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Random Forests

Adele Cutler, D. Richard Cutler and John R. Stevens

1 Introduction

Random Forests were introduced by Leo Breiman [6] who wagired by ear-
lier work by Amit and Geman [2]. Although not obvious from ttiescription in [6],
Random Forests are an extension of Breiman’s bagging ideafbwere developed
as a competitor to boosting. Random Forests can be usedtlier @ categorical
response variable, referred to in [6] as “classificatiom’a gontinuous response, re-
ferred to as “regression”. Similarly, the predictor vatesbcan be either categorical
or continuous.

From a computational standpoint, Random Forests are dpgdsdcause they

naturally handle both regression and (multiclass) clasditin;
are relatively fast to train and to predict;

depend only on one or two tuning parameters;

have a built in estimate of generalization error;

can be used directly for high-dimensional problems;

can easily be implemented in parallel.

Statistically, Random Forests are appealing because afdtidional features they
provide, such as

measures of variable importance;
differential class weighting;
missing value imputation;
visualization;
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e outlier detection;
e unsupervised learning.

This chapter gives an introduction to the Random Forestoakfthr classification
and regression, including a brief description of the tydedassification and regres-
sion trees used in the Random Forests algorithm. The chdgseribes how out of
bag data are used not only to give a fast estimate of genatializerror, but also to
estimate variable importance. A discussion of some impogeactical issues such
as tuning the algorithm and weighting classes to deal witgual sample sizes is
also included. Methods for finding Random Forest proximit@d using them to
give illuminating plots as well as imputing missing values aresented. Finally,
references to extensions of the Random Forest method ae.giv

2 The Random Forest Algorithm

As the name suggests, a Random Forest is a tree-based easeitibeach tree
depending on a collection of random variables. More foryn&tlr a p-dimensional
random vectoX = (Xl,...,Xp)T representing the real-valued input or predictor
variables and a random variaMeepresenting the real-valued response, we assume
an unknown joint distributioriPy (X,Y). The goal is to find a prediction function
f(X) for predictingY. The prediction function is determined by a loss function
L(Y, f(X)) and defined to minimize the expected value of the loss

Exy (L(Y, f(X))) 1)

where the subscripts denote expectation with respect tgihedistribution of X
andyY.

Intuitively, L(Y, f(X)) is a measure of how closgX) is toY; it penalizes values
of f(X) that are a long way fronY. Typical choices oL aresguared error loss
L(Y, f(X)) = (Y — f(X))? for regression andero-one loss for classification:

L(Y, £(X)) = 1(Y # f(X)) = { 2 Ic]:tze:rvjlgé) @

It turns out (see, for example, [10] Sect. 2.4) that minimizExy (L(Y, f(X)))
for squared error loss gives the conditional expectation

f(x) =E(Y|X =Xx) (3)

otherwise known as theegression function. In the classification situation, if the set
of possible values of is denoted by?', minimizing Exy (L(Y, f(X))) for zero-one
loss gives
f(x) = argmaxP(Y = y|X =), 4)
ye¥

otherwise known as thBayesrule.
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Ensembles construct in terms of a collection of so-called “base learners”
hi(x),...,h3(x) and these base learners are combined to give the “ensengle pr
dictor” f(x). In regression, the base learners are averaged

(=33 hi(x), ©

while in classification f () is the most frequently predicted class (“voting”)

J
f(x) = argmax y I(y= hj(x)). (6)
yew =
In Random Forests thgh base learner is a tree denotgdX, ©;), whereQ; is
a collection of random variables and t&g's are independent foy=1,...,J. Al-
though the definition of a Random Forest is very general, #neyalmost invariably
implemented in the specific way described in Sect. 2.2. Teetstdnd the Random
Forest algorithm, it is important to have a fundamental Keoge of the type of
trees used as base learners.

2.1 Introduction to Classification and Regression Trees

The trees used in Random Forests are based on the binargivequartitioning trees
in the monograph [4] and also described in [10], [14] and [ZBlese trees partition
the predictor space using a sequence of binary partitiosi{8”) on individual
variables. The “root” node of the tree comprises the entiegligtor space. The
nodes that are not split are called “terminal nodes” and ftivenfinal partition of
the predictor space. Each nonterminal node splits into &gcendant nodes, one on
the left and one on the right, according to the value of ona@fpiredictor variables.
For a continuous predictor variable, a split is determingd Bplit-point; points for
which the predictor is smaller than the split-point go to ki, the rest go to the
right (See Fig. 1).

A categorical predictor variabl¥; takes values from a finite set of categories
S ={s1,....S.m}. Asplit sends a subset of these categoBies S to the left and
the remaining categories to the right (See Fig. 2).

