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Data mining is being increasingly applied to social networks. Two relevant rea-
sons are the growing availability of large volumes of relational data, boosted by
the proliferation of social media web sites, and the intuition that an individual’s
connections can yield richer information than his/her isolate attributes. This syn-
ergistic combination can show to be germane to a variety of applications such as
churn prediction, fraud detection and marketing campaigns. This paper attempts
to provide a general and succinct overview of the essentials of social network
analysis for those interested in taking a first look at this area and oriented to use
data mining in social networks. © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

he world is a complex system of interconnected

parts. Each part itself constitutes a smaller sys-
tem whose networked structure can be, most of the
times, analyzed through the lens of social network
analysis (SNA).

SNA is an interdisciplinary methodology re-
search area with contributions from Sociology, So-
cial Psychology, Anthropology, Physics, Mathemat-
ics, Computer Science, among others, being a rich
scientific field that has significantly benefited from
the collaborative efforts of researchers from different
scientific areas. Because networks were studied inde-
pendently by distinct disciplines, for a considerable
amount of time, each one developed its own jargon.
To avoid ambiguity and clarify the adopted language,
in Table 1 we present the network terminology used
in different fields. Throughout this document, we will
use these terms interchangeably.

The origins of SNA, as a basis for developing
useful sociological concepts, can be traced back to the
early 1930s, when Moreno! developed the sociomet-
ric approach as a way to conceptualize the structure
of the social relations established among small groups
of individuals. These interpersonal ties between mem-
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bers of a group were depicted using the so-called so-
ciograms, which can be defined as charts where in-
dividuals are represented as nodes and the relations
among them are represented by lines. Such diagrams
revealed to be very useful in uncovering the hidden
structures of groups, by means of the identification
of, for instance, stars, alliances, and subgroups.

In a broader sense, a social network is con-
structed from relational data and can be defined as
a set of social entities, such as people, groups, and
organizations, with some pattern of relationships or
interactions between them. These networks are usu-
ally modeled by graphs, where vertices represent the
social entities and edges represent the ties established
between them. The underlying structure of such net-
works is the object of study of SNA. SNA methods
and techniques were thus designed to discover pat-
terns of interaction between social actors in social
networks.

Hence, the focus of SNA is on the relationships
established between social entities rather in the social
entities themselves. In fact, the main goal of this tech-
nique is to examine both the contents and patterns
of relationships in social networks to understand the
relations among actors and the implications of these
relationships.

Common tasks of SNA involve the identification
of the most influential, prestigious, or central actors,
using statistical measures; the identification of hubs
and authorities, using link analysis algorithms, and
the discovery of communities, using community de-
tection techniques. These tasks are extremely useful
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TABLE 1 | Network Terminology for Different Fields of Knowl-
edge

Vertex/vertices Node
Edge Link/connection

Actor/agent Site Dot
Relational tie Bond  Arc

in the process of extracting knowledge from networks
and, consequently, in the process of problem solving.
Because of the appealing nature of such tasks and to
the high potential opened by this kind of analyses,
SNA has become a popular approach in a myriad of
fields, from Biology to Business. For instance, some
companies use SNA to maximize positive word of
mouth of their products by targeting the customers
with higher network value (those with higher influ-
ence and support).>™ Other companies, such as the
ones operating in the sector of mobile telecommu-
nications, apply SNA techniques to the phone call
networks and use them to identify customer’s pro-
files and to recommend personalized mobile phone
tariffs, according to these profiles. These companies
also use SNA for churn prediction, i.e., to detect cus-
tomers who may potentially switch to another mo-
bile operator by detecting changes in the patterns
of phone contacts.’*® Another interesting application
emerges from the domain of fraud detection. For in-
stance, SNA can be applied to networks of organiza-
tional communications (e.g., Enron company dataset)
to perform an analysis of the frequency and direc-
tion of formal/informal email communication, which
can reveal communication patterns among employees
and managers. These patterns can help identify peo-
ple engaged in fraudulent activities, thus promoting
the adoption of more efficient forms of acting toward
the eradication of crime.”-8

Besides social networks, there are other types
of real-world structures that can be represented by
networks. According to Newman,’ real-world net-
works can be categorized into four main types: social
networks, information networks (or knowledge net-
works), technological networks, and biological net-
works.

As previously mentioned, social networks are
the ones that arise as a result of human and so-
cial interactions and encompass studies of friend-
ship networks,!® informal communication networks
within companies,!! collaboration networks'? (e.g.,
networks of coappearance in movies by actors, in
which two actors are connected if they appeared
together in a movie, and networks of coauthorship
among academics, in which individuals are linked if
they coauthored one or more papers), among others.
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In turn, information networks are based upon
the exchange of information among entities usually
aiming to enhance knowledge diffusion, business, or
social aims. Examples include networks of citations
between academic papers, commonly represented by
an acyclic-directed graph where vertices represent pa-
pers and there is a direct edge if paper A cites paper
B; and preference networks, which are generally mod-
eled through bipartite graphs and represent individu-
als’ consumption preferences for a given commercial
product!? (e.g., books). Another important example
of an information network is the World Wide Web,
which can be represented as a directed graph, in which
vertices represent static Web pages and edges corre-
spond to the hyperlinks between them.!

Technological networks are man-made net-
works designed for distribution of some commodity
or resource (e.g., electricity, information). Some ex-
amples are networks of roads and railways, networks
of airline routes, and networks of physical connec-
tions between computers (Internet).

The last type of networks are the so-called bio-
logical networks'® and, as the name implies, are those
that arise from biological processes, such as networks
of chemical reactions among metabolites, protein in-
teraction networks, genetic regulatory networks, real
neural networks, and food webs or predator—prey net-
works.

Despite the fact the origins of network stud-
ies go back a few centuries ago, in recent years we
witnessed an impressive advance in network-related
fields, mainly because of the growing interest in so-
cial networks, which became a ‘hot’ topic and a focus
of considerable attention. For this reason, a lot of
students, practitioners and researchers are willing to
enter the field and explore, even superficially, the po-
tential of SNA techniques for the study of their prob-
lems. Bearing this in mind, in this paper our aim is
to provide a general and succinct overview of the es-
sentials of SNA for those interested in knowing more
about the area and strongly oriented to use SNA in
practical problems.

The remainder of this document is organized
as follows. We begin by pointing out some types of
representations that can be used to model social net-
works. Then, we introduce the best known statistical
measures to analyze them, according to two levels of
analysis: the actor level and the network level. Af-
terward, we talk a little about the link analysis task
and explain how it can be used to identify influential
and authoritative nodes. Then, we distinguish two
important network models and introduce the main
properties of real-world networks. Later, we devote
a section to the problem of finding communities in
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networks. After introducing the main concepts, we
provide a list of the most popular SNA software and
tools for those readers interested in applying network
analysis in professional or academic problems. This
overview ends with the identification of the current
trends arising in the field of SNA.

