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Random Forests

Adele Cutler, D. Richard Cutler and John R. Stevens

1 Introduction

Random Forests were introduced by Leo Breiman [6] who was inspired by ear-
lier work by Amit and Geman [2]. Although not obvious from thedescription in [6],
Random Forests are an extension of Breiman’s bagging idea [5] and were developed
as a competitor to boosting. Random Forests can be used for either a categorical
response variable, referred to in [6] as “classification”, or a continuous response, re-
ferred to as “regression”. Similarly, the predictor variables can be either categorical
or continuous.

From a computational standpoint, Random Forests are appealing because they

• naturally handle both regression and (multiclass) classification;
• are relatively fast to train and to predict;
• depend only on one or two tuning parameters;
• have a built in estimate of generalization error;
• can be used directly for high-dimensional problems;
• can easily be implemented in parallel.

Statistically, Random Forests are appealing because of theadditional features they
provide, such as

• measures of variable importance;
• differential class weighting;
• missing value imputation;
• visualization;
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2 Adele Cutler, D. Richard Cutler and John R. Stevens

• outlier detection;
• unsupervised learning.

This chapter gives an introduction to the Random Forest method for classification
and regression, including a brief description of the types of classification and regres-
sion trees used in the Random Forests algorithm. The chapterdescribes how out of
bag data are used not only to give a fast estimate of generalization error, but also to
estimate variable importance. A discussion of some important practical issues such
as tuning the algorithm and weighting classes to deal with unequal sample sizes is
also included. Methods for finding Random Forest proximities and using them to
give illuminating plots as well as imputing missing values are presented. Finally,
references to extensions of the Random Forest method are given.

2 The Random Forest Algorithm

As the name suggests, a Random Forest is a tree-based ensemble with each tree
depending on a collection of random variables. More formally, for a p-dimensional
random vectorX = (X1, . . . ,Xp)

T representing the real-valued input or predictor
variables and a random variableY representing the real-valued response, we assume
an unknown joint distributionPXY (X ,Y ). The goal is to find a prediction function
f (X) for predictingY . The prediction function is determined by a loss function
L(Y, f (X)) and defined to minimize the expected value of the loss

EXY (L(Y, f (X))) (1)

where the subscripts denote expectation with respect to thejoint distribution ofX
andY .

Intuitively, L(Y, f (X)) is a measure of how closef (X) is toY ; it penalizes values
of f (X) that are a long way fromY . Typical choices ofL are squared error loss
L(Y, f (X)) = (Y − f (X))2 for regression andzero-one loss for classification:

L(Y, f (X)) = I(Y 6= f (X)) =

{

0 if Y = f (X)
1 otherwise.

(2)

It turns out (see, for example, [10] Sect. 2.4) that minimizing EXY (L(Y, f (X)))
for squared error loss gives the conditional expectation

f (x) = E(Y |X = x) (3)

otherwise known as theregression function. In the classification situation, if the set
of possible values ofY is denoted byY , minimizingEXY (L(Y, f (X))) for zero-one
loss gives

f (x) = argmax
y∈Y

P(Y = y|X = x), (4)

otherwise known as theBayes rule.
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Ensembles constructf in terms of a collection of so-called “base learners”
h1(x), . . . ,hJ(x) and these base learners are combined to give the “ensemble pre-
dictor” f (x). In regression, the base learners are averaged

f (x) =
1
J

J

∑
j=1

h j(x), (5)

while in classification,f (x) is the most frequently predicted class (“voting”)

f (x) = argmax
y∈Y

J

∑
j=1

I(y = h j(x)). (6)

In Random Forests thejth base learner is a tree denotedh j(X ,Θ j), whereΘ j is
a collection of random variables and theΘ j ’s are independent forj = 1, . . . ,J. Al-
though the definition of a Random Forest is very general, theyare almost invariably
implemented in the specific way described in Sect. 2.2. To understand the Random
Forest algorithm, it is important to have a fundamental knowledge of the type of
trees used as base learners.