The particular split a tree uses to partition a node intovits tescendants is
chosen by considering every possible split on every predicriable and choosing
the “best” according to some criterion. In the regressiontext, if the response
values at the node ang,...,yn, a typical splitting criterion is the mean squared

residual at the node N
1
szZm—wz (7)

n;
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Xj<c?

left right
descendant descendant

Fig. 1 Splitting on a continuous predictor variab{g using split-point.

X,0s0S?
yes, no

left right
descendant descendant

Fig. 2 Splitting on a categorical predictor variatfg using subsesC S.

wherey = %Zin=1Yi is the predicted value at the node (the average of the respons
values). In the classification context where therekarglasses denoted 1. K, a
typical splitting criterion is the Gini index
K
Q=Y pube (8)
KK

wherepy is the proportion of clask observations in the node:
1 n
Pe=—> 1(yi=Kk). ©)
n i;

The splitting criterion gives a measure of “goodness of fig€gfession) or “pu-
rity” (classification) for a node, with large values repnatieg poor fit (regression)
or an impure node (classification). A candidate split creat® descendant nodes,
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one on the left and one on the right. Denoting the splittingede for the two can-
didate descendants  andQg and their sample sizes by andng, the split is
chosen to minimiz@sp”t =n QL + NRQR.

For a continuous predictor variable, finding the best pdssiplit entails sorting
the values of the predictor and considering splits betwemyedistinct pair of
consecutive values. Typically the midpoint of the inteiigsalsed, although any value
in the interval would suffice. The values @f , Qr and henc@spm are computed
for each of these possible split points, usually using adasate algorithm. For a
categorical predictor variabl®, Qr andQsp"t are computed for all possible ways
of choosing a subset of categories to go to each descenddat no

Once a split has been selected, the data are partitionethiatiovo descendant
nodes and each of these nodes is treated in the same way aggthelmode. The
procedure continues recursively until a stopping criteieomet. For example, the
procedure may stop when all unsplit nodes contain fewer sloame fixed number
of cases. When the stopping criterion is met, unsplit nodescalied “terminal
nodes”. A predicted value is obtained for all observatiamsghie terminal nodes
by averaging the response for regression problems or cangptite most frequent
class for classification problems. To predict at a new pdimset of predictor values
are used to pass the point down the tree until it falls intormitgal node and the
prediction for the terminal node is used as the predictionHe new point.

Algorithm 1 Binary Recursive Partitioning
Let 2 = {(x1,Y1),...,(Xn,yn)} denote the training data, withG =
(X1, Xip) -

1. Start with all observations,y1), ..., (Xn,Yn) in @ single node.

2. Repeat the following steps recursively for each unsplitenuntil the stop-
ping criterion is met:

a. Find the best binary split among all binary splits onpgfiredictors.
b. Split the node into two descendant nodes using the bes{stpp 2a).

3. For prediction ax, passxdown the tree until it lands in a terminal node. Let
k denote the terminal node and igt, . .., Yk, denote the response values
of the training data in node Predicted values of the response variable are
given by:

o h(X)=Yyk= 23",y for regression
° ﬁ(x) =argmax, 51, 1 (yi =Y) for classification, wheré(y, =y) =1
if yi, =y and 0 otherwise.

Often, trees are deliberately grown larger than necessaty@uned” back to
prevent over fitting [4]. Although pruning is very importatot prevent over-fitting
for stand-alone trees, it is not used in Random Forests, sill ihot be described
here, but the interested reader is referred to [4] or [14].
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Fig. 3 Regression tree for 2-dimensional prostate cancer data (Examplee.top panel shows
the tree diagram, the bottom left contains a perspective pltieofitted regression surface, the
bottom right shows the partitioning of the predictor space.

Example 1 Prostate Cancer Data

To illustrate regression trees, data from the prostateagastady of [23], also stud-
ied in [10] is used. The response variable is the level of tatesspecific antigen
(Ipsa). The predictor variables are log cancer volume @balog prostate weight
(lweight), age, log of the amount of benign prostatic hyfesia (Ibph), seminal
vesicle invasion (svi), log of capsular penetration (IdB)eason score (gleason),
and percent of Gleason scores 4 or 5 (pgg45). A regressiennias fit to two of
the predictor variables, namely, log cancer volume (Iogaot log prostate weight
(Iweight). The top panel of Figure 3 shows the regressioa thé each node, cases
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that satisfy the inequality go to the left, while ones thandosatisfy the inequality
go to the right. Each terminal node results in a single ptedigalue, namely the av-
erage value of the response for the observations fallimgthe node. At the bottom
left, Figure 3 shows a perspective plot of the piecewisealimegression surface
corresponding to the regression tree in the top panel. Obdttem right, Figure
3 shows the partitioning of the predictor space. For cowmtisupredictors such as
these, the splits are parallel to the coordinate axes angréuctor space is divided
into (hyper-) rectangles, each with a single predictedezdtiach of the 5 rectangles
corresponds to one of the terminal nodes in the tree.