REPRESENTATION OF SOCIAL
NETWORKS

A social network consists of a finite set of actors and
the relations, or ties, defined on them.'® The estab-
lished relationships can be of personal, or profes-
sional, nature and they can range from casual ac-
quaintance to close familiar bonds. Besides social
relations, links can also represent flow of informa-
tion/goods/money, interactions, similarities, among
others. The structure of such networks is usually rep-
resented by graphs. Therefore, networks are often re-
garded as equivalent to graphs.

A graph is composed of two fundamental com-
ponents vertices and edges. Every edge is defined
by a pair of vertices, also called its endpoints. Ver-
tices represent a wide variety of individual entities
(e.g., people, organizations, countries, papers, prod-
ucts, plants, and animals) according to the applica-
tion field. In turn, an edge is the line that connects
two vertices and, analogously, it can represent nu-
merous kinds of relationships between individual en-
tities (e.g., communication, cooperation, friendship,
kinship, acquaintances, and trade). Edges may be di-
rected or undirected, depending if the nature of the
relation is asymmetric or symmetric.

Formally, a graph G consists of a nonempty set
V(G) of vertices and a set E(G) of edges, being defined
as G = (V(G), E(G)). According to Diestel,!” the order
of a graph G is given by the total number of vertices
n or, mathematically, |V(G)| = n. Analogously, the
size of a graph G is the total number of edges |[E(G)|
= m. The maximum number of edges in a graph is
Mmax = @, for undirected graphs, and my,x = n(n
— 1), for directed ones.

In the literature, two main types of graph-
theoretic data structures are referred to represent
graphs: the first one are list structures and the sec-
ond are matrix structures. These structures are ap-
propriate to store graphs to further analyze them
using automatic tools. List structures, such as inci-
dence lists and adjacency lists, are suitable for storing
sparse graphs because they reduce the required stor-
age space. On the other hand, matrix structures such
as incidence matrices (A (n x m)), adjacency ma-
trices or sociomatrices (A (n x n)), Laplacian matri-

Volume 2, March/April 2012

Social network analysis

ces (contains both adjacency and degree information),
and distance matrices (identical to the adjacency ma-
trices with the difference that the entries of the matrix
are the lengths of the shortest paths between pairs of
vertices) are appropriate to represent full matrices.

Several types of graphs can be used to model dif-
ferent kinds of social networks. For instance, graphs
can be classified according to the direction of their
links. This leads us to the differentiation between
undirected and directed graphs. Undirected graphs (or
undirected networks) are graphs whose edges connect
unordered pairs of vertices or, in other words, each
edge of the graph connects concomitantly two ver-
tices. A more strict type of graph is the so-called di-
rected graph (or directed network). Directed graphs,
or in the abbreviation form digraphs, can be straight-
forward defined as graphs whose all edges have an
orientation assigned (also called arcs), so the order
of the vertices they link matters. Formally, a directed
graph D is an ordered pair (V(D), A(D)) consisting
of a nonempty set V(D) of vertices and a set A(D),
disjoint from V(D), of arcs. If e1; is an arc and v and
v, are vertices such that e;, = (v, v), then ey, is said
to join vy to v;, being the first vertex vy called ini-
tial vertex, or tail, and the second vertex v, called the
terminal vertex, or simply head. Graphically, directed
edges are depicted by arrows, indicating the direction
of the linkage. This type of graphs can be either cyclic,
i.e., graphs containing closed loops of edges or ‘ring’
structures, or acyclic (e.g., trees). A typical example
of an undirected graph is Facebook ™ because, in this
social network, the established friendship tie is mu-
tual or reciprocal (e.g., if [ accept a friend request from
a given person then it is implicitly assumed that me
and that person are friends of each other). Likewise,
Twitter™ is an example of a directed graph because
a person can be followed by others without necessar-
ily following them. In this case, the tie between a pair
of individuals is directed, with the tail being the fol-
lower and the head being the followed, meaning that
a one-way relationship is established.

Regarding the values assigned to edges, we can
make a distinction between unweighted and weighted
graphs. Unless it is explicitly said, we always assume
that graphs are unweighted. Unweighted graphs are
binary since edges are either present or absent. On
the other hand, weighted graphs are richer graphs
because each edge has associated a weight w € RY
providing the user with more information about, for
instance, the strength of the connection of the pair of
vertices it joins. According to Mark Granovetter,'$:1°
in social networks the weight of a tie is generally a
function of duration, emotional intensity, frequency
of interaction, intimacy, and exchange of services.
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FIGURE 1| A directed graph D represented by means of an
adjacency matrix (left-hand side of the figure) and an adjacency list
(right-hand side of the figure).

Therefore, strong ties usually represent close friends,
and weak ties represent acquaintances. In other kinds
of networks, the weight of a tie can represent a variety
of things, depending on the context; for instance, a tie
can represent the number of seats among airports, the
number of exchanged products, and so on.

For undirected and unweighted graphs, adja-
cency matrices are binary (as a consequence of being
unweighted) and symmetric (as a consequence of be-
ing undirected, meaning that a;; = g;i), with a;; = 1
representing the presence of an edge between vertices
iand j, and a;; = 0 representing the absence of an edge
between vertex pair (i,). For directed and weighted
graphs, the entries of such matrices take values from
interval [0, max(w)] and are nonsymmetric. In both
cases, we deal with nonnegative matrices.

In Figure 1, we provide an example of how a
graph can be represented by an edge list and by an
adjacency matrix.

ELEMENTARY STATISTICAL
MEASURES

Mathematics is used to represent networks, while
Statistics is mainly used to analyze them. In this sec-
tion, we present some graph measures and popular
metrics used in the analysis of social networks that
arose from the field of Statistics. These measures are
useful in the sense that they provide us insights about
the structure of the network without the need to know
its graphical representation. Studying the structure of
these networks aims at understanding the behavior
of the social systems that generated those networks,
which is normally the final goal of such analysis.
The measures we will introduce in the following
subsections can be divided according to the level of
analysis one wants to perform: at the level of small
units, such as actors, or at the level of the whole net-
work. The former explores general measures of cen-
trality as a way to understand how the position of
a vertex is within the overall structure of the graph
and, therefore, helps identify the key players in the
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network. The latter provides more compact informa-
tion and allows the assessment of the overall structure
of the network, giving insights about important prop-
erties of the underlying social phenomena.

Actor-Level Statistical Measures

Centrality, or prestige, is a general measure of how
the position of an actor is within the overall struc-
ture of the social network and can be computed re-
sorting to several metrics. The most widely used are
degree, betweenness, closeness, and eigenvector cen-
trality. The first three were proposed by Freeman?’
and were only designed for unweighted networks. Re-
cently, Brin and Page?! came up with extensions to
weighted networks. The fourth metric—eigenvector
centrality—was later proposed by Bonacich?? and has
its foundations on spectral graph theory. It became es-
pecially popular after being used as the basis of the
well-known Google’s Pagerank algorithm, which we
will talk about in the next Section.

