

rate making are no exception. Next, we will discuss the assumptions commonly made in

frequency models and moreover, derive a useful metric to assess the fit of a model given

these assumptions.

Model Assumptions for Claim Frequency Modelling

The first assumption we make is on the distribution of the number of claims. The number

of claims, N , filed by a customer is usually assumed to follow a Poisson distribution [8].

A discrete random variable, N , is said to follow a Poisson distribution with parameters

λ ∈ R and v ∈ R+, if for k ∈ N0, the probability mass function of X is given by:

f(k, λv) = P(N = k) = e−λv
(λv)k

k!
(4)

where E(X) = Var(X) = λ. The volume v often measures the exposure in years. The

second assumption we make is that the portfolio is homogeneous, meaning that we see

the claims {N1, N2, ..., Nn} as a family of independent Poisson distributed variables, with

the same parameter λ for all Ni. In this way, the modelling problem becomes a problem of

estimating the parameter λ. With this assumption we can write down the joint likelihood

(equation 5) and log-likelihood (equation 6) for the claims vector N = {N1, N2, ..., Nn}:

`N (λ) = P(N1 = k1, ..., Nn = kn) =
n∏
i=1

P(Ni = ki) =
n∏
i=1

e−λvi
(λvi)

Ni

Ni!
(5)

log `N (λ) =
n∑
i=1

−λvi +Ni log (λvi)− log (Ni!) (6)

Now, if we instead let every Ni have a corresponding λi and use the ML-estimate, λML
i =
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Ni

vi
, we get the so called saturated model which has a log-likelihood of (by inserting λML

i

into equation 7):

log `sN (N ) =
n∑
i=1

−Ni +Ni log (Ni)− log (Ni!) (7)

Taking the difference of the log-likelihood for the saturated model and the homogeneous

model, and multiplying by a factor of 2, we arrive at what is called the Poisson deviance:

D(N , λ) = 2[log `sN (N )− log `N (λ)] = 2
n∑
i=1

[Ni log
Ni

λvi
− (Ni − λvi)] (8)

In words, the Poisson deviance is the difference between the prediction of the saturated

model, which in a way is the maximally overfitted model, and the model of interest. The

Poisson deviance is normally used to assess the goodness of fit in a Poisson regression

context, where a high deviance means a poor fit and vice versa for a low deviance. Later,

we will rely on this metric in evaluating all the models built in the case study, but first

it is necessary to introduce the fundamental ML theory used in all models.

3 Machine Learning Fundamentals

In this section we present the basic concepts of ML used in building, tuning and evaluating

ML models. First, we introduce three different models, all of which are based on the

decision tree. Second, we discuss how these models’ parameters can be optimally tuned.

Third, we cover methods to uncover, and evaluate the models.

3.1 Decision Trees

One common type of ML model is the decision tree, introduced by Breiman et al. [9] in

1984, which is a very intuitive and natural model for us humans as it in a way mimics

the way we make decisions. In order to give a formal definition of a decision tree, we first

need to define predictor space.
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Definition 3.1. The predictor space, R(x), for a vector of continuous random variables

x ∈ Rp, is the set of possible values for the p variables.

Definition 3.2. Given a predictor space R(x), a decision tree, fT (x), is a predictive

model that partitions R into J distinct, non-overlapping regions Rj, with a fitted response

ŷRj
, such that:

fT (x) =
J∑
j=1

ŷRj
1(x ∈ Rj) (9)

where,

R = ∪Jj=1Rj s.t. Ri ∩Rj = ∅, ∀i 6= j

and,

1(P ) =


1 if P is true

0 otherwise
(10)