Trees are popular for a wide range of problems, in part bectass can model
complex interactions. The rank-based nature of the spltisasitrees robust to out-
liers and insensitive to monotone transformations of tleeljotor variables. A sum-
mary of the characteristics that make trees popular, eveloiedimensional prob-
lems, is ([10] Sect. 10.7) that trees:

can model interactions;

naturally handle both regression and (multiclass) clasditin;
naturally handle both continuous and categorical predicidables;
handle missing values in the predictor variables;

are robust to outliers in the predictor variables;

are insensitive to monotone transformations of the prediariables;
scale well for large sample sizes;

deal well with irrelevant predictor variables.

Neither support vector machines nor neural networks ragklyion any of the
above characteristics ([10] Sect. 10.7). On the downsatgession trees have sharp
jumps in the predictions at the edges of the nodes. Also they

e are not good at capturing relationships involving lineanbmations of predictor
variables;

e are known to be unstable in the sense that if the data arerpedslightly, the
tree can change substantially;

e are not as accurate as some of the more recently developédaset

Trees enjoy a mixed reception when it comes to interprétabilree diagrams
are easily understood, but interpretation can be difficetialuse adjacent or nearby
rectangles can appear in quite distant parts of the treessfdlevious problem occurs
when two or more predictor variables are highly correlatethiw a node. Such
variables are called surrogates, and lead to similar sflitse node. However, they
make interpretation more difficult becaudiéferent surrogates may be selected for
splits at this and descendant nodes. If there are only a fedigior variables, good
software can help keep track of surrogates, but in very Higiensional examples
the task becomes much more difficult and it may be impossibdxtract a coherent
story from the tree diagram.

Perhaps the single largest drawback of trees is that thepairas accurate as
more recently developed methods. However, they are thdibgiblocks of many
ensemble methods including Random Forests.
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2.2 Random Forest Definition

As mentioned earlier in this Section, a Random Forest useslif(X,9;) as base
learners. For training dat@ = {(X1,Y1), ..., (X, Yn)}, Wherex; = (Xi1,...,%ip)"
denotes the predictors ang; denotes the response, and a particular realizatjon
of O, the fitted tree is denotelt} (x, 8, 7). While this is the original formulation
from Breiman [6], in practice the random componépts not considered explicitly
but is implicitly used to inject randomness in two ways. Eies with bagging, each
tree is fit to an independent bootstrap sample from the @iglata. The random-
ization involved in bootstrap sampling gives one padpfSecond, when splitting a
node, the best split is found over a randomly selected swlbsepredictor variables
instead of allp predictors, independently at each node. The randomizaged to
sample the predictors gives the remaining paid;of

The trees are grown without pruning. Initially, Breiman Ei]ggested growing
them until the terminal nodes were pure (classification) ril there were fewer
than a prespecified number of data points in each termina (regression). More
recently [21] suggests controlling the maximum number ohieal nodes.

The resulting trees are combined by unweighted voting ifrdsponse is cate-
gorical (classification) or unweighted averaging if thep@sse is continuous (re-
gression).

Algorithm 2 Random Forests
Let 2 = {(x1,Y1),.-.,(Xn,yn)} denote the training data, withG =
(Xi1,---,Xip)' . Forj=1tod:

1. Take a bootstrap samplg; of sizeN from 2.
2. Using the bootstrap samplg; as the training data, fit a tree using binary
recursive partitioning (Sect. 2.1):
a. Start with all observations in a single node.
b. Repeat the following steps recursively for each unsgdenuntil the
stopping criterion is met:
i. Selectm predictors at random from thgavailable predictors.
ii. Find the best binary split among all binary splits on theredictors
from step i.
iii. Split the node into two descendant nodes using the &plin step
il

To make a prediction at a new poixt
o f(x)=3y]_,hj(x) for regression
o f(x)=argmax zle I (ﬁj (x) =) for classification

whereﬁj (x) is the prediction of the response variablexatsing thejth tree
(Algorithm 1).
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2.3 Using Out-Of-Bag Data

When a bootstrap sample is taken from the data, some obsgwatdo not make
it into the bootstrap sample. These are called “out-of-tetg’d and are extremely
useful for estimating generalization error and variablpantance (see Sect. 3).