Although more actor-level statistical measures
were proposed in the literature, in this subsection we
will focus on explaining the mentioned measures of
centrality. These measures determine the relative im-
portance of an actor within the network, showing
how the relationships are concentrated in a few in-
dividuals and, therefore, giving an idea about their
social power. Higher centrality measures are associ-
ated to powerful actors in the network because their
central position offers them several advantages, such
as easier and quicker access to other actors in the
network (useful for accessing resources such as infor-
mation) and ability of exerting control over the flow
between the other actors.?’ These central actors are
also called ‘focal points’. At the end of the section
we will also introduce the concept of transitivity and
explain how it can be computed using a clustering
coefficient.

The reader must take into account that some of
these actor-level metrics (e.g., degree, betweenness,
and closeness) may need to be normalized to perform
comparisons of networks with different orders and
sizes.

Degree or Valency

The degree, or valency, of a node v, usually denoted
as k,, is a measure of the immediate adjacency and
the involvement of the node in the network and is
computed as the number of edges incident on a given
node or, similarly, as the number of neighbors of node
v. The neighborhood N, is thus defined by the set of
nodes that are directly connected to v. Degree can be
computed in, at least, two different ways: based on
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the adjacency matrix or based on the neighborhood
of a node. In Eqgs (1) and (2), we present each one
of the alternatives, for undirected networks. Despite
its simplicity, degree is an effective measure to assess
the importance and influence of an actor in a social
network. Yet, it has some limitations. The main one
is that it does not take into consideration the global
structure of the network:

k n
L a;,
? Z/’=1 1

where aj; is the entry of the ith row and jth column of
the adjacency matrix A;

0 <k <mn, (1)

ky = |N,|, 0<k, <mn, (2)

where IN, | is the neighborhood of node v

For directed networks, there are two variants
of degree centrality: in degree, denoted by kI, and
out degree, denoted by k. The former is given by
the number of incoming nodes (i.e., number of edges
beginning at vertex v) and the latter by the number
of outgoing nodes (i.e., number of edges ending at
vertex v), as defined in Egs (3) and (4). The measure
of degree in directed networks is also referred to as
prestige. This expression is especially used in the liter-
ature of social networks because it was developed for
measuring the prominence or importance of actors in
the network. There are two types of prestige: support
and influence. The first is related to the in-degree cen-
trality, which is seen as a measure of support, and the
second is related to the out-degree centrality, which
is seen as a measure of influence:

k=" aj, (3)
j=1

k= Zai]‘. (4)
j=1

On weighted networks, strength is the equiv-
alent of degree, being computed as the sum of the
weights of the edges adjacent to a given node, as ex-
pressed by Eq. (5):

K= "al. (%)
j=1

A significant research effort was undertaken
in studying the degree distribution of several types
of networks, which turned it possible to classify a
network based on this distribution. For instance,
Barabasi and coworkers?®2* discovered that most
real networks follow a power-law distribution, at
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least asymptotically. This means that, in these net-
works, the distribution of the vertex degree is very
heterogeneous and highly right skewed, with a large
majority of vertices having a low degree and a small
number having a high degree. These networks are
known as scale free, an expression coined by the same
researchers. Other common functional forms are ex-
ponential (e.g., railways and power grids networks)
and power laws with exponential cutoffs (e.g., net-
works of movie actors and some collaboration net-
works).

Betweenness

Node betweenness b, measures the extent to which a
node lies between other nodes in the network and can
be computed using the formula presented in Eq. (6).
Nodes with high betweenness occupy critical roles
in the network structure, since they usually have a
network position that allow them to work as an in-
terface between tightly knit groups, being ‘vital’ el-
ements in the connection between different regions
of the network. In the social networks perspective
‘interactions between two nonadjacent actors might
depend on other actors in the set of actors, especially
the actors who lies on the paths between the two’,'®
which stresses out the importance of a good value of
betweenness. These actors are also called gatekeepers
because they tend to control the flow of information
between communities.

b= Y. Uj;:}) , (6)

s,te V(G)\w

where o denotes the number of shortest paths be-
tween vertices s and ¢ (usually o, = 1) and o (v) ex-
presses the number of shortest paths passing through
node v.

This quantity can also be computed for edges.
The betweenness of an edge b, is commonly defined as
the number of shortest paths between nodes that run
along a given edge of the network. It is quite useful
in SNA since it allows discovering bridges and local
bridges which are, by definition, edges with high be-
tweenness. In the context of SNA, bridges are connec-
tions outside an individual’s circle of acquaintances.
These connections are of great interest for individu-
als seeking to access new information and resources,
since they ease the diffusion of information across
entire communities.>’> However, situations like these
are quite rare in real-world scenarios and, even if
they happen, the advantages they confer are usually
temporary, due to the temporal instability of such
edges. A more common and realistic situation is local
bridges. Equation (7) indicates how this measure can
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be computed:

be =

ou(€)
> (7)

uveV(G)

where o, (e) expresses the number of shortest paths
passing through edge e. The sum indicates that this
fraction needs to be computed for every pair of nodes
u and v in the network.

Closeness
Closeness is a rough measure of the overall position
of an actor in the network, giving an idea about how
long it will take to reach other nodes from a given
starting node. Formally, it is the mean length of all
shortest paths from one node to all other nodes in the
network. Because of its definition, usually this mea-
sure is only computed for nodes within the largest
component of the network, using the formula pre-
sented in Eq. (8). In the social networks context, close-
ness is a measure of reachability that measures how
fast a given actor can reach everyone in the network:
a——""1 (8)
e viopwd(u, v)

Eigenvector Centrality

This metric is based on the assignment of a relative
score to each node and measures how well a given ac-
tor is connected to other well-connected actors. This
score is given by the first eigenvector of the adjacency
matrix. The basic idea behind eigenvector centrality is
that the power and status of an actor is recursively de-
fined by the power and status of his/her alters. Alters
is a term frequently used in the egocentric approach
of social networks analysis, and it refers to the actors
that are directly connected to a specific actor, called
ego. In other words, we can say that the centrality
of a given node i is proportional to the sum of the
centralities of s neighbors. This is the assumption
behind the eigenvector centrality formula, which is as
follows:

1 n
X > aijx;. (9)

j=1
where x;/x; denotes the centrality of node i/j, ajj rep-
resents an entry of the adjacency matrix A (a;; = 1 if
nodes 7 and j are connected by an edge and a; = 0

otherwise) and A denotes the largest eigenvalue of A.

Eigenvector centrality is a more elaborated ver-
sion of the degree, once it assumes that not all con-
nections have the same importance by taking into ac-
count not only the quantity, but especially the quality
of these connections.
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Local Clustering Coefficient
Social networks are naturally transitive, which means
that a given actor’s friends are also likely to be friends.
This property of transitivity is quantified by a cluster-
ing coefficient that can be global, i.e., computed for
the whole network, or local, i.e., computed for each
node. Watts and Strogatz?® proposed a local version
of the clustering coefficient, denoted ¢; (i = 1,.. ., n).
In this context, transitivity is a local property of a
node’s neighborhood that indicates the level of cohe-
sion between the neighbors of a node. This coefficient
is, therefore, given by the fraction of pairs of nodes,
which are neighbors of a given node v that are con-
nected to each other by edges [see Eq. (10)]:
cl—&-vlvel\é e € E (10)
k-1 P OkE
where N; is the neighborhood of node v;, ej repre-
sents the edge that connects node v; to node vy, k; is
the degree of node v;, and leji | indicates the proportion
of links between the nodes within the neighborhood
of node v;.