2.1 Introduction to Classification and Regression Trees

The trees used in Random Forests are based on the binary recursive partitioning trees
in the monograph [4] and also described in [10], [14] and [26]. These trees partition
the predictor space using a sequence of binary partitions (“splits”) on individual
variables. The “root” node of the tree comprises the entire predictor space. The
nodes that are not split are called “terminal nodes” and formthe final partition of
the predictor space. Each nonterminal node splits into two descendant nodes, one on
the left and one on the right, according to the value of one of the predictor variables.
For a continuous predictor variable, a split is determined by a split-point; points for
which the predictor is smaller than the split-point go to theleft, the rest go to the
right (See Fig. 1).

A categorical predictor variableXi takes values from a finite set of categories
Si = {si,1, . . . ,si,m}. A split sends a subset of these categoriesS ⊂ Si to the left and
the remaining categories to the right (See Fig. 2).

The particular split a tree uses to partition a node into its two descendants is
chosen by considering every possible split on every predictor variable and choosing
the “best” according to some criterion. In the regression context, if the response
values at the node arey1, . . . ,yn, a typical splitting criterion is the mean squared
residual at the node

Q =
1
n

n

∑
i=1

(yi − ȳ)2 (7)
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Xi < c?

yes no

left right
descendant descendant

Fig. 1 Splitting on a continuous predictor variableXi, using split-pointc.

Xi ∈ S ⊂ Si?

yes no

left right
descendant descendant

Fig. 2 Splitting on a categorical predictor variableXi, using subsetS ⊂ Si.

where ¯y = 1
n ∑n

i=1 yi is the predicted value at the node (the average of the response
values). In the classification context where there areK classes denoted 1, . . . ,K, a
typical splitting criterion is the Gini index

Q =
K

∑
k 6=k′

p̂k p̂k′ (8)

where ˆpk is the proportion of classk observations in the node:

p̂k =
1
n

n

∑
i=1

I(yi = k). (9)

The splitting criterion gives a measure of “goodness of fit” (regression) or “pu-
rity” (classification) for a node, with large values representing poor fit (regression)
or an impure node (classification). A candidate split creates two descendant nodes,
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one on the left and one on the right. Denoting the splitting criteria for the two can-
didate descendants asQL andQR and their sample sizes bynL andnR, the split is
chosen to minimizeQsplit = nLQL +nRQR.

For a continuous predictor variable, finding the best possible split entails sorting
the values of the predictor and considering splits between every distinct pair of
consecutive values. Typically the midpoint of the intervalis used, although any value
in the interval would suffice. The values ofQL, QR and henceQsplit are computed
for each of these possible split points, usually using a fastupdate algorithm. For a
categorical predictor variable,QL, QR andQsplit are computed for all possible ways
of choosing a subset of categories to go to each descendant node.

Once a split has been selected, the data are partitioned intothe two descendant
nodes and each of these nodes is treated in the same way as the original node. The
procedure continues recursively until a stopping criterion is met. For example, the
procedure may stop when all unsplit nodes contain fewer thansome fixed number
of cases. When the stopping criterion is met, unsplit nodes are called “terminal
nodes”. A predicted value is obtained for all observations in the terminal nodes
by averaging the response for regression problems or computing the most frequent
class for classification problems. To predict at a new point,its set of predictor values
are used to pass the point down the tree until it falls into a terminal node and the
prediction for the terminal node is used as the prediction for the new point.

Algorithm 1 Binary Recursive Partitioning
Let D = {(x1,y1), . . . ,(xN ,yN)} denote the training data, withxi =
(xi,1, . . . ,xi,p)

T .

1. Start with all observations(x1,y1), . . . ,(xN ,yN) in a single node.
2. Repeat the following steps recursively for each unsplit node until the stop-

ping criterion is met:
a. Find the best binary split among all binary splits on allp predictors.
b. Split the node into two descendant nodes using the best split (step 2a).

