ARIMA - integrated ARMA

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

Identifying ARIMA

• A time series exhibits ARIMA behavior if the differenced data has ARMA behavior

Simulation ARIMA(p = 1, d = 1, q = 0)
x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
plot(x, main = "ARIMA(p = 1, d = 1, q = 0)")
plot(diff(x), main = "ARMA(p = 1, d = 0, q = 0)")</pre>

R datacamp

ACF and PCF of an Integrated ARMA

x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
acf2(x)</pre>

R datacamp

ACF and PCF of a Differenced ARIMA

x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
acf2(diff(x))</pre>

& datacamp

ACF and PCF of a Differenced ARIMA

x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
acf2(diff(x))</pre>

R datacamp

Weekly Oil Prices

R datacamp

Weekly Oil Prices

• Looks like ARIMA(1, 1, 1)

latacamp

Let's practice!

ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

Weekly Oil Prices ARIMA(1, 1, 1)?

R datacamp

Weekly Oil Prices ARIMA(1, 1, 1)?

R datacamp

Weekly Oil Prices ARIMA(1, 1, 1)?

oil <- window(oil, end = 2006)
x <- sarima(oil, p = 1, d = 1, q = 1)
x\$ttable</pre>

	Estimate	SE	t.value	p.value
ar1	-0.4987	0.0995	-5.0131	0.0000
mal	0.7316	0.0734	9.9732	0.0000
constant	0.1091	0.0936	1.1664	0.2443

Weekly Oil Prices ARIMA(1, 1, 1)!

R datacamp

Overfit: ARIMA(2, 1, 1) and ARIMA(1, 1, 2)

oil_fit1 <- sarima(oil, p = 2, d = 1, q = 1)
oil_fit1\$ttable</pre>

	Estimate	SE	t.value	p.value
ar1	-0.4704	0.1117	-4.2121	0.0000
ar2	-0.0738	0.0652	-1.1319	0.2586
ma1	0.6771	0.0986	6.8696	0.0000
constant	0.1088	0.0878	1.2391	0.2163

oil_fit2 <- sarima(oil, p = 1, d = 1, q = 2)
oil_fit2\$ttable</pre>

	Estimate	SE	t.value	p.value
ar1	-0.3664	0.1816	-2.0178	0.0445
mal	0.5777	0.1818	3.1777	0.0016
ma2	-0.0836	0.0837	-0.9989	0.3186
constant	0.1088	0.0884	1.2306	0.2194

R datacamp

Let's practice!

Forecasting ARIMA ARIMA MODELS IN R

David Stoffer

Professor of Statistics at the University of Pittsburgh

Forecasting ARIMA Processes

- The model describes how the dynamics of the time series behave over time
- Forecasting simply continues the model dynamics into the future
- Use sarima.for() to forecast in the astsa-package

Forecasting ARIMA Processes

oil <- window(astsa::oil, end = 2006)
oilf <- window(astsa::oil, end = 2007)
sarima.for(oil, n.ahead = 52, 1, 1, 1)
lines(oilf)</pre>

R datacamp

Let's practice!

