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Course goals
Explore foundational, generalizable Bayesian models (eg:

Beta-Binomial, Normal-Normal, and Bayesian regression)

De�ne, compile, and simulate Bayesian models using RJAGS

Conduct Bayesian posterior inference using RJAGS output



BAYESIAN MODELING WITH RJAGS

Bayesian elections: The prior



BAYESIAN MODELING WITH RJAGS

Bayesian elections: The prior



BAYESIAN MODELING WITH RJAGS

Bayesian elections: The prior



BAYESIAN MODELING WITH RJAGS

Bayesian elections: The data
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Bayesian elections: The posterior
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Bayesian elections: New data
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Bayesian elections: Newer data
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Bayesian elections: Newer posterior
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Bayesian thinking
A Bayesian posterior model:

Combines insights from the

prior model & observed data

Evolves as new data come

in
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Building a prior model
p = proportion that support

you

p is between 0 and 1

The prior model for p is a

Beta distribution with shape

parameters 45 and 55

p ∼ Beta(45, 55)
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Tuning the prior
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Polling data
Parameter 

p = proportion that support

you

Data 

X = 6 of n = 10 polled

voters plan to vote for you

Insights 

You are more likely to have

observed these data if 

p ≈ 0.6 than if p < 0.5.
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Modeling the dependence of X on p
Poll assumptions: 

voters are independent 

p = probability that a voter supports you

X  = number of n polled voters that support you 

(count of successes in n independent trials, each having

probability of success p)

Conditional distribution of X  given p: 

X ∼ Bin(n, p)
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What's the likelihood?
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Likelihood
The likelihood function

summarizes the likelihood of

observing polling data X

under di�erent values of the

underlying support parameter 

p. It is a function of p.

High likelihood ⇒ p is

compatible with the data

Low likelihood ⇒ p is not

compatible with the data
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Bayesian election model
prior: p ∼ Beta(45, 55)
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Bayesian election model
Prior: p ∼ Beta(45, 55)

Likelihood: X ∼ Beta(10, p)
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Bayesian election model
Prior: p ∼ Beta(45, 55)

Likelihood: X ∼ Bin(10, p)
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Posterior model of p
Prior: p ∼ Beta(45, 55)

Likelihood: X ∼ Bin(10, p)

Bayes' Rule: 

posterior ∝ prior × likelihood
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Getting started with RJAGS
RJAGS  combines the power of R  with the JAGS  (Just Another

Gibbs Sampler) engine. To get started:

Download the JAGS  program outside R

Within R , install the rjags  package
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Bayesian models in RJAGS: DEFINE

# DEFINE the model 
vote_model <- "model{ 
    # Likelihood model for X 
    X ~ dbin(p, n) 
 
    # Prior model for p 
    p ~ dbeta(a, b) 
}" 

X ∼ Bin(n, p)

p ∼ Beta(a, b)

Warning: 

the rjags  function dbin()
is di�erent than base 

dbinom()
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Bayesian models in RJAGS: COMPILE
# DEFINE the model 
vote_model <- "model{ 
    # Likelihood model for X 
    X ~ dbin(p, n) 
 
    # Prior model for p 
    p ~ dbeta(a, b) 
}" 
 
# COMPILE the model     
vote_jags_A <- jags.model(textConnection(vote_model),  
    data = list(a = 45, b = 55, X = 6, n = 10), 
    inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 100)) 
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Bayesian models in RJAGS: SIMULATE
# DEFINE the model 
vote_model <- "model{ 
    # Likelihood model for X 
    X ~ dbin(p, n)    
    # Prior model for p 
    p ~ dbeta(a, b) 
}" 
# COMPILE the model     
vote_jags <- jags.model(textConnection(vote_model),  
    data = list(a = 45, b = 55, X = 6, n = 10), 
    inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 100)) 
# SIMULATE the posterior 
vote_sim <- coda.samples(model = vote_jags,  
    variable.names = c("p"),  
    n.iter = 10000) 
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Bayesian models in RJAGS: SIMULATE

# PLOT the simulated posterior 
plot(vote_sim, trace = FALSE) 
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