To estimate generalization error, first note that if thedraee large, predictions
naively obtained using all the trees will be overly optinust used to predict the
response variable for observations that were in the trgis@tZ. For this reason,
prediction of the response variable for observations theevin the training set is
only done using trees for which the observation is out-agf-fdese predictions are
called out-of-bag predictions.

Algorithm 3 Out-of-Bag Predictions .
Let 2; denote thejth bootstrap sample arig(x) denote the prediction at
from the jth tree, forj =1,...,J. Fori = 1 toN:

1. Let 7 ={j:(x,Yi) ¢ 2;} and letJ; be the cardinality of #; (Algorithm
2).

2. Define the out-of-bag prediction gtto be
o foob(X) = 3 3 je z hj(x) for regression
° onob(Xi) =argmax;y jc 4 I(ﬁj () =Yy) for classification
Whereﬁj (%) is the prediction of the response variableatising thejth
tree (Algorithm 1).

For regression with squared error loss, generalizatiar &itypically estimated
using the out-of-bag mean squared error (MSE):

12 -
MSEqob =y ;(Yi ~ foob(x))? (10)

wherefoob(xi) is the out-of-bag prediction for observation
For classification with zero one loss, generalization erate is estimated using
the out-of-bag error rate:

N A
E000= 301 # oot )

A common misconception is that the out-of-bag error ratétained by computing
the out-of-bag error rate for each tree, and averaging teese rates to give the
out-of-bag error rate for the forest. Instead, we use ther eate of the out-of-bag
predictions. This allows us to obtain a classwise error fateeach class, and an
out-of-bag “confusion matrix” by cross-tabulatiggand onob(Xi)-
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Example 2 Mease and Wyner Data

To illustrate the use of the out-of-bag data, we considemalsition model used by
Mease and Wyner [17]. For input variablés ..., X, independently taken from the
standard uniform distribution U[0,1], the response vddabe {0,1} is generated

using

if $qX <L/2
=6 = {1, s

For g < 0.5, the Bayes’ rule classifies an observatin...,xp into class 0 if
SE1% < L/2 and into class 1 otherwise. Fgr> 0.5, the class labels are reversed,
and in both cases the Bayes’ errogidn this way, the first. predictors are impor-
tant and the remaining— L predictors are noise. Using= p= 2 andq = 0.1, Fig.

4 shows the out of bag error estimate and the test set erioragstfor a training set
of sizeN = 1000 and a test set of size 10,000 as the number of trees $esréam
J=1toJ =500. The out-of-bag error rate tracks the test set erromate closely
in this Fig. 4. We chose a case for which the out-of-bag eatw and test set error
rate were quite similar. Other runs showed the out-of-bagy eate to be somewhat
higher or somewhat lower than the test set error rate. Tabloivs the out-of-bag
confusion matrix and test set confusion matrix for the ruovghin Fig. 4. Note that
the out-of-bag confusion matrix is obtained using the ditay prediction for each
observation in the training set, against the nominal class.

—— Out-of-bag error rate
B ---- Test set error rate
w 1
— — )
o 3 :
T © .
o -
S |
§ =S40
o
o
\—! —]
o | | | | | |

Number of Trees

Fig. 4 Out-of-bag and test set error rate for Mease and Wyner data (He&hp
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Table 1 Out-of-bag and test set confusion matrices for Mease and Wyne(Bzample 2).

Out-of-bag confusion matrix Test set confusion matrix
Predicted Predicted
Class 0 Class ITotal Class 0 Class 1 Total
Nominal Class 0 417 58 475 Nominal Class|0 4409 626 5035
Nominal Class 1 64 461 525 Nominal Class{l 590 437% 4965
Total 481 5191000 Total 4999 500110000
2.4 Tuning

Although Random Forests have the reputation of workingequigll right out of the
box, there are three parameters that may be tuned to givewuegraccuracy for
particular situations:

e m, the number of randomly selected predictor variables ahaseach node

e J, the number of trees in the forest

e tree size, as measured by the smallest node size for splitting or thdnmuen
number of terminal nodes.

The only one of these parameters to which Random Forestsiavgioat sensitive
appears to ben. In classification, the standard defaultis= /M, whereM is the
total number of predictors. In regression, the defaulnis- N/3, whereN is the
sample size. If tuning is necessanycan be chosen using the out-of-bag error rate,
but then this no longer gives an unbiased estimate of génatiah error. However,
typically Random Forests are not very sensitivertiao fine-tuning is not required
and overfitting effects due to choicemifshould be relatively small, as demonstrated
by [9].