3. For prediction atx, passx down the tree until it lands in a terminal node. Let
k denote the terminal node and letyk1, . . . ,ykn denote the response values
of the training data in nodek. Predicted values of the response variable are
given by:
• ĥ(x) = ȳk =

1
n ∑n

i=1 yki for regression
• ĥ(x) = argmaxy ∑n

i=1 I(yki = y) for classification, whereI(yki = y) = 1
if yki = y and 0 otherwise.

Often, trees are deliberately grown larger than necessary and “pruned” back to
prevent over fitting [4]. Although pruning is very importantto prevent over-fitting
for stand-alone trees, it is not used in Random Forests, so itwill not be described
here, but the interested reader is referred to [4] or [14].
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Fig. 3 Regression tree for 2-dimensional prostate cancer data (Example 1). The top panel shows
the tree diagram, the bottom left contains a perspective plot of the fitted regression surface, the
bottom right shows the partitioning of the predictor space.

Example 1 Prostate Cancer Data

To illustrate regression trees, data from the prostate cancer study of [23], also stud-
ied in [10] is used. The response variable is the level of prostate-specific antigen
(lpsa). The predictor variables are log cancer volume (lcavol), log prostate weight
(lweight), age, log of the amount of benign prostatic hyperplasia (lbph), seminal
vesicle invasion (svi), log of capsular penetration (lcp),Gleason score (gleason),
and percent of Gleason scores 4 or 5 (pgg45). A regression tree was fit to two of
the predictor variables, namely, log cancer volume (lcavol) and log prostate weight
(lweight). The top panel of Figure 3 shows the regression tree. At each node, cases
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that satisfy the inequality go to the left, while ones that donot satisfy the inequality
go to the right. Each terminal node results in a single predicted value, namely the av-
erage value of the response for the observations falling into the node. At the bottom
left, Figure 3 shows a perspective plot of the piecewise linear regression surface
corresponding to the regression tree in the top panel. On thebottom right, Figure
3 shows the partitioning of the predictor space. For continuous predictors such as
these, the splits are parallel to the coordinate axes and thepredictor space is divided
into (hyper-) rectangles, each with a single predicted value. Each of the 5 rectangles
corresponds to one of the terminal nodes in the tree.

Trees are popular for a wide range of problems, in part because trees can model
complex interactions. The rank-based nature of the splits makes trees robust to out-
liers and insensitive to monotone transformations of the predictor variables. A sum-
mary of the characteristics that make trees popular, even for low-dimensional prob-
lems, is ([10] Sect. 10.7) that trees:

• can model interactions;
• naturally handle both regression and (multiclass) classification;
• naturally handle both continuous and categorical predictor variables;
• handle missing values in the predictor variables;
• are robust to outliers in the predictor variables;
• are insensitive to monotone transformations of the predictor variables;
• scale well for large sample sizes;
• deal well with irrelevant predictor variables.

Neither support vector machines nor neural networks rate highly on any of the
above characteristics ([10] Sect. 10.7). On the downside, regression trees have sharp
jumps in the predictions at the edges of the nodes. Also they

• are not good at capturing relationships involving linear combinations of predictor
variables;

• are known to be unstable in the sense that if the data are perturbed slightly, the
tree can change substantially;

• are not as accurate as some of the more recently developed methods.

Trees enjoy a mixed reception when it comes to interpretability. Tree diagrams
are easily understood, but interpretation can be difficult because adjacent or nearby
rectangles can appear in quite distant parts of the tree. A less obvious problem occurs
when two or more predictor variables are highly correlated within a node. Such
variables are called surrogates, and lead to similar splitsof the node. However, they
make interpretation more difficult becausedifferent surrogates may be selected for
splits at this and descendant nodes. If there are only a few predictor variables, good
software can help keep track of surrogates, but in very high-dimensional examples
the task becomes much more difficult and it may be impossible to extract a coherent
story from the tree diagram.

