AR and MA models

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

AR and MA Models

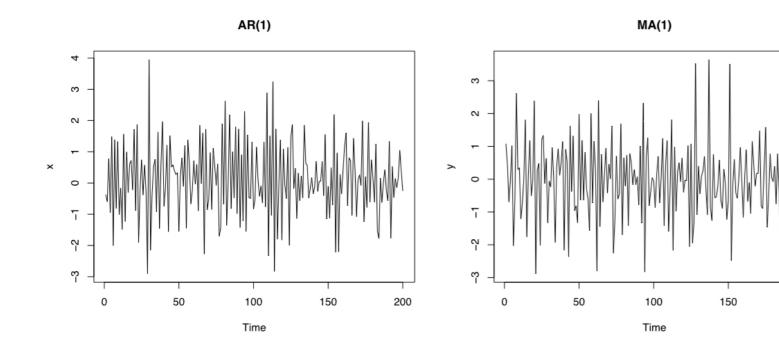
```
x \leftarrow arima.sim(list(order = c(1, 0, 0), ar = -.7), n = 200)

y \leftarrow arima.sim(list(order = c(0, 0, 1), ma = -.7), n = 200)

par(mfrow = c(1, 2))

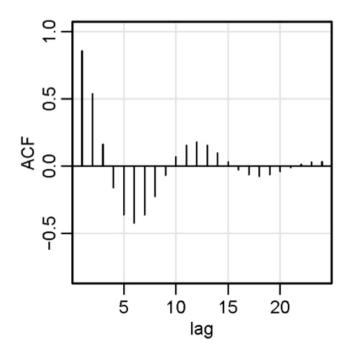
plot(x, main = "AR(1)")

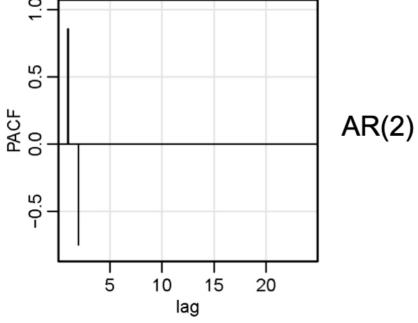
plot(y, main = "MA(1)")
```



	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off

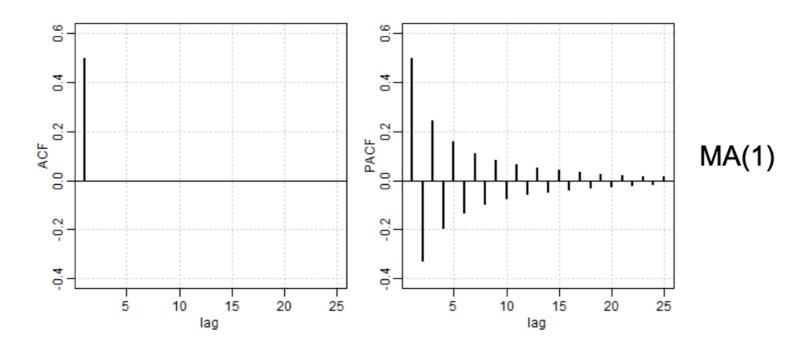
	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off





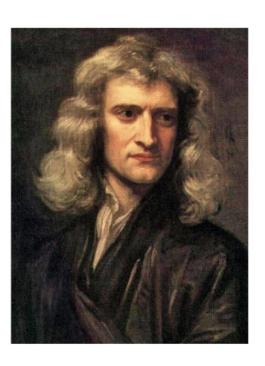
	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off



Estimation

- Estimation for time series is similar to using least squares for regression
- Estimates are obtained numerically using ideas of Gauss and Newton



Estimation with astsa

• AR(2) with mean 50:

$$W_t = 50 + 1.5(X_{t-1} - 50) - .75(X_{t-2} - 50) + W_t$$

```
 x <- \text{arima.sim(list(order = c(2, 0, 0),} \\  ar = c(1.5, -.75)), \\  n = 200) + 50 \\  x_{fit} <- \text{sarima}(x, p = 2, d = 0, q = 0) \\  x_{fit} + \frac{1}{2} x
```

```
Estimate SE t.value p.value
ar1 1.5429 0.0435 35.4417 0
ar2 -0.7752 0.0434 -17.8650 0
xmean 49.6984 0.3057 162.5788 0
```

Estimation with astsa

MA(1) with mean 0:

$$X_t = W_t - .7W_{t-1}$$

```
y \leftarrow arima.sim(list(order = c(0, 0, 1), ma = -.7), n = 200)

y_fit \leftarrow sarima(y, p = 0, d = 0, q = 1)

y_fit$ttable
```

```
Estimate SE t.value p.value
ma1 -0.7459 0.0513 -14.5470 0.0000
xmean 0.0324 0.0191 1.6946 0.0917
```

Let's practice!

