Intro to Statistics with R: Analysis of Variance (ANOVA)

ANOVA

Analysis of variance (ANOVA)

- Compare groups means across 3+ groups
- Separate, independent groups of subjects
- More than 2 group means from same subjects (i.e. repeated measures)

Working memory training

- Four independent groups (8, 12, 17, 19 sessions)
- Measured IQ before and after training
- Dependent variable is IQ gain
- Null hypothesis: All groups are equal (i.e. all groups have equal IQ qain)
- <u>Alternative</u> hypothesis: More training leads to larger IQ gain

Exploration of the F-test

Intro to Statistics with R: Analysis of Variance (ANOVA)

Working memory ANOVA

- <u>Null hypothesis: all groups are equal</u>
- ANOVA provides a significance test
- Test statistic is the F-test (or F-ratio)
 - Variance between groups _ Systematic variance F = 1 Variance within groups Unsystematic variance
- Large F-ratio indicates significant effect

Getting to a p-value

- Similar to t-test and family of t-distributions
- Family of F-distributions depends on...
 - Number of subjects in sample
 - Number of groups being compared

Intro to Statistics with R: Analysis of Variance (ANOVA)

F-Ratio

F-ratio

Intro to Statistics with R: Analysis of Variance (ANOVA)

More ANOVA

ANOVA (continued)

- Calculate a total sum of squares
- Calculate a total degrees of freedom
- Sum of between groups value and within groups value

Summary Table

Source	SS	df	MS	F
Α	n Σ(Y _j – Y _T)²	a - 1	SS _A /df _A	MS _A /MS _{S/A}
S/A	Σ(Y_{ij} – Y_j) ²	a(n -1)	SS _{S/A} /df _{S/A}	_
Total	Σ(Y _{ij} – Y _T) ²	N – 1		

Effect size

- F-test biased by sample size
- Supplement with effect size
- $R^2 = \eta^2$ (eta-squared) \longrightarrow dependent variable explained
- $\eta^2 = SS_A / SS_{Total}$

Percentage of variance in the by the independent variable

Assumptions

- Dependent variable is continuous (i.e. interval or ratio variable)
- Dependent variable is normally distributed
- Homogeneity of variance (check with Levene's test)