Perhaps the single largest drawback of trees is that they arenot as accurate as
more recently developed methods. However, they are the building blocks of many
ensemble methods including Random Forests.
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2.2 Random Forest Definition

As mentioned earlier in this Section, a Random Forest uses treesh j(X ,Θ j) as base
learners. For training dataD = {(x1,y1), . . . ,(xN ,yN)}, wherexi = (xi,1, . . . ,xi,p)

T

denotes thep predictors andyi denotes the response, and a particular realizationθ j

of Θ j, the fitted tree is denoted̂h j(x,θ j,D). While this is the original formulation
from Breiman [6], in practice the random componentθ j is not considered explicitly
but is implicitly used to inject randomness in two ways. First, as with bagging, each
tree is fit to an independent bootstrap sample from the original data. The random-
ization involved in bootstrap sampling gives one part ofθ j. Second, when splitting a
node, the best split is found over a randomly selected subsetof m predictor variables
instead of allp predictors, independently at each node. The randomizationused to
sample the predictors gives the remaining part ofθ j.

The trees are grown without pruning. Initially, Breiman [6]suggested growing
them until the terminal nodes were pure (classification) or until there were fewer
than a prespecified number of data points in each terminal node (regression). More
recently [21] suggests controlling the maximum number of terminal nodes.

The resulting trees are combined by unweighted voting if theresponse is cate-
gorical (classification) or unweighted averaging if the response is continuous (re-
gression).

Algorithm 2 Random Forests
Let D = {(x1,y1), . . . ,(xN ,yN)} denote the training data, withxi =
(xi,1, . . . ,xi,p)

T . For j = 1 to J:

1. Take a bootstrap sampleD j of sizeN from D .
2. Using the bootstrap sampleD j as the training data, fit a tree using binary

recursive partitioning (Sect. 2.1):
a. Start with all observations in a single node.
b. Repeat the following steps recursively for each unsplit node until the

stopping criterion is met:
i. Selectm predictors at random from thep available predictors.
ii. Find the best binary split among all binary splits on them predictors

from step i.
iii. Split the node into two descendant nodes using the splitfrom step

ii.

To make a prediction at a new pointx,

• f̂ (x) = 1
J ∑J

j=1 ĥ j(x) for regression

• f̂ (x) = argmaxy ∑J
j=1 I(ĥ j(x) = y) for classification

whereĥ j(x) is the prediction of the response variable atx using thejth tree
(Algorithm 1).
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2.3 Using Out-Of-Bag Data

When a bootstrap sample is taken from the data, some observations do not make
it into the bootstrap sample. These are called “out-of-bag data”, and are extremely
useful for estimating generalization error and variable importance (see Sect. 3).

To estimate generalization error, first note that if the trees are large, predictions
naively obtained using all the trees will be overly optimistic if used to predict the
response variable for observations that were in the training setD . For this reason,
prediction of the response variable for observations that were in the training set is
only done using trees for which the observation is out-of-bag. These predictions are
called out-of-bag predictions.

Algorithm 3 Out-of-Bag Predictions
Let D j denote thejth bootstrap sample and̂h j(x) denote the prediction atx
from the jth tree, for j = 1, . . . ,J. For i = 1 to N:

1. LetJi = { j : (xi,yi) /∈ D j} and letJi be the cardinality ofJi (Algorithm
2).

2. Define the out-of-bag prediction atxi to be
• f̂oob(xi) =

1
Ji

∑ j∈Ji
ĥ j(xi) for regression

• f̂oob(xi) = argmaxy ∑ j∈Ji
I(ĥ j(xi) = y) for classification

whereĥ j(xi) is the prediction of the response variable atxi using thejth
tree (Algorithm 1).

For regression with squared error loss, generalization error is typically estimated
using the out-of-bag mean squared error (MSE):

MSEoob=
1
N

N

∑
i=1

(yi − f̂oob(xi))
2 (10)

where f̂oob(xi) is the out-of-bag prediction for observationi.
For classification with zero one loss, generalization errorrate is estimated using

the out-of-bag error rate:

Eoob=
1
N

N

∑
i=1

I(yi 6= f̂oob(xi)). (11)

A common misconception is that the out-of-bag error rate is obtained by computing
the out-of-bag error rate for each tree, and averaging theseerror rates to give the
out-of-bag error rate for the forest. Instead, we use the error rate of the out-of-bag
predictions. This allows us to obtain a classwise error ratefor each class, and an
out-of-bag “confusion matrix” by cross-tabulatingyi and f̂oob(xi).
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Example 2 Mease and Wyner Data

To illustrate the use of the out-of-bag data, we consider a simulation model used by
Mease and Wyner [17]. For input variablesX1, . . . ,Xp independently taken from the
standard uniform distribution U[0,1], the response variable Y ∈ {0,1} is generated
using

P(Y = 1|X1, . . . ,Xp) =

{

q if ∑L
l=1 Xl ≤ L/2

1−q otherwise.

