Summarizing quantitative data

ANALYZING SURVEY DATA IN R

Kelly McConville Assistant Professor of Statistics

Summary statistics

NHANESraw %>% filter(Age >= 12) %>% select(DaysPhysHlthBad)

# A	tibble: 14,390 x 1				
Γ	DaysPhysHlthBad				
	<int></int>				
1	0				
2	2				
3	20				
4	2				
5	0				
6	0				
7	0				
8	8 NA				
9	9 0				
10	10 0				
# .	with 14,380 more rows				

Mean, total, and median

svymean(x = ~DaysPhysHlthBad, design = NHANES_design, na.rm = TRUE)

SE mean DaysPhysHlthBad 3.3315 0.1128

svytotal(x = ~DaysPhysHlthBad, design = NHANES_design, na.rm = TRUE)

total SE DaysPhysHlthBad 7.65e+08 35784824

svyquantile(x = ~DaysPhysHlthBad, design = NHANES_design, na.rm = TRUE, quantiles = 0.5)

0.5 DaysPhysHlthBad 0

Summarizing by group

```
svyby(formula = ~DaysPhysHlthBad, by = ~SmokeNow,
      design = NHANES_design,
      FUN = svymean, na.rm = TRUE,
      row.names = FALSE)
```

	SmokeNow	DaysPhysHlthBad	se
1	No	3.908984	0.1996290
2	Yes	4.951750	0.2346189

Summarizing by group

```
svyby(formula = ~Age, by = ~SmokeNow,
             design = NHANES_design,
             FUN = svymean, na.rm = TRUE,
             keep.names = FALSE)
```

	SmokeNow	Age	se
1	No	54.57933	0.6249442
2	Yes	42.76574	0.4087738

Let's practice!

Visualizing a quantitative variable

ANALYZING SURVEY DATA IN R

Kelly McConville **Assistant Professor of Statistics**

Table of means

out <- svyby(formula = ~DaysPhysHlthBad, by = ~SmokeNow,</pre> design = NHANES_design, FUN = svymean, na.rm = TRUE, keep.names = FALSE)

out

	SmokeNow	DaysPhysHlthBad	se
1	No	3.908984	0.1996290
2	Yes	4.951750	0.2346189

Bar graphs

ggplot(data = out, mapping = aes(x = SmokeNow, y = DaysPhysHlthBad)) + geom_col() + labs(y = "Monthly Average Number\n of Bad Health Days", x = "Smoker?")

Bar graphs with error bars

Bar graphs with error bars

```
out <- mutate(out, lower = DaysPhysHlthBad - se,</pre>
               upper = DaysPhysHlthBad + se)
out
```

	SmokeNow	DaysPhysHlthBad	se	lower	upper
1	No	3.908984	0.1996290	3.709355	4.108613
2	Yes	4.951750	0.2346189	4.717131	5.186369

Bar graphs with error bars

```
ggplot(data = out, mapping = aes(x = SmokeNow, y = DaysPhysHlthBad,
                                 ymin = lower, ymax = upper)) +
 geom_col(fill = "lightblue") + geom_errorbar(width = 0.5) +
 labs(y = "Monthly Average Number\n of Bad Health Days",
      x = "Smoker?")
```


Histogram

```
ggplot(data = NHANESraw, mapping = aes(x = DaysPhysHlthBad,
                                       weight = WTMEC4YR)) +
  geom_histogram(binwidth = 1, color = "white") +
 labs(x = "Number of Bad Health Days in a Month")
```


Density plot

```
NHANESraw %>%
filter(!is.na(DaysPhysHlthBad)) %>%
 mutate(WTMEC4YR_std = WTMEC4YR/sum(WTMEC4YR)) %>%
ggplot(mapping = aes(x = DaysPhysHlthBad, weight = WTMEC4YR_std)) +
  geom_density(bw = 0.6, fill = "lightblue") +
 labs(x = "Number of Bad Health Days in a Month")
```


Faceted density plots

```
NHANESraw %>%
    filter(!is.na(DaysPhysHlthBad),
           !is.na(SmokeNow)) %>%
    group_by(SmokeNow) %>%
    mutate(WTMEC4YR_std = WTMEC4YR/sum(WTMEC4YR)) %>%
    ggplot(mapping =
           aes(x = DaysPhysHlthBad,
           weight = WTMEC4YR_std)) +
 geom_density(bw = 0.6, fill = "lightblue") +
 labs(x = "Number of Bad Health Days in a Month") +
 facet_wrap(~SmokeNow, labeller = "label_both")
```

Faceted density plots

tacamp

Let's practice!

Inference for quantitative data

ANALYZING SURVEY DATA IN R

Kelly McConville Assistant Professor of Statistics

Inference for quantitative data

atacamp

Survey-weighted t-test

Null Hypothesis: The monthly average number of poor health days is the same for smokers and non-smokers.

Alternative Hypothesis: The monthly average number of poor health days is different for smokers and non-smokers.

Test statistic:

$$t = \frac{\bar{y}_s - \bar{y}_n}{SE}$$

Survey-weighted t-test

svyttest(formula = DaysPhysHlthBad ~ SmokeNow, design = NHANES_design)

Design-based t-test data: DaysPhysHlthBad ~ SmokeNow t = 3.8208, df = 32, p-value = 0.0005778 alternative hypothesis: true difference in mean is not equal to 0 sample estimates: difference in mean 1.042766

Let's practice!