Obviously the above definition is very general, and there are indeed many ways of growing

a tree for both classification and regression problems, however the most commonly used

algorithm is the Classification and Regression Tree algorithm (CART). One of the issues

in growing the tree is that there is a plethora of ways to partition the predictor space, and

therefore CART uses a greedy approach to the partitioning, known as recursive binary

splitting. It works by asking a sequence of hierarchical questions starting from the so

called root node, consisting of the entire training set. A node is a subset of features, and

can be either terminal or non-terminal. A non-terminal node can split into two daughter

nodes, and this binary split is determined by a condition on one variable, and once a

value in the original set reaches this node it either satisfies the condition or not. If it does

it goes down to one of the daughter nodes, if not it goes down to the other. A node that

does not split is called a terminal node [10]. See Figure 1 for an example of a decision

tree.
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Figure 1: Example of a decision tree which decides if we should go jogging or not based
on the weather

CART

CART consists of two steps - one growing step and one pruning step. Lets first consider a

node t, a candidate for a split condition s and a variableX that the split is done on, CART

then splits t into a right node, tR = {X : X > s}, and a left node, tL = {X : X ≤ s} so

that t = tL ∪ tR. This procedure is then recursively continued until a stopping criterion

is reached, such as a maximum depth of the tree. Generally, s and X are chosen so that

some loss function L(·, ·) is minimised given the two daughter nodes [9]:

s,X = argmin
s,X

 ∑
xi∈tR(s,X)

L(yi, ŷtR) +
∑

xi∈tL(s,X)

L(yi, ŷtL)

 (11)

Loss function

In order to use CART, one first has to choose a loss function [10]. The most common

choice of loss function in a regression context is the mean squared loss:

L(yi, ŷi) = MSE =
1

N

N∑
i=1

(yi − ŷi)2 (12)

Though, one should always choose loss function depending on the distribution of the data
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at hand. The MSE is appropriate if the data is normally distributed but, for example if

the data is distributed according to a Poisson distribution, the MSE might not be the

best option [8]. In fact, the Poisson deviance we derived earlier (equation 8) is a much

better choice as it rests on the assumption of a Poisson distributed predictor variable.

Therefore it will be used as the loss function in all decision trees built in this paper.

Bias-Variance Trade-Off

So far we have only discussed how to grow the tree, but as mentioned above there are

two steps to CART. Before we go into explaining the next step we need to have an

understanding of an important concept in modelling, namely, the bias-variance trade off.

Using decision trees as an example, imagine we grow a tree so deep that every single input

value has a corresponding terminal node. In this way, every data point in the training

set would be correctly classified and we say that the model has very low bias on the

training data. Now, if we use this model to predict the response of a new input, as one

can imagine, the results would vary a lot depending on the input. In other words, the

model has high variance. In this case, we say that the tree is overfitted on the training set.

On the other end of the spectrum, we could grow a very short tree, which would be more

biased on the training set, but hopefully generalise better to new data. This is known as

the bias-variance trade off; as the complexity of the model increases, we reduce bias at

the cost of an increased variance and vice versa. This phenomenon can be summarised

by Figure 2. [11]
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Figure 2: In all ML models there is a trade-off between bias and variance

In light of the previous discussion, we now realise that if the tree is grown deep we risk

overfitting the model. Therefore, CART does not only make sure the model fits the data,

it also penalises a tree that is too complex. In practice this is done by introducing a

complexity parameter, cp, in the minimisation:

J∑
j=1

 ∑
xi∈Rj

L(yi, ˆyRj
)

+ cp · J
∑
xi∈R

L(yi, ŷR) (13)

where the first term ensures a good fit and the second reduces overfitting according to

the constant cp, with cp = 1 resulting in a tree without splits and cp = 0 a maximally

deep tree. One of the first caveats we face is how we choose an optimal value of cp. This

is most commonly done through a technique known as cross validation. [12]

3.2 Cross-Validation

In k-fold cross validation we divide a dataset, D, into k mutually exclusive sets D =⋃k
i=1Di, these sets are iterated over, and in each iteration one of the sets, {Di : i ∈
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{1, 2, ..., k}}, is left out for subsequent testing. Using the data left after leaving out a test

set, D \Di, we can again iteratively leave out one of the data sets, {Dl : l ∈ {1, 2, ..., k} \

{i}}, train a tree on the remaining data, D\{Di,Dl}, validate on Dl, use the parameters

which minimise the average validation error, build a model with these parameters and

finally test it on Di. In the end, we get results consisting of the test error for the k different

folds. This procedure, with k = 6, is illustrated in Figure 3. In this way we completely

utilise the data at hand, in contrast to for example dividing all data into one test set and

one training set, this method lets us get the most out of our data. This technique can be

used to tune parameters such as the complexity parameter in the decision tree.