For q < 0.5, the Bayes’ rule classifies an observationx1, . . . ,xp into class 0 if
∑L

l=1 xl ≤ L/2 and into class 1 otherwise. Forq > 0.5, the class labels are reversed,
and in both cases the Bayes’ error isq. In this way, the firstL predictors are impor-
tant and the remainingp−L predictors are noise. UsingL = p = 2 andq = 0.1, Fig.
4 shows the out of bag error estimate and the test set error estimate for a training set
of sizeN = 1000 and a test set of size 10,000 as the number of trees increases from
J = 1 toJ = 500. The out-of-bag error rate tracks the test set error ratequite closely
in this Fig. 4. We chose a case for which the out-of-bag error rate and test set error
rate were quite similar. Other runs showed the out-of-bag error rate to be somewhat
higher or somewhat lower than the test set error rate. Table 1shows the out-of-bag
confusion matrix and test set confusion matrix for the run shown in Fig. 4. Note that
the out-of-bag confusion matrix is obtained using the out-of-bag prediction for each
observation in the training set, against the nominal class.
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Fig. 4 Out-of-bag and test set error rate for Mease and Wyner data (Example 2).
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Table 1 Out-of-bag and test set confusion matrices for Mease and Wyner data (Example 2).

Out-of-bag confusion matrix Test set confusion matrix
Predicted Predicted

Class 0 Class 1Total Class 0 Class 1 Total
Nominal Class 0 417 58 475 Nominal Class 0 4409 626 5035
Nominal Class 1 64 461 525 Nominal Class 1 590 4375 4965
Total 481 5191000 Total 4999 500110000

2.4 Tuning

Although Random Forests have the reputation of working quite well right out of the
box, there are three parameters that may be tuned to give improved accuracy for
particular situations:

• m, the number of randomly selected predictor variables chosen at each node
• J, the number of trees in the forest
• tree size, as measured by the smallest node size for splitting or the maximum

number of terminal nodes.

The only one of these parameters to which Random Forests is somewhat sensitive
appears to bem. In classification, the standard default ism =

√
M, whereM is the

total number of predictors. In regression, the default ism = N/3, whereN is the
sample size. If tuning is necessary,m can be chosen using the out-of-bag error rate,
but then this no longer gives an unbiased estimate of generalization error. However,
typically Random Forests are not very sensitive tom, so fine-tuning is not required
and overfitting effects due to choice ofm should be relatively small, as demonstrated
by [9].

For many ensemble methods, generalization error initiallydecreases asJ in-
creases, but at some pointJ becomes too large and overfitting sets in, with an associ-
ated increase in generalization error. This is not the case with Random Forests. For
small values ofJ, the out-of-bag estimate can be unstable and inaccurate. However,
asJ increases Breiman showed [6] that the generalization errorfor Random Forests
converges almost surely to a limit. In practice, this meansJ can be chosen as large
as desired, without fear of increasing the generalization error. The only real concern
with J is that it not be too small, and usually the out-of-bag error rate can be used to
decide whenJ is large enough that the estimated generalization error hasstabilized.
Often a plot such as that shown in Fig. 4 is used to decide whether or notJ is large
enough.

Breiman’s original work [6] recommends growing very large trees. In a recent
paper by Segal and Xiao [21], the authors give a classification example for which a
forest of large trees overfits and suggest this was not observed in Breiman’s original
work because the benchmark datasets all came from the University of California at
Irvine (UCI) repository and happen to share properties thatmake large trees nearly
optimal. In problems for which large trees overfit, users cantune using either the
number of nodes or the smallest nodesize. Out-of-bag error rates can be used to
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choose the tuning parameter, understanding that such use will lead to a bias in the
estimated generalization error.

