What are survey weights?

Kelly McConville Assistant Professor of Statistics

Survey data

• Have you ever found yourself analyzing a dataset that contained a column of weights and wondered what they were?

FINLWT21	FINCETAX	BLS_URBN	POPSIZE	EDUC_REF	AGE_REF	FAM_TYPE	REGION
25985	116920	1	2	16	63	3	4
6581	200	1	3	15	50	4	4
20208	117000	1	4	16	47	1	3
18078	0	1	2	15	37	8	4
20112	2000	1	2	14	51	9	4
19907	942	1	2	11	63	9	3

Survey weights

- What are survey weights?
 - They are the result of using a **complex sampling design** to 0 select a sample from a population.
 - Roughly, the survey weight translates to the number of 0 units in the population that a sampled unit represents.
 - First weight in BLS sample = 25,985 households
 - Second weight in BLS sample = 6,581 households
- How do survey weights **impact** my analyses?

• Survey data are commonly used to estimate a finite population quantity.

• Estimate the average household income in the U.S.: $\mu = rac{1}{N} \sum_{i \in U} y_i.$

Using a complex sampling design, take a sample, called s, of n households.

• Sample mean estimator: $ar{y} = rac{1}{n} \sum_{i \in s} y_i.$

• Sample mean estimator: $ar{y} = rac{1}{n} \sum_{i \in s} y_i$

mean(ce\$FINCBTAX)

62480

• For sampled units, we have the values and survey weights.

- How do I incorporate the weights?
- How do the weights impact my estimates? My graphics? My models?

Let's practice!

Elements of a sampling design

Kelly McConville Assistant Professor of Statistics

library(survey) srs_design <- svydesign(data = paSample,</pre> weights = ~wts, fpc = $\sim N$, id = ~ 1)

Stratified sampling

Stratified sampling

library(survey) stratified_design <- svydesign(data = paSample, id = ~1, weights = ~wts,</pre> strata = ~county, fpc = ~N)

Cluster sampling

Cluster sampling

Cluster sampling

library(survey) cluster_design <- svydesign(data = paSample, id = ~county + personid,</pre> fpc = ~N1 + N2, weights = ~wts)

Let's practice!

Impact of weights ANALYZING SURVEY DATA IN R

Kelly McConville Assistant Professor of Statistics

National Health and Nutrition Examination Survey (NHANES)

- Conducted by the U.S. National Center for Health Statistics.
- **Goal:** Understand the health of adults and children in the US.
- It is collected using a 4 stage design.
- Stage O: The U.S. is *stratified* by geography and proportion of minority populations.
- **Stage 1**: Within strata, counties are randomly selected.
- Stage 2: Within counties, city blocks are randomly selected.
- **Stage 3**: Within city blocks, households randomly selected.
- **Stage 4**: Within households, people randomly selected.

NHANES

library(NHANES) dim(NHANESraw)

20293 78

library(dplyr) summarize(NHANESraw, N_hat = sum(WTMEC2YR))

A tibble: 1 x 1 N_hat <dbl> 1 608534400

NHANESraw <- mutate(NHANESraw, WTMEC4YR = WTMEC2YR / 2)</pre>

atacamp

NHANES

NHANES_design <- svydesign(data = NHANESraw,</pre> strata = ~SDMVSTRA, id = ~SDMVPSU, nest = TRUE, weights = ~WTMEC4YR)

distinct(NHANESraw, SDMVPSU)

# A	tibble:	3 x 1				
SE	OMVPSU					
	<int></int>					
1	1					
2	2					
3	3					

Visualizing impact of weights

Let's practice!

