# Pure seasonal models

#### ARIMA MODELS IN R



#### **David Stoffer**

Professor of Statistics at the University of Pittsburgh



## **Pure Seasonal Models**

- Often collect data with a known seasonal component
- Air Passengers (1 cycle every S = 12 months)
- Johnson & Johnson Earnings (1 cycle every S = 4 quarters)



R datacamp

## **Pure Seasonal Models**

Consider pure seasonal models such as an  ${\sf SAR}(P=1)_{s=12}$ 

 $X_t = \Phi X_{t-12} + W_t$ 



**R** datacamp

## **ACF and PACF of Pure Seasonal Models**

|       | $SAR(P)_s$      | $SMA(Q)_s$      | $SARMA(P,Q)_s$ |
|-------|-----------------|-----------------|----------------|
| ACF*  | Tails off       | Cuts off lag QS | Tails off      |
| PACF* | Cuts off lag PS | Tails off       | Tails off      |

\* The values at the nonseasonal lags are zero



datacamp

## Let's practice!



# Mixed seasonal models

#### ARIMA MODELS IN R



#### **David Stoffer**

Professor of Statistics at the University of Pittsburgh



## **Mixed Seasonal Model**

- Mixed model:  $\mathsf{SARIMA}(p,d,q) imes (P,D,Q)_s$  model
- Consider a SARIMA $(0,0,1) imes(1,0,0)_{12}$  model

 $X_t = \Phi X_{t-12} + W_t + \theta W_{t-1}$ 

- SAR(1): Value this month is related to last year's value  $X_{t-12}$
- MA(1): This month's value related to last month's shock  $W_{t-1}$

## ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

• The ACF and PACF for this mixed model:

$$X_t = .8X_{t-12} + W_t - .5W_{t-1}$$



acamp



## ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

• The ACF and PACF for this mixed model:

$$X_t = .8X_{t-12} + W_t - .5W_{t-1}$$



tacamp



## ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

• The ACF and PACF for this mixed model:

$$X_t = .8X_{t-12} + W_t - .5W_{t-1}$$



tacamp



## **Seasonal Persistence**





## **Seasonal Persistence**



## R datacamp

## **Seasonal Persistence**



## R datacamp

## **Air Passengers**

• Monthly totals of international airline passengers, 1949-1960



R datacamp



R datacamp



• Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at lags 1s, 2s, 3s...



• Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at lags 1s, 2s, 3s...



- Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at lags 1s, 2s, 3s...
- Non-Seasonal: ACF and PACF both tailing off



## **Air Passengers**

airpass\_fit1\$ttable

|      | Estimate | SE     | t.value | p.value |
|------|----------|--------|---------|---------|
| ar1  | 0.1960   | 0.2475 | 0.7921  | 0.4296  |
| ma1  | -0.5784  | 0.2132 | -2.7127 | 0.0075  |
| sma1 | -0.5643  | 0.0747 | -7.5544 | 0.0000  |

```
airpass_fit2 <- sarima(log(AirPassengers), 0, 1, 1, 0, 1, 1, 12)
airpass_fit2$ttable</pre>
```

|      | Estimate | SE     | t.value | p.value |
|------|----------|--------|---------|---------|
| ma1  | -0.4018  | 0.0896 | -4.4825 | 0       |
| sma1 | -0.5569  | 0.0731 | -7.6190 | 0       |

## R datacamp

## **Air Passengers**



p values for Ljung-Box statistic



R datacamp

## Let's practice!



# Forecasting seasonal ARIMA

#### ARIMA MODELS IN R



**David Stoffer** 

Professor of Statistics at the University of Pittsburgh



## **Forecasting ARIMA Processes**

- Once model is chosen, forecasting is easy because the model describes how the dynamics of the time series behave over time
- Simply continue the model dynamics into the future
- In the astsa package, use sarima.for() for forecasting



## **Forecasting Air Passengers**

• In the previous video, we decided that a

 $\mathsf{SARIMA}(0,1,1) imes (0,1,1)_{12}$  model was appropriate

sarima.for(log(AirPassengers), n.ahead = 24,

0, 1, 1, 0, 1, 1, 12)



R datacamp

## Let's practice!



## Congratulations! ARIMA MODELS IN R



#### **David Stoffer**

Professor of Statistics at the University of Pittsburgh



## What you've learned

- How to identify an ARMA model from data looking at ACF and PACF
- How to use integrated ARMA (ARIMA) models for nonstationary time series
- How to cope with seasonality



## Don't stop here!

- astsa package
- Other DataCamp courses in Time Series Analysis



# Thank you!