2.5 Weighting

Unbalanced data sets, where some classes are much smaller than others, present a
challenge to many classifiers. A naive classifier will work ongetting the large classes
right, while allowing a high error rate for the small classes. Random Forests has an
effective method for weighting the classes to give balancedresults in unbalanced
data (www.math.usu.edu/∼adele/forests). One reason to do this is that
the important predictor variables may be different when themethod is forced to
pay greater attention to a small class. Even in the balanced case, the weights can be
adjusted to give lower error rates to decisions that have a high misclassification cost.
For example, it is often more serious to incorrectly conclude that someone is healthy
than it would be to incorrectly conclude that someone is ill.Example 3 in Sect. 3.1
illustrates the effect of different weights on permutationvariable importance.

3 Variable Importance

Measures of the importance of the predictor variables are useful for variable selec-
tion and for interpreting the fitted forest. While it is standard in many applications to
run a principal components analysis (PCA) to reduce dimensionality before fitting a
classifier or regression predictor, it is possible that the principal components do not
capture the important information for the prediction problem. In this case, it may be
preferable to obtain variable importance directly from thealgorithm and then re-fit
using only the most important predictors.

3.1 Permutation Importance

Random Forests use an unusual but intuitive measure of variable importance. To
measure the importance of variablek, the following procedure is performed for
each tree. First, the out-of-bag observations are passed down the tree and the pre-
dicted values are computed. Next, the values of variablek are randomly permuted in
the out-of-bag data, keeping all the other predictor variables fixed. These modified
out-of-bag data are passed down the tree and the predicted values are computed.
This process gives two sets of out-of-bag predictions for each observation: one set
obtained from real data, the other set from variable-k-permuted data. For classifica-
tion, the difference between the error rate of the predictions obtained from permuted
data and those obtained using permuted data gives a measure of variable importance
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for the observation. The same procedure is used for regression, but using MSE in-
stead of error rates. For classification, class-wise variable importance is computed
by averaging over observations from the same class. Overallvariable importance is
computed by averaging over all the observations.

Algorithm 4 Permutation Variable Importance
To find the importance of variablek, for k = 1 to p:

1. (Findŷi, j) For i = 1 to N:
a. LetJi = { j : (xi,yi) /∈ D j} and letJi be the cardinality ofJi (Algo-

rithm 2).
b. Let ŷi, j = ĥ j(xi) for all j ∈ Ji.

2. (Findŷ⋆i, j) For j = 1 to J:
a. LetD j be thejth bootstrap sample (Algorithm 2).
b. LetF j = {i : (xi,yi) /∈ D j}.
c. Randomly permute the value of variablek for the data points{xi : i ∈

F j} to giveP j = {xi
⋆ : i ∈ F j}.

d. Let ŷ⋆i, j = ĥ j(xi
⋆) for all i ∈ F j.

3. Fori = 1 to N:
• For classification: Impi =

1
Ji

∑ j∈Ji
I(yi 6= ŷ⋆i, j)− 1

Ji
∑ j∈Ji

I(yi 6= ŷi, j).

• For regression: Impi =
1
Ji

∑ j∈Ji
(yi − ŷ⋆i, j)

2− 1
Ji

∑ j∈Ji
(yi − ŷi, j)

2.

Algorithm 4 gives the importance of a particular variable, denoted byk in the
algorithm description, on the predictions for a particularobservation, denoted by
i. The values can be used as measures oflocal variable importance, or they can
be averaged over all observations to give measures of overall importance of the
variable. The largest values are generally plotted (Fig. 5).