Network-Level Statistical Measures

Before explaining each one of the network-level sta-
tistical measures, there are three fundamental con-
cepts that should be first introduced: path, geodesic
distance between two nodes, and eccentricity of a
vertex.

A path is a sequence of nodes in which con-
secutive pairs of nonrepeating nodes are linked by an
edge; the first vertex of a path is called the start vertex
and the last vertex of the path is called the end ver-
tex. Of particular interest is the concept of geodesic
distance, or shortest path, between nodes 7 and j, de-
noted as d(i,j). The geodesic distance can be defined as
the length of the shortest path, or the minimal path,
between nodes 7 and ;.

In turn, the eccentricity is the greatest geodesic
distance between a given vertex v and any other in
the graph, as defined in Eq. (11). These three concepts
are formed on the basis of most of the network-level
metrics we are going to introduce, namely, the diame-
ter/radius, the average geodesic distance, the average
degree, the reciprocity, the density, and the global
clustering coefficient.

V= d(v,i). 11
&=, i, 40 (1

Diameter and Radius
The diameter D is given by the maximum eccentricity
of the set of vertices in the network and, analogously,
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the radius R can be defined as the minimum eccen-
tricity of the set of vertices, as defined in Eqgs (12) and
(13). Sparser networks have generally greater diam-
eter than full matrices, due to the existence of fewer
paths between pairs of nodes. Leskovec et al.?” dis-
covered that, for certain types of real-world networks,
the effective diameter shrinks over time, contradicting
the conventional wisdom of increasing diameters. In
the context of SNA, this metric gives an idea about the
proximity of pairs of actors in the network, indicating
how far two nodes are, in the worst of cases:

D = max{e,:v € V}, (12)

R =min{e,:v € V}. (13)

Average Geodesic Distance

The average geodesic distance for all combinations of
vertex pairs in a network is usually denoted by [ and
is given by Eq. (14). This metric gives an idea of how
far apart nodes will be, on average. For instance, in
the SNA context the average geodesic distance can be
used to measure the efficiency of the information flow
within the network:

1
' T 2 0T 1)
where d(i, j) is the geodesic distance between nodes i
and j, and 1/2n(n-1) is the number of possible edges
in a network comprising 7 nodes.

When there is the case of a network having more
than one connected component, the previous formula
does not hold, because the geodesic distance is con-
ventionally defined as infinite when there is no path
connecting two vertices. In such situations, it is more
appropriate to use the harmonic average geodesic dis-
tance, defined in Eq. (15), once it turns infinite dis-
tances into zero nullifying their effect on the sum:

1 1

1= )
%n(n +1) Ziz/ d(i, j)

(15)

Average Degree

The average degree is simply the mean of the degrees
of all vertices in a network, as represented in Eq.
(16). According to Costa et al.?® the average degree
can be used to measure the global connectivity of a
network:

o1 <
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Reciprocity

Reciprocity r is a specific quantity for directed net-
works that measures the tendency of pairs of nodes to
form mutual connections between each other. There
are several ways to compute this metric. The most
popular and intuitive way is to compute the ratio of
the number of mutual connections in the network to
the number of all connections, as shown in Eq. (17).
Adopting this definition, the value of reciprocity rep-
resents the probability that two nodes in a directed
network point to each other. By definition, in an undi-
rected network, reciprocity is always maximum r = 1
because all pairs of nodes are symmetric:

r:ﬂ, 0<r<l, (17)
#mut 4 #asym

where #mut denotes the number of mutual dyads and

#asym the number of asymmetric dyads.

Taking the definitions of Wasserman and
Faust,'® we say that an asymmetric dyad is a pair
of nodes that has an arc going in the direction of one
node or the other, but not both directions. In turn, a
mutual dyad is defined by a pair of nodes connected
by two arcs, each one going in a different direction
(e.g.,a — band b — a, being a and b two nodes in a
network).

Density

Density p is an important network-level measure,
which is able to explain the general level of con-
nectedness in a network. It is given by the propor-
tion of edges in the network relative to the max-
imum possible number of edges, as defined in Eq.
(18). Density is a quantity that goes from a minimum
of 0, when a network has no edges at all, to a max-
imum of 1, when the network is perfectly connected
(also called complete graph or clique). Therefore,
high values of p are associated to dense networks,
and low values of density are associated to sparse
networks:

p(G) = —-,
Mmax(G)

0<p<l, (18)

where 7 is the number of edges in the network and
Mmax(G) denotes the number of possible edges, which
is "("TA) for undirected networks and n(n-1) for di-
rected ones.

Global Clustering Coefficient

There are several ways to compute the global ver-
sion of the clustering coefficient. We adopt the one
proposed by Watts and Strogatz?® that obtains the
global clustering coefficient ¢, for the whole network,
through the computation of the average of all local
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values ¢; (i = 1,..., n), as shown in Eq. (19).
Small-world networks,?® such as the ones we find in
real social contexts, are characterized by high global
clustering coefficients, meaning that the property of
transitivity among nodes emerges more often and in
a stronger way, increasing the probability of clique
formation:

c= %Zq. (19)

LINK ANALYSIS

In certain network settings, such as the Web, one may
be interested in finding the most valuable, authorita-
tive or influential node (e.g., web page), or a list of
them. To perform this task, several link analysis algo-
rithms were devised, being the HITS?® and the Google
Pagerank?’ algorithms the most popular ones. These
algorithms explore the relationship between links and
the content of web pages, to improve the task of in-
formation retrieval in the Web, being of extreme im-
portance for the design of efficient search engines. As
the development of these methods was motivated by
the problem of web queries, for the sake of simplicity,
we will explain them in this context.

Before introducing any of these algorithms, it
is first necessary to define some elementary concepts,
namely, the concepts of hubs and authorities. In the
context of Web, a hub can be understood as a web
page that points to many other web pages or, in
other words, as a compilation of web pages that ad-
dress a specific topic. The quality of a hub is usu-
ally determined by the quality of the authorities it
points to. On the other hand, authorities are web
pages cited by many different hubs, which means that
their relevance is measured by the number of inward
links they receive. Typically, good authoritative pages
are reliable sources of information about a given
topic.

In the following subsection, we explain the
foundations of Pagerank algorithm.

Pagerank Algorithm
Pagerank is a link analysis algorithm based on the
concept of eigenvector centrality. This algorithm is
used by Google™ Internet search engine to rank web
pages according to the value of the information they
carry, so the most valuable ones appear at the top of
the search results.