For many ensemble methods, generalization error initiddgreases a3 in-
creases, but at some poihbecomes too large and overfitting sets in, with an associ-
ated increase in generalization error. This is not the cageRandom Forests. For
small values of], the out-of-bag estimate can be unstable and inaccurateeVto,
asJ increases Breiman showed [6] that the generalization &srdRandom Forests
converges almost surely to a limit. In practice, this mehnan be chosen as large
as desired, without fear of increasing the generalizatioor€lhe only real concern
with Jis that it not be too small, and usually the out-of-bag erate can be used to
decide wherd is large enough that the estimated generalization errostagdized.
Often a plot such as that shown in Fig. 4 is used to decide whethnotJ is large
enough.

Breiman’s original work [6] recommends growing very largees. In a recent
paper by Segal and Xiao [21], the authors give a classificati@mple for which a
forest of large trees overfits and suggest this was not obdémBreiman'’s original
work because the benchmark datasets all came from the Witjvef California at
Irvine (UCI) repository and happen to share propertiesitigite large trees nearly
optimal. In problems for which large trees overfit, users tare using either the
number of nodes or the smallest nodesize. Out-of-bag eates rcan be used to
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choose the tuning parameter, understanding that such lldead to a bias in the
estimated generalization error.

2.5 Weighting

Unbalanced data sets, where some classes are much smatiesttters, present a
challenge to many classifiers. A naive classifier will worlgetting the large classes
right, while allowing a high error rate for the small classRandom Forests has an
effective method for weighting the classes to give balamesdlts in unbalanced
data (ww. mat h. usu. edu/ ~adel e/ f or est s). One reason to do this is that
the important predictor variables may be different when rtiethod is forced to
pay greater attention to a small class. Even in the balaresel the weights can be
adjusted to give lower error rates to decisions that havglarisclassification cost.
For example, it is often more serious to incorrectly coneltitht someone is healthy
than it would be to incorrectly conclude that someone i€idample 3 in Sect. 3.1
illustrates the effect of different weights on permutatiamiable importance.

3 Variable Importance

Measures of the importance of the predictor variables ag&ulfor variable selec-
tion and for interpreting the fitted forest. While it is stardian many applications to
run a principal components analysis (PCA) to reduce dinogradity before fitting a

classifier or regression predictor, it is possible that ttiegipal components do not
capture the important information for the prediction peshl In this case, it may be
preferable to obtain variable importance directly from dtgorithm and then re-fit
using only the most important predictors.

3.1 Permutation Importance

Random Forests use an unusual but intuitive measure ofbolarimportance. To

measure the importance of variatkethe following procedure is performed for
each tree. First, the out-of-bag observations are passed tte tree and the pre-
dicted values are computed. Next, the values of varikble randomly permuted in
the out-of-bag data, keeping all the other predictor véemfixed. These modified
out-of-bag data are passed down the tree and the predicheelsvare computed.
This process gives two sets of out-of-bag predictions fehezbservation: one set
obtained from real data, the other set from varidblgermuted data. For classifica-
tion, the difference between the error rate of the predistiobtained from permuted
data and those obtained using permuted data gives a me&sareable importance
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for the observation. The same procedure is used for regredsiit using MSE in-
stead of error rates. For classification, class-wise verimbportance is computed
by averaging over observations from the same class. Owenddible importance is
computed by averaging over all the observations.

Algorithm 4 Permutation Variable Importance
To find the importance of variable for k =1 to p:

1. (Findyj ;) Fori =1toN:
a. Let 7 ={j:(x,yi) ¢ Zj} and letJ; be the cardinality of #; (Algo-
rithm 2).
b. Lety; j=hj(x)forall je #.
2. (Findy;;) Forj=1toJ:
a. LetZ; be thejth bootstrap sample (Algorithm 2).
b. Let.7; = {i: (x,yi) ¢ %}
c. Randomly permute the value of varialidéor the data pointgx; : i €
ZFittogive Z; = {x*:iec.Z}.
d. Lety}; = hj(x*) foralli € .7;.
3. Fori=1toN:
e For classification: Imp= 3 5 jc 7 1(Vi # V) — 3 Sje s | (i # ¥i.j)-
o Forregression: Imp= 33 jc # (Vi = %)%= 3 Sje s (Vi — Vi)

Algorithm 4 gives the importance of a particular variablepdted byk in the
algorithm description, on the predictions for a particuwdéservation, denoted by
i. The values can be used as measureload variable importance, or they can
be averaged over all observations to give measures of owvenabrtance of the
variable. The largest values are generally plotted (Fig. 5)