ARIMA MODELS IN R

AR and MA together

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

AR and MA Together: ARMA

$$X_t = \phi X_{t-1} + W_t + \theta W_{t-1}$$

AR and MA Together: ARMA

$$X_t = \phi X_{t-1} + W_t + \theta W_{t-1}$$

auto-regression with correlated errors

AR and MA Together: ARMA

$$X_t = \phi X_{t-1} + W_t + \theta W_{t-1}$$

auto-regression with correlated errors

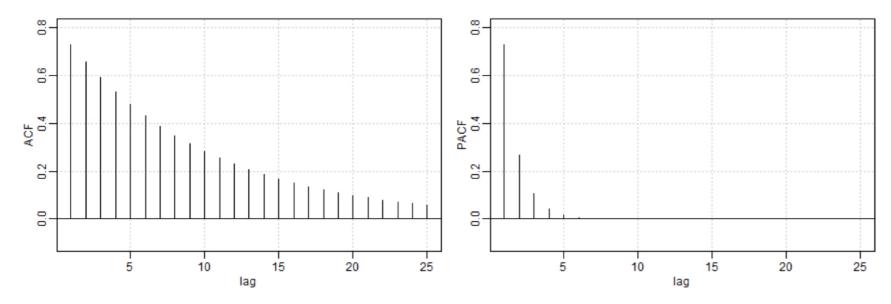
ACF and PACF of ARMA Models

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off

ACF and PACF of ARMA Models

	AR(p)	MA(q)	ARMA(p, q)
ACF	Tails off	Cuts off lag q	Tails off
PACF	Cuts off lag p	Tails off	Tails off

$$X_t = .9X_{t-1} + W_t - .4W_{t-1}$$



Estimation

```
X_t = .9X_{t-1} + W_t - .4W_{t-1}
```

```
Estimate SE t.value p.value
ar1 0.9083 0.0424 21.4036 0
ma1 -0.4458 0.0879 -5.0716 0
xmean 49.5647 0.4079 121.5026 0
```

Let's practice!

ARIMA MODELS IN R

Model choice and residual analysis

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

AIC and BIC

Error Number of Parameters $average(observed-predicted)^2 + k(p+q)$

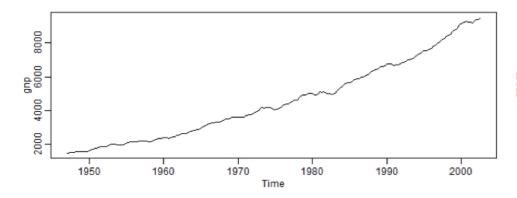
- AIC and BIC measure the error and penalize (differently) for adding parameters
- ullet For example, AIC has $\,k=2$ and BIC has $\,k=log(n)\,$
- Goal: find the model with the smallest AIC or BIC

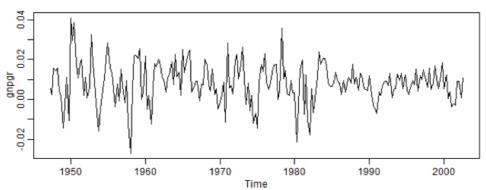
Model Choice: AR(1) vs. MA(2)

```
gnpgr <- diff(log(gnp))
sarima(gnpgr, p = 1, d = 0, q = 0)</pre>
```

```
sarima(gnpgr, p = 0, d = 0, q = 2)
```

\$AIC	\$BIC
-8.297695	-9.251712

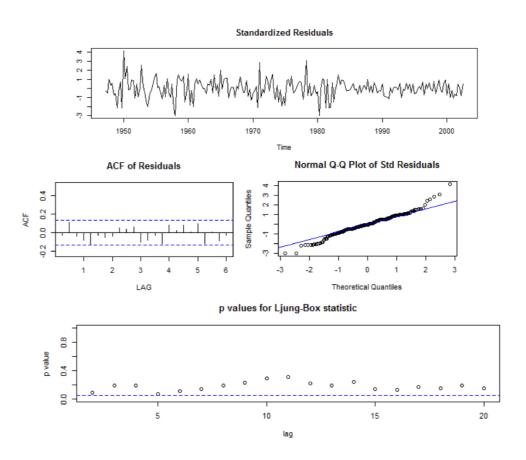




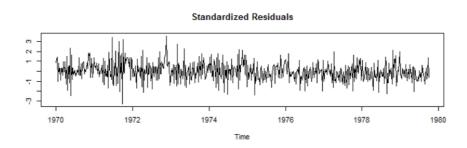
Residual Analysis

sarima() includes residual analysis graphic showing:

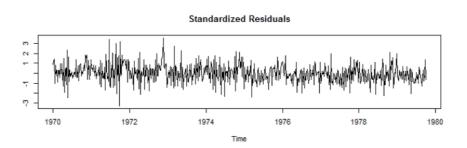
- 1. Standardized residuals
- 2. Sample ACF of residuals
- 3. Normal Q-Q plot
- 4. Q-statistic p-values



Pattern in the residuals

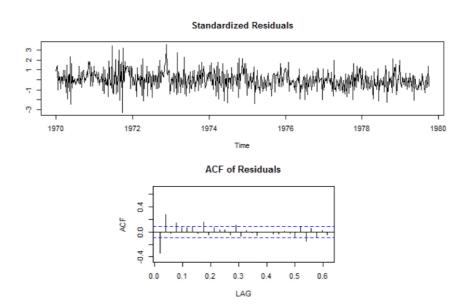


> Pattern in the residuals



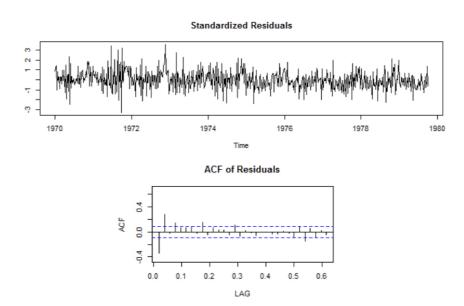
> Pattern in the residuals

ACF has large values

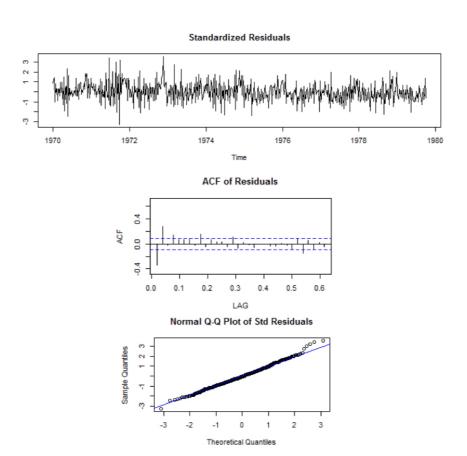


> Pattern in the residuals

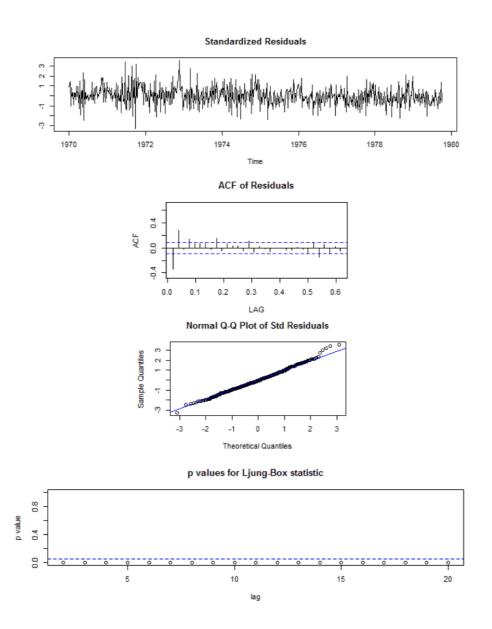
× ACF has large values



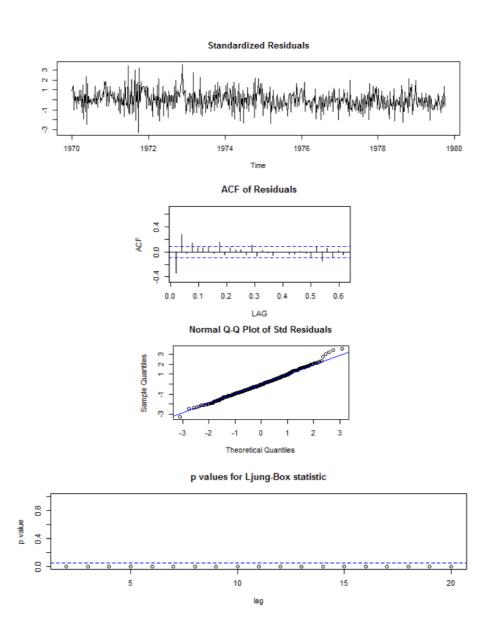
- > Pattern in the residuals
- × ACF has large values
 - Q-Q plot suggests normality



- > Pattern in the residuals
- × ACF has large values
 - Q-Q plot suggests normality
- Q-statistic all points below line



- > Pattern in the residuals
- × ACF has large values
 - Q-Q plot suggests normality
- Q-statistic all points below line



Let's practice!

ARIMA MODELS IN R