The idea of the algorithm is that information on
Web can be ranked according to link popularity (the
more web pages are linked to a given web page the
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more popular that web page is). Nevertheless, in this
process of weighting web pages, not only the num-
ber of links or, equivalently, the degree of a node is
relevant, but also the importance of the web pages
linking to them. Therefore, Pagerank measures the
relative importance of a set of web pages based not
only on the quantity but especially the quality of their
links.

The basic Pagerank is computed as follows (ac-
cording to the definition provided by Easley and
Kleinberg?!):

Initialization: In a network of # nodes (or web
pages), assign a Pagerank value of 1/z to each node,
and choose the number of iterations k of the algo-
rithm.

1. Update the Pagerank values of each node by
sequentially applying the following rule: Ba-
sic Pagerank update rule: divide the actual
Pagerank value of node p by the number of
its outgoing links and pass these equal shares
to the nodes it points to. Note that if a node
p has no outgoing links, the Pagerank share
is passed to itself. The update of a node’s
Pagerank value is performed by summing the
shares it receives in each iteration.

2. Apply this rule until the kth iteration, or until
convergence has occurred.

To illustrate, consider the following example:
in a network comprised six nodes termed A, B, C,
D, E, and F. How can we find the most influential
node, using the Pagerank algorithm? First, according
to the initialization step of the algorithm, each node is
assigned an equal Pagerank of PR = % = 1 asrepre-
sented in Figure 2(a). Then, these values are updated
k times (for the sake of simplicity, we consider only
two iterations) by applying the basic Pagerank update
rule.

To apply the rule, first is necessary to compute
the shares of all nodes. Then, for each node we sum
all shares the node receives. The result of this sum
will be its new Pagerank value, as shown in Table 2
and Figure 2(b). For instance, the share of node D,
which has only one outgoing link, is computed as
share(D) = 11ﬁ = %. Its new Pagerank value is given
by the sum of the shares of its ingoing links, namely,
those coming from nodes A, C, E, and F:

1 1 1 1 S

After computing these values for all nodes in
the network, we repeat the process for the second
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FIGURE 2| lllustration of the process behind Pagerank algorithm in a network comprised six nodes. The first network (a) corresponds to the
initialization step. In network (b) are shown the updated Pagerank values at the end of the first iteration of the algorithm. Note that node D is so far
the most authoritative node, with a Pagerank value of 5/12.The rightmost network (c) corresponds to the second (and last) iteration of Pagerank.
Here, we notice that node B overtakes the position of node D in terms of Pagerank values.

TABLE 2 |Updated Pagerank Values after the First Iteration
k=1

Shares M2 112 112 e 112 116
Updated Pagerank 1/12  1/4 112 512 112 112

TABLE 3 | Updated Pagerank Values at the End of the Second
(and Last) Iteration k=2

Shares 124 118 124 512 1124 112
Updated Pagerank 1/24 11/24 1/8 524 1124 1/8

iteration k = 2, obtaining the results shown in
Table 3 and Figure 2(c). This rule is applied iteratively
until the convergence of the Pagerank values, or until
the kth iteration. As we consider only two iterations,
we can try to draw some conclusions and interpret
the results based only on the information available
in Tables 2 and 3. Therefore, at the end of the first
iteration, node D seemed to be the most promising
one, with a Pagerank of 5/12; nevertheless, at the
second iteration node B overtakes the position of D,
being now assigned to the first place of the ranking
of nodes. This sudden change befits the idea behind
Pagerank algorithm that measures the quality, instead
of the quantity, of a node’s connections. Therefore,
and besides node D is the one receiving more incom-
ing links, the importance of the nodes linking to them
is not that significant. On the other hand, node B has
only two incoming links, but one of them is of great
importance, namely, node D. This is the main reason
why node B receives the larger Pagerank value at the
end of the second iteration, turning into the most in-
fluential, or authoritative, node in the network. If B
was an actor, he/she would be considered the most
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important one, once this Pagerank value means that
a great part of the information that flows through the
network passes through it.

Although Pagerank and other link analysis algo-
rithms were originally motivated by the necessity of
extracting and understanding the information yielded
by Web, they are also used in other domains, such as
social sciences. In the social sciences field, links can
be analyzed from two distinct, but somehow interre-
lated, perspectives: the information centered and the
actor centered. These perspectives are typically used
to help understand the underlying social phenomena,
by means of the identification of the most valuable
sources of information or, alternatively, the most im-
portant actors. Nevertheless, there is still some lack
of consensual guiding principles about how to inter-
pret link analysis results in a social science context.
Thelwall®? stresses out the importance of developing
guidelines for improving the process of interpreting
these results and proposes a theoretical framework
for link analysis interpretation.

PROPERTIES OF REAL-WORLD
NETWORKS

Real-world problems are an inexhaustible source of
inspiration for network theories. The great majority
of real-world events and activities we play, observe,
and study can be easily modeled using graphs and can
be analyzed through the lens of network analysis.

In this overview, we focus on social networks,
which are those arising as a result of human and so-
cial interactions, though there are other types of real-
world networks. Given the diversity of such networks,
researchers classified them into main types, although
this classification is not fully consensual. One possibil-
ity is the one provided by Newman,? which was pre-
sented in the Introduction section. Although they stem
from distinct real-world problems and knowledge
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fields, they all share a set of common properties which
make them peculiar, thus opposing to the two well-
known network models: random networks and regu-
lar networks.

The simplest and best known model of network
is the random graph.>3-3* This type of graph is char-
acterized by the random placement of edges between
a fixed number n of vertices, to create a network
in which each of the 1/2n(n—1) possible edges is in-
dependently present with some probability p. When
p = 0, we obtain a graph of perfect order—regular
graph; and when p = 1, we obtain a random graph,
which embodies the total chaos. Because both regular
graphs and random graphs represent extremes, they
are not realistic. Additional properties’ are required
to model complex and atypical networks such as the
ones we find in real world. In short, we can say that
real-world networks are nonrandom and nonregular
graphs with unique features, where ‘order coexists
with disorder’.3’ In this section, we introduce and ex-
plain some of these properties, which are as follows:

Small-world effect;

Transitivity or clustering;
Power-law degree distributions;
Network resilience;

Mixing patterns;

AN A

Community structure.

Property 1: the Small-World Effect

Stanley Milgram,*® an American social psychologist,
was the first to point out the existence of small-world
effects in real social networks, through a series of
famous experiments which are today known as the
Milgram experiment. This experiment was done to
test the speculative idea of the small-world effect and
is one of its first direct demonstrations. The main hy-
pothesis of the study was that pairs of apparently dis-
tant individuals are connected by a short path, i.e., by
a few number of acquaintances, through the network.
To probe the distribution of the path lengths, Mil-
gram asked some random participants (about 300) to
pass a letter to someone they knew in a first-name ba-
sis in an attempt to get it to an assigned target person.
With this experiment, it was shown that the median
length of the paths that succeeded in reaching the tar-
get was six, which clearly explains the origins of the
concept six degrees of separation.