Figure 3: The data set is partitioned into 6 folds, one fold is left out for testing, and 5-fold
cross-validation is iteratively performed on the remaining data to find the optimal model
parameters for the current fold
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3.3 Ensemble Methods

There are obvious advantages of decision trees, such as their interpretability and the fact

that they can combine both continuous and discrete data. However, they also have their

limitations. For one, single decision trees tend to have a rather high variance and can

be very sensitive to the training data [13]. In order to counteract this shortcoming, so

called ensemble methods can be used, in which multiple weak models are aggregated into

a more powerful predictor. There are many ensemble techniques, however in the scope of

this paper, three methods will be covered: bagging, random forests and gradient boosting

machines.

Bagging

Bootstrap aggregating, or bagging, was introduced in 1996 by Leo Breiman [14]. In short

it is a method of aggregating several decision trees into a single predictor and thereafter

predicting a response based on averaging for regression problems, and majority vote for

classification problems. More specifically, given a training set D = {(xi, yi)}Ni=1, where

yi are the labels and xi the features, and a modelling procedure ŷ = f(x,D), we train

T models {fi}Ti=1 on T different bootstrap samples, Li, of D. If the problem at hand

is a regression problem we find the prediction by 1
T

∑T
i=1 fi(x,Li). While bagging gives

improvement compared to single decision trees, it has a significant problem. Namely, the

splits in each decision tree will be based on what variables minimise the loss function the

most, and therefore the T trees will be somewhat correlated, in that they will most likely

split on the same variables. This problem is addressed in the next technique, random

forests.

Random forests

Random forests are identical to bagging, with the main difference being in the variable

selection, which in random forests, is done by random sampling from all features to ensure

that trees wont be too similar. That is, when growing the decision trees not necessarily all
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features are used [15]. See Algorithm 1 for more details on implementation of the random

forest model.

Algorithm 1 Random Forest
for i=1 to T do

generate random sample Li
while stopping criteria not satisfied do

- randomly select m of all features
- train a tree on these features

end
end
frf(x) = 1

T

∑T
i=1 ftree(x|Li)

Gradient Boosting

J. Friedman introduced gradient boosting in his 1999 paper [16]. The general problem of

predictive modelling is, as we now know, to find a function f(x) to predict a response

variable y from a set of explanatory variables x, which minimises some loss function

L(f(x), y). Gradient boosting is considered a gradient descent algorithm, meaning it

relies on iterative tuning of parameters in order to achieve the minimium of a specified

loss function. In boosting, f(x) is estimated by an expansion of the form:

f̂(x) =
M∑
m=0

βmh(x,am) (14)

where the base learners h(x,am) are usually chosen to be simple functions with parame-

ters a. Both a and β are fitted to the training data in a step-wise manner. We start with

an initial guess f̂0(x) and then for each m we evaluate:

(βm,am) = argmin
β,a

N∑
i=0

L(yi, f̂m−1(xi) + βh(xi,a))

f̂m(x) = f̂m−1(x) + βmh(x,am))

(15)

Friedmans gradient boosting approximately solves Equation 15 through a two step pro-
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cedure. First, h(x,a) is fit by least-squares:

am = argmin
a,ρ

N∑
i=0

[ỹim − ρh(xi,a)]2 (16)

where,

ỹim = −

[
∂L(yi, f̂(xi))

∂f̂(xi)

]

f̂(x) = f̂m−1(x)