Intuitively, the permutation-based importance of vardbls an estimate of the
how much the prediction error or MSE on a test set would irséhthe value of
variablek were randomly permuted in the test set. In this sense, ihigagito the
coefficient-based measures of importance used in methotsasuinear regression
or logistic regression - they measure how much the predistiould change if the
value of the predictor increased by one unit, keeping eligrgtelse the same. Quite
a different measure is obtained, for both Random Forestslasdical methods, if
variablek is removed and the model is refit, because in this case poeslitiat
are correlated with the one of interest can give a similarrit enake the variable
appear unimportant. In contrast, if an important predigéoiable is correlated with
other predictor variables, Random Forests sometimes gpiibne and sometimes
on another, due to the random choice of predictors at eadh fitetrefore, Random
Forests permutation importance tends to identify all ofdberelated predictors as
important if any one of them is important.

One attractive feature of all tree-based methods is thédityaio capture complex
interactions between predictors. If Random Forests captsuich an interaction, the
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variables involved are likely to show up as “important” besarandomly permuting
one of them destroys the predictive power of the interaction

To illustrate the behavior of Random Forest permutatiorartgnce, a regression
forest was fit to the prostate data (Example 1). A permutatigoortance plot is
given in Fig. 5, showing that the three most important vdesfare Icavol, lweight
and svi. Interestingly, these are the same three variableseo by lasso (see Fig
3.10 of [10]).

Icavol o

Iweight o

svi o

pggds o

Ibph o

gleason o

Iep o

age o

I I I I
0.1 0.2 0.3 0.4

%IncMSE

Fig. 5 Permutation variable importance, prostate data (Example 1).

Example 3 Normal Mixture

To illustrate the behavior of Random Forest variable imguoece when classes are
weighted differently, consider a bivariate normal mixtofehree classes

TaN(pa, 1) + TeN(p2, 1) + 8N (U3, 1)
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whereN(u, 1) denotes the bivariate normal density with mgamand covariance
matrix the identity. Generating = 300 observations from such a mixture wjith=
(0,007, 12 = (0,3)T, 3 = (3,3)T andm = 0.4, 7 = 0.4, 75 = 0.2 gave the data
shown in Figure 6. Fitting Random Forests usihg 500 trees andn= 1 for two
different weighting schemes gave the results in Table 2aEeeighting gives the
lowest overall error rate. Increasing the weight on clagse8smallest class, reduces
the class 3 error rate from 8.9% to 5.0% and increases the rates of the other
two classes, giving an overall increase in error rate fron#%0to 11.8%. More
interestingly, equal weighting ranks variable 1 as moreartgnt than variable 2,
while increasing the weight on class 3 reverses the ranking.

Variable 2

Variable 1

Fig. 6 Bivariate normal mixture of three classes (Example 3).

Table 2 Impact of class weights on error rates and permutation impagtanc

Class1 Class2 Class|Elass1 Class2 Class|3
Weights 1/3 1/3 1/3 1/7 1/7 5/7
Classwise error rate (percent) 8.2 13.0 8.9 8.7 17.7 5.0
Overall error rate (percent) 104 11.8
Permutation importance (variable|1) 32.7 73.8
Permutation importance (variable|2) 22.3 49.1
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4 Proximities

Random Forests proximities are used for missing value iatjmut and visualiza-
tion.

4.1 Definition

The proximity between two observations is the proportiotheftime that they end
up in the same terminal node, where the proportion is takem the trees in the
forest. If two observations are always in the same termiodlen their proximity
will be 1. If they are never in the same terminal node, thedxpnity will be 0. The
proximity between two observations is a measure of how diogether they are in
predictor space, but it automatically gives more weightredgctors that are useful
for predicting the response. Observations that are verggdart in Euclidean space
may have quite a large proximity if they only differ on weakiroelevant predictors,
while observations that are relatively close together iglilean space may have
relatively small proximities if they differ on predictonsat are crucial for predicting
the response.

4.2 Missing Value Imputation

Random Forests imputes missing values using the proxsydgéscribed above. The
procedure is iterative: an initial forest is built using rr@dimputation, proximities
are calculated, and new imputations are obtained by a pityximeighted average
for a continuous predictor or a proximity-weighted vote #ocategorical predictor.
A new forest is built, giving new proximities and imputat®rJsually 5 or 6 itera-
tions are sufficient to give stable imputations. AlthougHaronal analysis has been
done, the fact that the method uses proximity-based nese&gibors suggests that
it will be valid if values of the predictors are missing at dam.