Intuitively, the permutation-based importance of variable k is an estimate of the
how much the prediction error or MSE on a test set would increase if the value of
variablek were randomly permuted in the test set. In this sense, it is similar to the
coefficient-based measures of importance used in methods such as linear regression
or logistic regression - they measure how much the prediction would change if the
value of the predictor increased by one unit, keeping everything else the same. Quite
a different measure is obtained, for both Random Forests andclassical methods, if
variablek is removed and the model is refit, because in this case predictors that
are correlated with the one of interest can give a similar fit and make the variable
appear unimportant. In contrast, if an important predictorvariable is correlated with
other predictor variables, Random Forests sometimes splits on one and sometimes
on another, due to the random choice of predictors at each node. Therefore, Random
Forests permutation importance tends to identify all of thecorrelated predictors as
important if any one of them is important.

One attractive feature of all tree-based methods is their ability to capture complex
interactions between predictors. If Random Forests captures such an interaction, the



14 Adele Cutler, D. Richard Cutler and John R. Stevens

variables involved are likely to show up as “important” because randomly permuting
one of them destroys the predictive power of the interaction.

To illustrate the behavior of Random Forest permutation importance, a regression
forest was fit to the prostate data (Example 1). A permutationimportance plot is
given in Fig. 5, showing that the three most important variables are lcavol, lweight
and svi. Interestingly, these are the same three variables chosen by lasso (see Fig
3.10 of [10]).

age

lcp

gleason

lbph

pgg45

svi

lweight

lcavol

0.1 0.2 0.3 0.4

 

%IncMSE

Fig. 5 Permutation variable importance, prostate data (Example 1).

Example 3 Normal Mixture

To illustrate the behavior of Random Forest variable importance when classes are
weighted differently, consider a bivariate normal mixtureof three classes

π1N(µ1, I)+π2N(µ2, I)+π3N(µ3, I)
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whereN(µ , I) denotes the bivariate normal density with meanµ and covariance
matrix the identity. GeneratingN = 300 observations from such a mixture withµ1 =
(0,0)T ,µ2 = (0,3)T ,µ3 = (3,3)T and π1 = 0.4,π2 = 0.4,π3 = 0.2 gave the data
shown in Figure 6. Fitting Random Forests usingJ = 500 trees andm = 1 for two
different weighting schemes gave the results in Table 2. Equal weighting gives the
lowest overall error rate. Increasing the weight on class 3,the smallest class, reduces
the class 3 error rate from 8.9% to 5.0% and increases the error rates of the other
two classes, giving an overall increase in error rate from 10.4% to 11.8%. More
interestingly, equal weighting ranks variable 1 as more important than variable 2,
while increasing the weight on class 3 reverses the ranking.
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Fig. 6 Bivariate normal mixture of three classes (Example 3).

Table 2 Impact of class weights on error rates and permutation importance.

Class 1 Class 2 Class 3Class 1 Class 2 Class 3
Weights 1/3 1/3 1/3 1/7 1/7 5/7
Classwise error rate (percent) 8.2 13.0 8.9 8.7 17.7 5.0
Overall error rate (percent) 10.4 11.8
Permutation importance (variable 1) 32.7 73.8
Permutation importance (variable 2) 22.3 49.1
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4 Proximities

Random Forests proximities are used for missing value imputation and visualiza-
tion.

4.1 Definition

The proximity between two observations is the proportion ofthe time that they end
up in the same terminal node, where the proportion is taken over the trees in the
forest. If two observations are always in the same terminal node, their proximity
will be 1. If they are never in the same terminal node, their proximity will be 0. The
proximity between two observations is a measure of how closetogether they are in
predictor space, but it automatically gives more weight to predictors that are useful
for predicting the response. Observations that are very farapart in Euclidean space
may have quite a large proximity if they only differ on weak orirrelevant predictors,
while observations that are relatively close together in Euclidean space may have
relatively small proximities if they differ on predictors that are crucial for predicting
the response.

4.2 Missing Value Imputation

Random Forests imputes missing values using the proximities described above. The
procedure is iterative: an initial forest is built using median imputation, proximities
are calculated, and new imputations are obtained by a proximity-weighted average
for a continuous predictor or a proximity-weighted vote fora categorical predictor.
A new forest is built, giving new proximities and imputations. Usually 5 or 6 itera-
tions are sufficient to give stable imputations. Although noformal analysis has been
done, the fact that the method uses proximity-based nearestneighbors suggests that
it will be valid if values of the predictors are missing at random.