The overall conclusion of Milgram and its col-
leagues has been accepted in a broad sense. In fact,
the small-world effect has been widely observed in
real-world networks and it is manifested by the exis-
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tence of shortcuts between most of vertex pairs in a
network. In social settings, this means that two ap-
parently disconnected people can quickly get in touch
with each other through an incredible low number
of acquaintances or friends. This finding has several
implications in dynamic processes because it implies,
for instance, that the spread of a contagious disease
throughout the population will be faster than one
would expect.

In mathematical terms, the small-world effect
means that the average geodesic distance (i.e., the
shortest path) between pairs of vertices scales loga-
rithmically, or slower, with the network size with a
fixed mean degree.” This property is also observed
in random graphs, where the diameter is very small,
only growing logarithmically with 7, and the vertices
have all about the same degree.

Property 2: Transitivity or Clustering
According to Wasserman and Faust,'® transitivity is
a property that considers triples of nodes (i.e., sets of
three vertices, in which at least one is connected to
both others) in a graph or, in other words, measures
the density of #riangles (i.e., three nodes connected
to each other by three edges in the network, which
means that every node is fully connected to the re-
maining two nodes) in a network. In the social net-
work parlance, it means that a friend of your friend
is also likely to be your friend.

This property is quantified using a clustering
coefficient that can be global or local, as mentioned
in the section Elementary Statistical Measures.

Property 3: Power-Law Degree

Distributions

The degree distribution P(k) is the probability distri-
bution of the degrees of nodes over the whole net-
work. Therefore, P(k) represents the probability that
a vertex chosen uniformly at random has degree k,
and is defined by the fraction of nodes in the net-
work that have degree k. This means that, if the total
number of nodes in the network is 7, and 7, of these
nodes have degree k then, for this value of the de-
gree, we have a probability of P(k) = “t. Computing
this probability for each degree value k, of the set of
degree values appearing in a given network, we ob-
tain the probability distribution of the degree in this
network.

Random graphs, such as the ones studied by
Erdés and Rényi,>* show a binomial degree distri-
bution because the presence, or absence, of an edge
is equiprobable (i.e., equal for all possible vertex
pairs). In the limit of large graph size, this degree
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distribution goes from binomial to Poisson distribu-
tion. Therefore, in this class of graphs, the degree
distribution is highly homogeneous as most vertices
have similar, or equal, degree.

Real-world networks are, in turn, quite differ-
ent from random graphs with respect to degree dis-
tribution. Barabasi and Albert** discovered that, in
real graphs, the distribution of the vertex degree is
very heterogeneous and highly right-skewed, with a
large majority of vertices having a low degree and
a small number having a high degree. This finding
comes to reinforce the previous work of Price’” on
networks of citations between scientific papers. In
both cases, they state that the degree distribution of
real networks, such as citation networks, follows a
power-law (at least asymptotically) and, therefore,
these networks are sometimes referred to as scale-
free networks.?® Power-law distributions usually arise
when the amount you get of something depends on
the amount you already have. A common analogy is
‘the rich get richer’. Price’® used the term cumula-
tive advantage to refer to this mechanism, which is
believed to be the most probable explanation for the
power-law degree distributions in several real-world
networks, which include, but are not restricted to,
collaboration networks and the World Wide Web.
Today, this process is best known as preferential at-
tachment, a name coined by Barabasi and Albert.>* In
their seminal paper,** the authors describe a network
growth model which became known as the Barabdsi—
Albert model. This work shows that network grow-
ing with preferential attachment will indeed become
scale free, due to the ‘the-rich-gets-richer’ strategy em-
ployed in the model.

Property 4: Network Resilience

Network resilience measures the impact on the con-
nectivity of the network when one or more vertices
are removed and it is an indicator of the cohesion
of the network. Different kinds of networks exhibit
different levels of resilience. Most networks are ro-
bust against random vertex removal but considerably
less robust to targeted removal of the highest degree
vertices. Also, when the endpoints of a bridge are
deleted there are strong changes in the network with
respect to the ability of communication between pairs
of vertices, as some of them become disconnected. Be-
tweenness centrality can also be seen as a measure of
resilience as it tells us how many geodesic paths will
get longer when a vertex is removed from the net-
work. However, in real settings the removal of a sin-
gle node is not usually cause for alarm, since the net-
works comprise millions or even billions of nodes. In
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such cases, it is more appropriate to test the resilience
of the network the removal of a given percentage of
nodes.

Property 5: Mixing Patterns

Some networks are made up of different types of ver-
tices. In these kinds of networks, the linking between
vertices or, in other words, the probability of con-
nection between vertex pairs, tends to be selective
and highly dependent on vertex types (e.g., food web,
whose vertices may be herbivores, carnivores, and
plants). In social networks, this is also evident be-
cause individuals tend to interact with other similar
to them. This selective linking is usually called assor-
tative mixing, or homophily, and a classic example is
mixing by race. Real networks tend to show higher
tendencies for assortative mixing.

Newman?’ proposed an assortative coefficient
to quantify the assortative mixing of a network. This
coefficient replaces the previously proposed by Gupta
et al.** and allows us to distinguish a randomly mixed
network from a perfectly assortative one.

Property 6: Community Structure

The great majority of real social networks show
community structure, which means that we can find
groups of densely connected vertices that are low con-
nected to other groups of vertices in the network. This
topic will be deepened in the following section.

COMMUNITY DETECTION

One of the unique features of social networks is that
they tend to show community structure. This prop-
erty usually arises as a consequence of both global and
local heterogeneity of edges distribution in a graph.
Thus, we often find high concentrations of edges
within certain regions of the graph, called commu-
nities, and low concentration of edges between those
regions.

Communities, also known as modules or clus-
ters, can be straightforward defined as similar groups
of nodes. A more complete definition is built upon the
concept of density: communities can be understood as
densely connected groups of vertices in the network,
with sparser connections between them.

According to Newman and Girvan,*! there are
two main lines of research in discovering communities
in network data. The first has its origins in Computer
Science and is known as graph partitioning, whereas
the second has been mainly pursued by sociologists
and is usually referred as blockmodeling, hierarchi-
cal clustering, or community structure detection. The
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FIGURE 3| lllustration of a network with three distinct
communities: C; = {A,B,C,D,E, F}, G; ={G,H, 1}, and G = {J, K
L M, N, 0, P}.

former originally arose in the Computer Sciences field
because of the necessity of finding the best way to allo-
cate tasks to processors so as to minimize the commu-
nications between them. This network optimization
task aimed at enhancing the computation, in a parallel
computing environment. The latter was motivated by
the discovery of community groups within society, to
simplify the analysis of social phenomena through the
arrangement of people according to their similarities.
The main process behind community detection algo-
rithms is based on dividing the original graph, into
a set of disjoint subgraphs, through the optimization
of a given objective function (e.g., modularity). The
aim of both approaches is to discover groups of re-
lated vertices in the network and, if possible, the cor-
responding hierarchical organization, based only on
the information provided by network topology. This
is usually done by iteratively removing the bridges be-
tween groups of vertices, as suggested by Girvan and
Newman.*