4.3 Visualization

From a statistical perspective, one of the difficult aspe€tsigh-dimensional data
analysis is that it is not obvious how to get a good “feel” foe tdata. Are there
interesting patterns or structures, such as sub-groupgwiite known classes? Are
there outliers? In a multi-class situation, are some of tbegs separated while oth-
ers overlap? Random Forests provide a way to look at the dafige some insight
into these questions. This is done by computing proximittksiving a distance
matrix, and performing classical multidimensional sogl{iMDS) to obtain two-
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or three-dimensional plots. Each point on such a plot regmtssone of the obser-
vations and the distances between the points reproducésedycas possible, the
proximity-based distances. Such a plot can be used to pickulagroups of cases
that almost always stay together in the trees, or outliexsate almost always alone
in a terminal node.

Example 4 Microarray Data

To illustrate the potential usefulness of visualizatiomgsthe proximity matrix,
we consider the prostate cancer microarray data [22]. THatehave 6033 gene
expression values for 102 arrays (50 normal samples andrb@rtsamples). We
used the normalization described by Dettling [8]. Figuréeft shows the first two
dimensions of the MDS plot based on the Random Forest proximmtrix.

A natural question at this point is whether it would be jusgasd to use MDS
on a conventional distance, such as Euclidean distanceeoofdhe other distances
commonly used in cluster analysis. This can certainly beedbut one of the diffi-
culties is that a conventional distance can be dominatelsymand uninformative
predictors that may drown out the effects of the importaetifmtors. This behavior
can be seen in Figure 7, which presents the MDS plot derivad the proximity
matrix and the MDS plot derived from Euclidean distance Fa inicroarray data
in Example 4. The proximity plot reveals much more structhan the plot based
on Euclidean distances, including an outlier that could fieterest to the investi-
gators.

MDS (Proximity) MDS (Euclidean)
. | _
=) o — OO
0 %00 o Poo
¥ o OCC))OOO ° ..\q‘ 9 - oOoC%ﬁ‘) o'og Q.g.
B=) g o B=) (= o Do
B ° TaPo  gate a O%)% W
8 st T n . ° o":
L]
R I 1 9 &
o' —
| o _|
N B R p— L B B R
-0.4 0.0 0.4 -3 -1 0 1 2 3
Diml Diml

Fig. 7 MDS plot from the Random Forests proximities (left) and frontltiean distance (right)
for Example 4. Solid circles represent cancer cases, opensiggpeesent controls.
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5 Software

Commercial software for Random Forests is available fromwsalford-systems.com.

The R package isandontor est [15] and this, along with R [19], is available

from the CRAN websitewwv. cr an. r - pr oj ect . or g. Open source FORTRAN
software for Random Forests is available framw. mat h. usu. edu/ ~adel e/ f or est s.

6 Summary

Random Forests are a multipurpose tool, applicable to legfession and classifi-
cation problems, including multiclass classification. yigéve an internal estimate
of generalization error so crossvalidation is unneces3#gy can be tuned, but of-
ten work quite well with default tuning parameters. Varabhportance measures
are available, which can be used for variable selectiondBanForests produce
proximities, which can be used to impute missing valuesxiRribies can also pro-
vide a wealth of information by enabling novel visualizatoof the data. Random
Forests have been successfully used for a wide variety dfcatipns and enjoy
considerable popularity in several disciplines.

7 Bibliographical and Historical Remarks

The Random Forest algorithm was the last major work of LedrBaa [6].

Theoretical developments have been difficult to achievehénoriginal paper,
Breiman [6] suggested that Random Forests work by redudnglation, while
keeping the variance relatively small. Lin and Jeon [16stitat RF behaves like a
nearest neighbor classifier with an adaptive metric. Mazem#ly, Biau et al. address
consistency [3].

Several extensions have been published, for example [Hlaesd a variable
selection procedure, [18] introduced quantile regresfossts, and [12], [13] con-
sidered forests for survival analysis. More recently, [2tlends Random Forests
for multivariate responses. Amaratunga et al. [1] suggesbdension to very high
dimensional data.

Applications of Random Forests are numerous and only a fewbeamen-
tioned here. Statnikov [24] compares random forests anda@tipector machines
for microarray-based cancer classification. Schroff €28l used Random Forests
for image segmentation. Chen et al. [7] use Random Foregdembify genetic in-
teractions, while Goldstein et al. [11] and [25] apply Ramd6orests to SNP-based
genome-wide association data.



Random Forests 19

References

1.

2.

3.

~N o O

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Amaratunga, D., Cabrera, J., Lee, Y.-S.: Enriched randoesfs. Bioinformatic24 (18) pp.
2010-2014 (2008).