(17)

and then βm is determined by:

βm = argmin
β

N∑
i=0

L(yi, f̂m−1(xi) + βh(xi,am)) (18)

The choice of the base learners h(·, ·) is arbitrary, and naturally we choose to use decision

trees in this study. In this setting, the parameters am are the splitting variables and

splitting points defining the tree. The base learner then becomes:

h(xi, {Rlm}L1 ) =
L∑
l=1

ylm1(x ∈ Rlm) (19)

with ylm being the mean of ỹim in the region Rlm. Since the value of h(·, ·) is constant in

each region of the tree Equation 18 simplifies to:

γlm = argmin
γ

N∑
i=0

L(yi, f̂m−1(xi) + γ) (20)

Finally, the current approximation f̂(x)m−1 is updated for each region Rlm, using γlm:

f̂m(x) = f̂m−1(x) + λγlm1(x ∈ Rlm) (21)

where a shrinkage parameter, 0 < λ ≤ 1, which determines the learning rate of the algo-

rithm, is introduced.
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We have now covered all the models that will be used in the subsequent case study,

and now move on by presenting methods to evaluate these models.

3.4 Evaluation Methods

According to the European Union General Data Protection Regulation (GDPR), in the

context of automated decision-making [17]:

"[the data subject should have] the right ... to obtain an explanation of the

decision reached."

Therefore, it is important to be able to understand, interpret and evaluate the models

we build. In doing this we will utilise two different measures: Variable importance and

partial dependency.

Variable importance

Variable importance measures how important the independent variables are in predicting

the dependent variable. The measure was introduced by Breiman in 2001 [15] and he

defined importance of a variable in terms of decrease in the loss function when the variable

is chosen as the feature to split a node on. It can be written as a sum over all the splits

where the variable of interest is involved:

I(xl) =
J∑
j=1

1[v(j) = xl]∆L (22)

where, xl is the variable of interest, v(j) the split variable at index j and ∆L the difference

in the loss function before and after the split on xl.

Partial dependency

The concept of partial dependence relies on marginalising a variable and seeing what effect

it has on the predictions. Let S ⊂ {1, 2, ..., p} and C be the complement of S, further, let
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x be our training data and xs the coordinates in S of x. The partial dependence function

for a regression model is then defined by:

fs = E[f(xc,xs)] =

∫
f(xc,xs)dP (xc) (23)

we estimate this equation by:

f̂s =
1

N

N∑
i=1

f̂(xci ,xs) (24)

where f̂ is the statistical model we use and xci the variable values used in training

the model. [18] By plotting the partial dependence of the predicted variable and one of

the independent variables, we can see more clearly what effect the individual predictive

variable has on the response. This can be particularly interesting for an insurer as it

is known in the insurance industry that some features have a strong influence on the

frequency. For example, it is known in auto motive insurance that young drivers, especially

males, tend to stand out in having a large amount of claims.

4 Case Study

This section focuses on building and evaluating the models covered in the background,

using claims data from a Swedish insurer.

4.1 Data

The dataset used contains claims data for the all-risk cover of the company’s housing

insurance product, it consists of approximately 200,000 rows and covers feature variables

such as, how large the insured property is, how many people live in property or the

age of the insurance undertaker, but also the exposure time and number of claims, that

constitute the frequency. The data set contains a very large number of rows where no

claim has been made (97%) and therefore is quite imbalanced. This is partly dealt with
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by the Poisson deviance, however it can still cause problems in modelling as the over

represented zero-valued claims could easily be favoured by the model and cause a high

accuracy without even considering the underrepresented data. We give an overview, in

the form of histograms, of the number of claims and exposure times in Figure 4 and 5.

Figure 4: Histogram of Exposure
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Figure 5: Histogram of Number of Claims
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Before any modelling can be done the data needs to be prepared. In this case the data

preparation focused on mainly three issues:

• Outliers

• Uncertain data

• Missing values

Outliers For the all-risk cover, only claims that have a severity of 50,000 SEK or less

are covered by the insurance. Therefore, all values above 50,000 were set to 50,000. More-

over, there were several faulty observations, such as negative claims, which were omitted.