To better understand the introduced concepts,
in Figure 3 is depicted a simple network compris-
ing three communities, named Cj, C,, and Cj. In
this picture, we represent an ideal situation since each
community is itself a complete graph, or a clique, of
varying size (C; = K¢, C; = K3, and C; = K7). Also,
the density of ties between communities is very low.
The few ties that exist are bridges, since they are the
only available connections between different parts of
the network.
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In real life, we can find several examples of such
tight groups. There is a long list of examples, so we
will only name a few. Society is a rich environment
for finding communities, once people have the nat-
ural tendency to form groups. These groups can be
families, circles of friends, working and/or religious
groups, towns, nations, and so on. If we also con-
sider groups formed by companies, or by customers
of a given product, we can identify communities with
relevance to Economics and Business fields. Biology is
another activity where methods for finding communi-
ties are useful, especially within the scope of metabolic
networks. For instance, in protein—protein interaction
networks we can find groups of proteins with simi-
lar functions within the cell. We can also find vir-
tual online communities in the network of Internet,
or groups of topic-related web pages, which may be
useful for the development of automatic and efficient
recommendation systems.

The importance of studying these communities
is intuitive in domains such as SNA. To highlight this
importance, Fortunato®® has stated that the analysis
of the structural position of nodes, in each module,
can help identify central actors (those within central
positions), often associated to group control and sta-
bility functions, as well as intermediate actors, who
are those who lie at the boundaries of communities
and play a key role in the spread and exchange of
new ideas and information, creating bridges between
communities. Other interesting possibility opened by
the task of discovering communities is the one that fo-
cus on the analysis of coarse-grained descriptions of
the original graph. An example is the study of graphs
obtained by considering vertices as communities and
edges between them as an indicator of overlap be-
tween communities. This strategy is used by Oliveira
and Gama*® for the detection of transitions in
clusters.

The following subsections are devoted to the
introduction of the most popular (not necessarily
the best) methods to solve the problem of finding
communities. The great majority of these traditional
algorithms assume partitions of vertices, instead of
covers,! i.e., they do not allow overlap of communi-
ties, so each vertex is assigned to a single community.
However, if one suspects that the nature of his/her
network implies the existence of overlapping com-
munities, a possible choice is the cliqgue percolation
method, proposed by the physicists Palla et al.** The
main feature of this prominent approach is its abil-
ity to find overlapping communities in a network, by
allowing vertices to belong to more than one group.
This characteristic is especially appealing in social sci-
ences, as people tend to belong to more than one
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community (e.g., family, work, friends, etc.) at the
same time.

For those interested in using clique percola-
tion method to detect overlapping communities, Palla
et al.** developed the CFinder software package,
which is freely available at www.cfinder.org.

Hierarchical Clustering

Hierarchical clustering is a popular class of meth-
ods for finding clusters, since it does not require any
assumptions regarding their number, membership,
and size. Hierarchical clustering algorithms produce a
flexible nested structure (smaller clusters within larger
clusters which, in turn, are embedded in even larger
clusters), typically represented by means of a dendro-
gram, that uncovers the multilevel structure of the
network. Such features are highly desired in domains
where little information is available concerning the
community structure of a network. In addition, these
methods proved to be quite effective in solving cluster
analysis problems, thus becoming attractive for graph
partitioning and community detection purposes.

The procedure of traditional hierarchical clus-
tering is quite intuitive, being strongly based on the
definition of similarity. Usually, the first step is the
selection of the similarity measure that will be used
to assess how alike two nodes are according to a
given global, or local, property. Examples of such
measures are the cosine similarity, the Jaccard index,
the Euclidean, or Manhattan distances, the Hamming
distance between pairs of rows in an adjacency ma-
trix, among others. The next step is to compute the
similarity matrix between all pairs of nodes, regard-
less of the fact that those nodes are, or not, con-
nected to each other. Then, one chooses the approach
to group them—the agglomerative or the divisive—
and, depending on the choice, selects a given dis-
tance measure to compute the similarity between clus-
ters (e.g., single linkage, complete linkage, Ward’s
method, etc.). The result is a dendrogram illustrating
the arrangement of clusters returned by the hierar-
chical algorithm. To select the best partition, i.e., the
best number of communities k, a typical strategy is
to compute the value of modularity*' for every pos-
sible number of clusters and select the number that
maximizes this function.

As mentioned before, there are two general ap-
proaches for hierarchical clustering, which are as fol-
lows:

1. Divisive methods: this class of methods
focuses on identifying and removing the
spanning links between densely connected
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regions,3! namely, bridges and local bridges.

A well-known algorithm exploring this
method is the one proposed by Girvan and
Newman.*

2. Agglomerative methods: this class of meth-
ods focuses on the tightly knit parts of the
network, rather on the connections at their
boundaries. Walktrap® is an example of an
algorithm based on this method.

In the next subsection, we present one of the
best known and widely used divisive hierarchical al-
gorithm for finding communities, especially in social
networks: the algorithm of Girvan and Newman.

Girvan—-Newman Algorithm

Among the most popular algorithms, or even the most
popular one, for solving community detection prob-
lems is the one devised by Girvan and Newman*? and
known as the Girvan—Newman algorithm.

The Girvan-Newman algorithm is a divisive hi-
erarchical technique that deconstructs the initial full
network into progressively smaller connected pieces,
until the point where there are no edges to remove
and each node represents itself a community. Bear-
ing in mind that communities are cohesive groups
of nodes, with sparser connections between them, the
criterion to remove the edges, proposed by Girvan and
Newman,*? is the graph-theoretic centrality measure
edge betweenness. The reason behind this choice is
related to the fact that this centrality measure is able
to identify edges that lie on a large number of shortest
paths between nodes and, therefore, are believed to
connect different nonoverlapping communities. Thus,
the main idea of this algorithm is that if we identify
and remove bridges, we isolate the existing commu-
nities in a network.

Because it is based on the concept of between-
ness, it is only suitable for networks of moderate or-
der (up to a few thousand nodes), due to the high cost
of computing it. The input of the algorithm is a full
graph and the output is a hierarchical structure, such
as a dendrogram, where communities at any level cor-
respond to a horizontal cut through this hierarchical
tree. The steps of the algorithm can be summarized as
follows:

e Compute the betweenness of all edges in the
network;

e Remove the edge with highest betweenness.
This step may cause the network to split into
separate disconnected parts, which constitute
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the first level of regions in the partitioning of
the graph.

e Repeat the previous steps until there are no
edges to remove in the graph. Note that the
obtained smaller components, within larger
components, are the regions nested within the
larger regions found in the first steps.

Because of its popularity, almost all stan-
dard software libraries have this algorithm im-
plemented. For instance, in R* we can use the
edge.betweenness.community function, provided by
library igraph, to apply the Girvan—Newman algo-
rithm.

