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Traditional Social Network Analysis

• Covered by Eytan

• Traditional SNA uses descriptive statistics

• Path lengths

• Degree distributions

• Thousands of different centrality metrics



Stochastic Social Network Analysis

• Treat networks as realizations of random variables

• Propose a model for the distribution of those variables

• Fit the model to some observed data

• With the learned model

• Interpret the parameters to gain insight into the properties of the network

• Use the model to predict properties of the network



This Tutorial

• Exponential Random Graph Models

• EGRMs, p*, p-star

• How they’re applied in sociological research

• How they related to techniques in machine learning

• Some work I’ve done with them



Exponential Random Graph Models

• Exponential family distribution over networks

θ

Observed network adjacency matrix

Binary indicator for edge (i,j)

Features

• Properties of the network considered important

• Independence assumptions

Parameters to be learned

Normalizing constant:

yij

p(Y = y|θ) =
1
Z

eθTφ(y)
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Markov Random Graphs [Frank86]

• Edges considered conditionally independent if they don’t share a node

• Social phenomena are local
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Graphical Model

• Nodes in the graphical model are edges in the social network

• Edges in graphical model indicate conditional dependency between edges in 
the social network
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A Simple Example

• Two repeated features

• Edge indicator per pair in the social network

• Singleton potential on each node 
in the graphical model

• Triangle indicator per triad in the social network

• 3 variable clique potentials 
in graphical model
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Homogeneity 

• Parameters are tied for repeated features

• Relational model

• Nodes are equivalent

• Isomorphic networks have the same probability

• Larger networks provide more information about the parameters



A Simple Example

• Repeated tied, features are replaced with counts

• Tied edge indicators → edge count

• Density

• Tied triangle indicators → triangle count

• Transitivity
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ERGM Network Features

• Usually subgraph counts

• Nested, for interpretability

• Include all sub-subgraphs

• e.g. All triangles also include three 2-stars



Nodal Covariates

•     — variables with information about people

• Exogenous

• Sex, age

• Possibly Nonexgenous

• Religion, political affiliation, smoker

•                 now also captures information about relationship between ties 
and covariates

p(y,x|θ) =
1
Z

eθTφ(y,x)

x

φ(x,y)



Parameter Learning

• Maximum Likelihood Estimation

• Second order gradient ascent

• Both approximated with MCMC

L(θ,y) = θTφ(y)− log Z

θ̂ = argmax
θ

L(θ,y)

∂

∂θi
L(θ,y) = φ(y)− E

y
[φ(y)]

∂2

∂θi∂θj
L(θ,y) = −covθ [φ(y)]



An Optimization [Geyer92, Hunter06]

• Change in loglikelihood can be approximated with a single sample drawn at 
one setting of theta

• Gradient can be approximated as well by re-weighting samples and 
recomputing expectation

• Approximation degrades with distance

• But can take many steps with a single sample

L(θb,y)− L(θa,y) =
(
θb

Tφ(Y)− log Zθb

)
−

(
θa

Tφ(Y)− log Zθa

)

= (θb − θa)Tφ(Y)− log
Zθa

Zθb

wθb
k =

exp([θb − θa]Tφ(yk))
∑

j exp([θb − θa]Tφ(yj))



ERGMs in Practice

• Devise the model to capture phenomena of interest

• Carefully include nested/confounding features

• Account for all nodal covariates of interest

• Learn the parameters

• See what the parameters tell you about your network

• (Not yet much work on using ERGMs for prediction)



Interpreting Parameters

• Weight is log odds of unit increase in feature value, everything else kept equal

• Positive weight means probability increases with feature value

• Negative weight means probability decreases with feature value

• Zero weight means feature has no effect

• If you’ve accounted for nodal covariates 

• Network feature weights tell you importance of network structure



Confidence Intervals

• How reliable are your parameter estimates?

• Use inverse Fisher information to estimate sampling covariance

• Divide by square root of sample size to get standard error

• But what is the sample size?

covθ(θ̂) ≥ I(θ)−1

I(θ) = −E
Y

[
∂2

∂θ2L(θ,y)
∣∣∣θ

]

Î(θ) = −E
Y

[
∂2

∂θ̂
2L(θ̂,y)

∣∣∣θ̂
]



Model Degeneracy

• As described, models work very poorly

• Learned parameters do not generate data that resembles the input

• Tend toward wholly connected or completely empty graphs



Model Degeneracy

• Most parameter values place 
all of the probability on 
unrealistic networks

Figure 2: Degeneracy probability plots for graphs with 7 actors.
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figure from [Handcock03]



Model Degeneracy

• Most parameter values place 
all of the probability on 
unrealistic networks

figure from [Handcock03]
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Model Degeneracy

• Putting them all together

• Region of “realistic” parameters 
is small and unfriendly in shape

• Difficult to reach using gradient 
methods and MCMC

Figure 3: Cumulative Degeneracy Probabilities for graphs with 7 actors.
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figure from [Handcock03]



New Features for 
ERGMs

• More nuanced notions of 
structure

• Look at many more features of 
the networks

• Degree histogram

• Shared partner histograms

• Too many features!

• Nonparametric

3 shared partners

2 edgewise shared partners



Parameter Constraints [Hunter06]

• Constrain weights to reduce number of parameters

• Exploit ordinality of histogram features

• Maintain socially intuitive parameter values

• Diminishing returns constraint

usual multiplicative weight geometric rate parameter

θi = w
(
ci · er(1− (1− e−r)i)

)
“cost” parameter



Geometric Weight Constraints

θi = w
(
ci · er(1− (1− e−r)i)

)
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Geometric Weight Constraints
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Geometric Weight Constraints

θi = w
(
ci · er(1− (1− e−r)i)

)
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Curved Exponential Families

• Fewer parameters than features

• Non-linear mapping from low dimensional parameter space 
to high dimensional feature space

• Linear mapping (e.g. tied parameters) are ordinary exponential family

• Parameters lie on curved p-dimensional manifold in q-dimensional space

p(y|θ) =
1
Z

eη(θ)Tφ(y)

θ ∈ Rn

η : Rn → Rn

n < m



Learning Curved Exponential Families

• Use Jacobian to project high dimensional gradient onto manifold

• Not convex, in general

[∇θη(θ)]ij =
∂ηi

∂θj

L(θ,y) = η(θ)Tφ(y)− log Z

∇θL(θ,y) = ∇θη(θ)T∇ηL(θ,y)

= ∇θη(θ)T
[
φ(y)− E

Y
[φ(y)]

]



Curved Exponential Families and Graphical Models

• Bayes net with k binary variables and n CPT entries is a CEF [Geiger98] 

• m = 2k

• Generalizes to any discrete number of states

• Bayes nets with hidden variables are not, in general, CEFs [Geiger01]

• Has implications for model selection



CERGMs for Latent Social Networks [Wyatt08]

• Have discrete-but-ordinal observations of time spent in conversation: x

• Social network y is now hidden

• Use curved model to express “diminishing returns” on time in conversation

• Simultaneously learn (unsupervised) parameters governing 

• Latent social structure

• Relationship between time in conversation and latent social tie

• Different parameters for “edge on” and “edge off” 
time in conversation curves 

p(x|θ) =
1
Z

∑

y

eη(θ)Tφ(x,y)



Interpretable Parameters

• Compute conditional probabilities of time in conversation given edge / no edge

• Look for

• Threshold for “socially significant” time in conversation

• Point of maximum “socially useful” time in conversation
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• statnet software:  http://statnet.org/

• R based

• Developed here at UW

http://statnet.org
http://statnet.org