Uncertain data In paying a claim there are three important quantities, the amount

incurred but not reported (IBNR), the amount reported but not settled (RBNS) and the

amount that has been paid to the customer. The insurance company will reserve money

to cover the RBNS and the IBNR, and after the claim has been made by the insured this

reserve will start being paid out to the customer until the claim is closed (See Figure 6).

There is a certain uncertainty in the RBNS, which could be an issue. Therefore the data

was truncated so that the fraction of RBNS was relatively low.

Missing values Rows containing missing values where removed only if they were missing

for an important feature or for one of the response variables, as most model implemen-

tations cannot deal with missing values. This of course reduces the amount of data, but

given the size of the data set this is not a great loss. After the data preparation, around

140,000 observations were left.
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Figure 6: The insurance company pays the claim from their reserve until the closure time

4.2 Modelling

The first step of building a model is to choose what variables to use as features. This can

be tricky as it is not always obvious in beforehand if there is a correlation between the

response and a feature. Here, we chose to look at what variables were important in the

GLM model currently used by the company, and assume these would also be important

for the new models. The variables used in modelling are summarised in Table 1.

Table 1: Variable names of the dependent and independent variables used in the models

Variable name Description

NO_CLAIM _NOT _NULL No. claims
EXP_COV Exposure time

AGE_INSUR_PERS Age of the insured
NO_INSUR No. people in the household

ACCOM_TYPE_NAME Type of property
LIVE_AREA Surface area

The models were implemented in R, primarily using an extension of the rpart pack-

age (found at https://github.com/henckr/distRforest) as well as the gbm package

[19]. For supplemental R code please visit the following Github: https://github.com/
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samueltober/Insurance-ML. For more information on implementation details and ex-

planations of parameters see [19] and [20].

4.3 Results

In this section we present the results of the models covered in the background when used

to predict frequencies using the insurance data set as training data. We evaluate the

models based on three metrics: Variable importance, Poisson deviance on the 6 folds of

the cross-validation and partial dependency plots.

4.3.1 Variable Importance

We evaluate the variable importance of the independent variables for each of the three

models using the average of the optimal parameters found using the cross-validation

scheme (See Table 2). Below are the results for each model.

Figure 7: Relative variable importance in decision tree model
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Figure 8: Relative variable importance in random forest model

Figure 9: Relative variable importance in gradient boosting machine model
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4.3.2 Cross-Validation

To choose the right value for the model parameters we implement the 6-fold cross vali-

dation scheme described in Section 3.2. This scheme was used for all three models, and

the optimal parameters and Poisson deviances for the different folds are shown in Table

2 and Figure 10.

Figure 10: 6-fold cross-validation results for decision tree, random forest and gradient
boosting machine
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Table 2: Optimal parameters and average test deviance in cross-validation for decision
tree, random forest and gradient boosting machine

Fold Decision Tree Random Forest GBM
cp No. trees No. cand No. trees Interaction depth

1 0.00036 350 2 1400 5
2 0.00040 300 2 1100 5
3 0.00050 400 2 1200 4
4 0.00034 400 2 1800 3
5 0.00037 400 2 1000 4
6 0.00038 400 2 700 5
Avg. Deviance 0.255 0.254 0.253
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4.3.3 Partial Dependency Plots

Below are the results for the partial dependency plots, plotting the partial dependency

for the age of the insured (Figure 11), the number of people in the household (Figure

12) and the surface area of the property (Figure 13) against the frequency. The partial

dependency was calculated for each continuous variable, for all of the three models using

the average of the optimal parameters in Table 2. In all plots we see that the lines become

flat after a certain x-value, this is due to lack of data for these values.