Amit, Y., Geman, D.: Shape quantization and recognitiorhwéndomized trees. Neural
ComputatiorB(7) pp. 1545-1588 (1997).

Biau, G., Devroye, L., Lugosi, G.: Consistency of Random stsrand Other Averaging Clas-
sifiers. Journal of Machine Learning Resea®qbp. 2039—-2057, (2008).

. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classificadiuth Regression Trees.

Wadsworth, New York (1984).

. Breiman, L.: Bagging Predictors. Machine Learn2dg(2) pp. 123-140 (2001).
. Breiman, L.: Random Forests. Machine Learnddd1) pp. 5-32 (2001).
. Chen, X., Liu, C.-T., Zhang, M., Zhang, H.: A forest-basegdrapch to identifying gene and

genegene interactions. Proc Natl Acad Sci U 9@4 (49) pp. 19199-19203 (2007).

. Dettling, M.: BagBoosting for Tumor Classification with GenepEession Data. Bioinfor-

matics20 (18) pp. 3583-3593 (2004).

. Diaz-Uriarte, R., Alvarez de Andres, S.: Gene Selecti@h@assification of Microarray Data

Using Random Forest. BMC Bioinformati@q1) 3. (2006).

Hastie, T., Tibshirani, R., Friedman, J.: The Elements ofs$iz| Learning: Data Mining,
Inference, and Prediction, Second Edition. Springer Senié&tatistics, Springer, New York
(2009).

Goldstein, B., Hubbard, A., Cutler, A. Barcellos, L.: Anpipation of Random Forests to
a genome-wide association dataset: Methodological considesa& new findings. BMC
Geneticsll (1) 49 (2010).

Hothorn, T., Bhimann, P., Dudoit, S., Molinaro, A., Van Der Laan, M.: SualiEnsembles.
Biostatistics? (3) pp. 355—-373 (2006).

Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, MR&ndom survival forests. Annals
of Applied Statistic® (3) pp. 841-860, (2008).

Izenman, A.. Modern Multivariate Statistical Techniqu&nringer Texts in Statistics,
Springer, New York (2008).

Liaw, A., Wiener, M.: Classification and Regression by randomst. R New£ (3) pp. 18—
22, (2002).

Lin, Y., Jeon, Y.: Random Forests and Adaptive Nearest Neigh Journal of the American
Statistical Associatiod01 (474) pp. 578-590, (2006).

Mease, D., Wyner, A.: Evidence Contrary to the StatistiGalv of Boosting. Journal of
Machine Learning Resear&ypp. 131-156 (2008).

Meinshausen, N.: Quantile Regression Forests. Journal of Matbarning Researchpp.
983-999, (2006).

R Development Core Team: R: A Language and Environment &drsStal Computing. R
Foundation for Statistical Computing, Vienna, Austria, (2011

Schroff, F., Criminisi, A., Zisserman, A.: Object Class Segméon using Random Forests.
Proceedings of the British Machine Vision Conference 2008idBrMachine Vision Associ-
ation, 1 (2008).

Segal, M., Xiao, Y.: Multivariate Random Forests. Wileyehdisciplinary Reviews: Data
Mining and Knowledge Discovery (1) pp. 80-87, (2011).

Singh D., Febbo P.G., Ross K., Jackson D.G., Manola J., Lad@&@ayo P., Renshaw A.A.,
D’Amico A.V,, Richie J.P., Lander E.S., Loda M., Kantoff P.V&plub T.R., Sellers W.R.:
Gene expression correlates of clinical prostate cancer bmh&ancer Cell (2) pp. 203-9
(2002).

Stamey, T., Kabalin, J., McNeal J., Johnstone I., Freiha Ewie E., Yang N.: Prostate
specific antigen in the diagnosis and treatment of adenocaneirwd the prostate. Il. Radical
prostatectomy treated patients. Journal of Urol@Gpp. 1076-1083, (1989).

Statnikov, A., Wang, L., Aliferis, C.: A comprehensive comgean of random forests and
support vector machines for microarray-based cancer classific&MC Bioinformatics9
(1) 319 (2008).



20 Adele Cutler, D. Richard Cutler and John R. Stevens

25. Wang, M., Chen, X., Zhang, H.: Maximal conditional chi-arglimportance in random
forests.26 (6): pp. 831-837 (2010).

26. Zhang, H., Singer, B.H.: Recursive Partitioning and Aggtions, Second Edition. Springer
Series in Statistics, Springer, New York (2010).


https://www.researchgate.net/publication/236952762

