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Pure Seasonal Models

e Often collect data with a known seasonal component
e Air Passengers (1 cycle every S =12 months)

e Johnson & Johnson Earnings (1 cycle every S = 4 quarters)
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Pure Seasonal Models

Consider pure seasonal models such as an SAR(P = 1),_19

X =X 10+ Wy

seasonal AR(1)
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ACF and PACF of Pure Seasonal Models
SAR(P)s  SMA(Q)s SARMA(P,Q);

ACF* Tails off Cuts off lag QS Tails off
PACF* Cuts off lag PS Tails off Tails off

* The values at the nonseasonal lags are zero
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Let's practice!
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Mixed seasonal
models
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Mixed Seasonal Model
e Mixed model: SARIMA(p, d, q) X (P, D, @), model
e Consider a SARIMA(0,0,1) x (1,0,0)12 model
Xy =@Xy 120+ Wy +0W,
e SAR(1): Value this month is related to last year's value X;_19

e MA(1): This month's value related to last month's shock W,_1
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ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

e The ACF and PACF for this mixed model:
Xy = .8Xi_ 19+ W, — 5W,_4
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ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

e The ACF and PACF for this mixed model:
Xy = .8X 19+ W, — 5W,_4
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ACF and PACF of SARIMA(0,0,1) x (1,0,0) s=12

e The ACF and PACF for this mixed model:
Xy = .8X 19+ W, — 5W,_4
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Seasonal Persistence

Hawaiian Quarterly Occupancy Rate
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Seasonal Persistence

Hawaiian Quarterly Occupancy Rate
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Seasonal Persistence

Quarterly Occupancy Rate:

% rooms filled

Seasonal Component:
this year vs. last year
Q1=Q1,Q2=Q2,
Q3=Q3, Q4 =Q4

Remove seasonal
persistence by a seasonal
difference:

Xt - Xt-o or D=1, S=4

for quarterly data

Hawaiian Quarterly Occupancy Rate
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Air Passengers

e Monthly totals of international airline passengers, 1949-1960

x: AirPassengers s | M
Ix: log(x) x W ::
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ddix

ddlx: diff(dix, 12)
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Air Passengers: ACF and PACF of ddIx
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Air Passengers: ACF and PACF of ddIx
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e Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at
lags 1s, 2s, 3s...
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Air Passengers: ACF and PACF of ddIx
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e Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at
lags 1s, 2s, 3s...
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Air Passengers: ACF and PACF of ddIx
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e Seasonal: ACF cutting off at lag 1s (s = 12); PACF tailing off at
lags 1s, 2s, 3s...

 Non-Seasonal: ACF and PACF both tailing off
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Air Passengers

airpass_fitl <- sarima(log(AirPassengers), p =
d =
D =

[ T
~

airpass_fitl$ttable

Estimate SE t.value p.value
arl 0.1960 0.2475 0.7921 0.4296

mal -0.5784 0.2132 -2.7127 0.0075
smal -0.5643 0.0747 -7.5544 0.0000

airpass_fit2 <- sarima(log(AirPassengers), 0, 1, 1, 0, 1, 1, 12)
airpass_fit2$ttable

Estimate SE t.value p.value
mal -0.4018 0.0896 -4.4825 0

smal -0.5569 0.0731 -7.6190 0
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Air Passengers

Model: (0,1,1) (0,1,1) [12] Standardized Residuals
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Let's practice!
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Forecasting
seasonal ARIMA
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Forecasting ARIMA Processes

Once model is chosen, forecasting is easy because the model
describes how the dynamics of the time series behave over
time

Simply continue the model dynamics into the future

In the astsa package, use sarima.for() for forecasting
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Forecasting Air Passengers

e |n the previous video, we decided that a

SARIMA(0,1,1) x (0,1,1)12 model was appropriate

sarima.for(log(AirPassengers), n.ahead = 24,
0, 1, 1, 0, 1, 1, 12)

log(AirPassengers)
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Let's practice!
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Congratulations!
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What you've learned

e How to identify an ARMA model from data looking at ACF
and PACF

* How to use integrated ARMA (ARIMA) models for
nonstationary time series

e How to cope with seasonality
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Don't stop here!

e astsa package

e Other DataCamp courses in Time Series Analysis
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Thank you!
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