Figure 11: Partial dependency plot for age
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Figure 12: Partial dependency plot for the number of people in household

Figure 13: Partial dependency plot for surface area of the insured property
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5 Discussions

Below the results presented in section 4 are discussed and conclusions based on these are

drawn.

5.1 Variable importance

The variable importance plots for the three different models paint three quite differ-

ent pictures. Nevertheless, the models still have some similarities. Firstly, neither model

considers the accommodation type as an important feature, having the lowest relative im-

portance for all three models. Secondly, all three models consider the age of the insured

to be an important variable. Thirdly, regarding the number of people in the household,

both the decision tree and the gradient boosting machine agree that this variable is im-

portant while the random forest favours it less. Lastly, the surface area is considered

quite important for both the random forest and the gradient boosting machine, while

the simple decision tree finds it less important. Variable importance is commonly used to

select variables for modelling, however, as all variables in this case have an importance

greater than zero, none of the variables should be discarded in modelling.

5.2 Partial dependency

We separately discuss the partial dependency for the three different continuous variables:

Age, number of people in the household and surface area. In general we can note that

the single decision tree gives a much coarse dependence, while both the gradient boosting

machine and random forest are more smooth. The gradient boosting machine shows quite

a large variance for some values, especially in Figure 13. Because the gradient boosting

machine is an iterative process, it can be fairly sensitive to the data, which could explain

the high variance. Nonetheless, all three models show signs of roughly the same trends.
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Age of the Insured

We can see a general trend in that the number of claims filed seems to decrease with the

age with a sudden drop in all three models around 60 years of age. The downward trend

could be due to an increasing wariness as one gets older and/or the fact that younger

people tend to take higher risks.

Number of People

For the number of people living in the household we see an increase in the number of

claims with the number of people, with a peak around 5 people, and then a decrease. This

decrease in claims, around 5 people could be explained by babies or children increasing

the attentiveness of the parents and thereby reducing the number of filed claims.

Surface Area

The partial dependency plot for the surface area paints a rather volatile picture. All the

models are in accord regarding the overall trend, with the exception of the gbm showing a

rather high spike around 110 m2 and drop around 140 m2 compared to the other models.

One could speculate in explanation for trends shown in this plot but generally there is

not an obvious trend as in Figure 11 and Figure 12.

5.3 Cross-Validation Performance

The cross-validation results show that the gradient boosting machine on average has

the best predicitve performance, followed by the random forest and the simple decision

tree performs the worst. In comparison, Henckaerts et al. [8] found that the gradient

boosting machine had a significantly better performance compared to the random forest

and decision tree. The reason we do not see this clearly in our results could be due to the

data quality, the tuning grid used in cross-validation or other parameter settings in the

gradient boosting machine implementation. Due to limited computing power, the cross-
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validation tuning was not carried out as extensively as one could have wished for, which

could mean that the models were not perfectly tuned. Although the simple decision tree

has worse performance than the other two models, it has the advantage of being simple

and very fast to train. Depending on the application, it could be favourable to use a

more simple and fast model so we cannot rule out the simple decision tree. However, in a

risk prediction context, a better predictive performance would be a priority since it could

potentially increase the margins of the insurance company.

6 Further Research

The scope of this study is clearly limited, and there is a great deal yet to investigate. First

and foremost, this study solely focused on predicting the frequency of claims and did not

pay any attention to the severity. Severity is equally important in assessing the risk of a

customer and must therefore be taken into account. Secondly, as mentioned previously

there are usually interactions at play between the independent variables. We did not delve

into this in this paper, however these effects can be of great importance in rate making

as they can give a deeper understanding of certain variable combinations which in the

end could influence the pricing strategy. Thirdly, as mentioned above, due to lack of

computing power, the cross-validation scheme was perhaps not thorough enough to give

a significant result. Hence, a more elaborate scheme should be employed in any further

research. Finally, the models were not compared to a state-of-the-art GLM model, which

in the end is necessary to draw any conclusions on whether the ML models have potential

contribute to a more profitable pricing strategy compared to industry standards.
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