4.3 Visualization

From a statistical perspective, one of the difficult aspectsof high-dimensional data
analysis is that it is not obvious how to get a good “feel” for the data. Are there
interesting patterns or structures, such as sub-groups within the known classes? Are
there outliers? In a multi-class situation, are some of the groups separated while oth-
ers overlap? Random Forests provide a way to look at the data to give some insight
into these questions. This is done by computing proximities, deriving a distance
matrix, and performing classical multidimensional scaling (MDS) to obtain two-
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or three-dimensional plots. Each point on such a plot represents one of the obser-
vations and the distances between the points reproduce, as closely as possible, the
proximity-based distances. Such a plot can be used to pick out subgroups of cases
that almost always stay together in the trees, or outliers that are almost always alone
in a terminal node.

Example 4 Microarray Data

To illustrate the potential usefulness of visualization using the proximity matrix,
we consider the prostate cancer microarray data [22]. Thesedata have 6033 gene
expression values for 102 arrays (50 normal samples and 52 tumor samples). We
used the normalization described by Dettling [8]. Figure 7 (left) shows the first two
dimensions of the MDS plot based on the Random Forest proximity matrix.

A natural question at this point is whether it would be just asgood to use MDS
on a conventional distance, such as Euclidean distance or one of the other distances
commonly used in cluster analysis. This can certainly be done, but one of the diffi-
culties is that a conventional distance can be dominated by noisy and uninformative
predictors that may drown out the effects of the important predictors. This behavior
can be seen in Figure 7, which presents the MDS plot derived from the proximity
matrix and the MDS plot derived from Euclidean distance for the microarray data
in Example 4. The proximity plot reveals much more structurethan the plot based
on Euclidean distances, including an outlier that could be of interest to the investi-
gators.
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Fig. 7 MDS plot from the Random Forests proximities (left) and from Euclidean distance (right)
for Example 4. Solid circles represent cancer cases, open circles represent controls.
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5 Software

Commercial software for Random Forests is available from www.salford-systems.com.
The R package israndomForest [15] and this, along with R [19], is available
from the CRAN websitewww.cran.r-project.org. Open source FORTRAN
software for Random Forests is available fromwww.math.usu.edu/∼adele/forests.

6 Summary

Random Forests are a multipurpose tool, applicable to both regression and classifi-
cation problems, including multiclass classification. They give an internal estimate
of generalization error so crossvalidation is unnecessary. They can be tuned, but of-
ten work quite well with default tuning parameters. Variable importance measures
are available, which can be used for variable selection. Random Forests produce
proximities, which can be used to impute missing values. Proximities can also pro-
vide a wealth of information by enabling novel visualizations of the data. Random
Forests have been successfully used for a wide variety of applications and enjoy
considerable popularity in several disciplines.

7 Bibliographical and Historical Remarks

The Random Forest algorithm was the last major work of Leo Breiman [6].
Theoretical developments have been difficult to achieve. Inthe original paper,

Breiman [6] suggested that Random Forests work by reducing correlation, while
keeping the variance relatively small. Lin and Jeon [16] show that RF behaves like a
nearest neighbor classifier with an adaptive metric. More recently, Biau et al. address
consistency [3].

Several extensions have been published, for example [9] developed a variable
selection procedure, [18] introduced quantile regressionforests, and [12], [13] con-
sidered forests for survival analysis. More recently, [21]extends Random Forests
for multivariate responses. Amaratunga et al. [1] suggest an extension to very high
dimensional data.

Applications of Random Forests are numerous and only a few can be men-
tioned here. Statnikov [24] compares random forests and support vector machines
for microarray-based cancer classification. Schroff et al.[20] used Random Forests
for image segmentation. Chen et al. [7] use Random Forests toidentify genetic in-
teractions, while Goldstein et al. [11] and [25] apply Random Forests to SNP-based
genome-wide association data.
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