Modularity Optimization

A widely used and very popular class of methods to
detect communities in networks is modularity max-
imization. Modularity Q is a quality function that
attempts to measure the merit of a given partition of
the network into communities. It has been used not
only to compare the quality of the partitions obtained
by different community detection methods, but also
as an objective function to optimize. According to
Newman,*’

Modularity is, up to a multiplicative constant, the
number of edges falling within groups minus the ex-
pected number in an equivalent network with edges
placed at random.

Based on this definition, we can deduce that
modularity is a measure that explicitly takes into ac-
count the heterogeneity of the edges. The basic idea is
that a network shows meaningful community struc-
ture if the number of edges between communities is
fewer than expected on the basis of random choice.
By assumption, the higher its value the better the par-
tition, meaning that the found communities are inter-
nally densely connected and externally sparsely con-
nected, because there are more edges falling within
groups than what would be expected by chance. Mod-
ularity is computed as

1 k;k
Q:%Z[Aﬁ_z_nfi] 8(ci, cj), (21)

ty

where 1 is the number of edges, k; and k; represent,
respectively, the degree of nodes 7 and j, Ajj is the entry
of the adjacency matrix that gives the number of edges
between nodes i and j, % represents the expected
number of edges falling between those nodes, ¢; and
¢; denote the groups to which nodes i and j belong,

and §(c;, ¢j) represents the Kronecker delta.
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BOX 1 SOFTWARE AND TOOLS FOR SO-
CIAL NETWORK ANALYSIS

To fulfill the growing need for social network mining and vi-
sualization, a considerable collection of software and tools
were developed for SNA. Some of these tools are more
technical and targeted to users with strong programming
background and skills (e.g., UCInet>!; igraph, sna, and
NetworkX>? libraries for R*® environment), and others are
more intuitive and, thus, more suitable for users from the
social sciences (e.g., Gephi®? and NodeXL>*). Though these
tools have different characteristics, most of them allow:
the computation of metrics that provide a local (actor level)
and global (network level) description of the network; the
graphical visualization of the network; and the detection of
communities. On the basis of the study of Combe et al.,*®
these constitute the expected functionalities of an SNA tool.
In general, the main functionalities that can be embedded
in SNA tools are the following:

e Creation of networks;
o Visualization and manipulation of networks;

o Qualitative and quantitative/statistical analysis of
networks;

e Community detection;

o Predictive analysis (peer influence/contagion
modeling, homophily models, and link prediction).

Despite the quantity and diversity of available tools in the
Web, some of the most popular are

o Pajek®: freely available software for the analysis
and visualization of large-scale networks.

o Gephi®3: open source software for network ma-
nipulation and exploration, endowed with a three-
dimensional render engine to display real-time
evolving networks.

o UCInet>": commercial social network analysis
which makes use of Pajek and NETDRAW for vi-
sualization and it especially suitable for statistical
and matricial analyses.

o NodeXL>*: freely available add-in to Microsoft Ex-
cel 2007 for the overview, discovery and explo-
ration of networks, which does not require any
programming skills because it is very user friendly.
Not suitable for the analysis of large networks.

o R libraries (igraph, sna, tnet, statnet, and
NetworkX>?): freely available packages for R en-
vironment which are very comprehensive (e.g.,
significant number of implemented algorithms for
community detection; analysis of longitudinal net-
works, as well as two-mode networks) and with
good two- and three-dimensional visualization ca-
pabilities.
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From the formula, we can deduce that Q € [ —
1, 1], being either negative or positive. If positive, then
there is possibility of finding community structure on
the network. If Q is not only positive, but also large,
then the corresponding partition may reflect the real
community structure. According to Clauset et al.,*
in practice, it was found that a modularity of about
0.3 is a good indicator of the existence of meaningful
communities.

Following this reasoning, and knowing that the
higher the modularity, the best the obtained network
division is, a natural approach would be maximiz-
ing this measure, by computing it for every possible
partition of the network and selecting the partition
returning the higher value. This simple idea gave rise
to a new class of methods whose foundations are set
on the maximization of modularity. Albeit this ap-
proach is quite attractive, the exhaustive search over
all possible divisions is usually intractable. This un-
desired effect of computational inefficiency has been
circumvented by adapting a number of heuristic meth-
ods to this specific optimization problem. Following
this strategy, one can obtain a fairly good approxi-
mation of the global optimum (in this case, the max-
imum value of modularity) in an acceptable time. Al-
gorithms that employ this strategy are, for instance,
the one proposed by Blondel et al.,* which per-
forms a hierarchical optimization of modularity by
exploring greedy techniques, and the one proposed
by Guimera and Amaral,>® that applies the simulated
annealing procedure to the modularity optimization
problem.

Those interested in knowing more about the
problem of finding communities in networks, can re-
fer to the recently released survey by Fortunato.?®

CONCLUSIONS AND CURRENT
TRENDS

At the beginning, analysis of social networks was
based in single small graphs. The first studies used
data collected using direct questionnaires asking re-
spondents to detail their interactions with others. The
gathered data was then represented using the math-
ematical graph model, where vertices correspond to
individuals (the respondents) and edges to interac-
tions between them. These traditional studies usu-
ally entailed some problems such as inaccuracy, sub-
jectivity, and lack of generality due to small sample
size.

The substantial advance of technology, the in-
creasing availability of computers and the arising of
communication networks contributed to the emer-
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gence of new movements in network research. These
new approaches started to focus in the analysis of
the statistical properties of large-scale complex net-
works, which were easily gathered using computers
and other electronic devices. This change of scales
forced upon a corresponding change in the tradi-
tional analytical approach and data mining statis-
tical methods became of great importance, due to
their ability to extract patterns and knowledge from
massive quantities of data.” Nowadays, the wide
availability of software and SNA tools and libraries
(more than 50) is a reflection of this evolution in
SNA (Box 1).

Because of these technological advances and
consequent impact in the availability of networked
data, new challenges are being posed to the research
field of SNA, and a new paradigm is emerging. This
paradigm takes into consideration new factors in the
analysis of social networks, such as the size of data,
which is incredibly getting large, and changes in space
and time.

The first issue has implications on existing meth-
ods for SNA, which now need to be improved to scale
well to large-scale social networks. For instance, find-
ing communities in large-scale social networks will
continue to be a dynamic research challenge. Also in
the area of community detection, the urge to develop
new methods which are not only scalable and efficient
but also fully automatic, in the sense that they do not
need any user-specified parameter (e.g., number and
size of communities), will continue to be an important
research problem.

The second issue is of extreme relevance because
the speed at which data is collected is turning obsolete
static analyses. Therefore, the study of the dynamics
and evolution of social networks, which include but
are not restricted to both the discovery of the gen-
eral properties that govern the temporal evolution of
social networks and the detection and understanding
of temporal and spatial changes in these networks,
will continue to be a significant strand of research in
SNA.

It is also expected that the popularity of SNA
will continue to increase, attracting more and more
researchers to the field and impelling an increasing
number of companies to incorporate SNA methods
into their business processes and generalize their use
as strategic tools.

NOTES

2Cover is a synonym of partition for soft assignment
of vertices to communities.
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