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Course goals

e Explore foundational, generalizable Bayesian models (eg:
Beta-Binomial, Normal-Normal, and Bayesian regression)

 Define, compile, and simulate Bayesian models using RUAGS

e Conduct Bayesian posterior inference using RUAGS output
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Bayesian elections: The prior
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Bayesian elections: The data
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Bayesian elections: The posterior
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Bayesian elections: New data
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Bayesian elections: New posterior
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Bayesian elections: Newer data
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Bayesian elections: Newer posterior
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Bayesian thinking

A Bayesian posterior model:

e Combines insights from the
prior model & observed data

e Evolves as new data come 03 04 0> 06 0.7

. proportion of votes
IN
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Building a prior model

* p = proportion that support
you

e pis between O and 1

e The prior model for pis a
Beta distribution with shape b i o o o

parameters 45 and 55 P

p ~ Beta(45,55)
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Tuning the prior

W Beta(t, 1)
B Beta(t, 5)
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Let's practice!
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Data & the likelihood
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Polling data

* Parameter
p = proportion that support

you
— T T T T T T 71 T 1
e Data 0 010203040506 070809 1
X = 6 of n = 10 polled P

voters plan to vote for you

e Insights
You are more likely to have
observed these data if
p =~ 0.6 than if p < 0.5.

BAYESIAN MODELING WITH RJAGS



Modeling the dependence of X on p

e Poll assumptions:
voters are independent
p = probability that a voter supports you

e X =number of n polled voters that support you
(count of successes in 1 independent trials, each having
probability of success p)

e Conditional distribution of X given p:
X ~ Bin(n,p)
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Dependence of Xon p
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Dependence of Xon p
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What's the likelihood?
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Likelihood

The likelihood function 03—

summarizes the likelihood of = 02—
observing polling data X £ 01

under different values of the

0 010203040506 0703809 1
underlying support parameter p

p. It is a function of p.

e High likelihood = p is
compatible with the data

e Low likelihood = pis not
compatible with the data
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Let's practice!
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The posterior model
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Bayesian election model
prior: p ~ Beta(45, 55)
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Bayesian election model
Prior: p ~ Beta(45, 55)

Likelihood: X ~ Beta(10, p)
/\
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Bayesian election model
Prior: p ~ Beta(45, 55)

Likelihood: X ~ Bin(10, p) ikelihood

prior

— 1 1 1 1T 1T T T T T 1
0 010.20.30405060.70.809 1

Y
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Posterior model of p
Prior: p ~ Beta(45, 55)

Likelihood: X ~ Bin(10, p) ikelihood

prior

BQQGS' Rule: 0 0.102030405060.70.80.9 1

posterior o prior X likelihood P
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Getting started with RUAGS

RJAGS combines the power of R with the JAGS (Just Another
Gibbs Sampler) engine. To get started:

e Download the JAGS program outside R

e Within R, install the rjags package
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Bayesian models in RUIAGS: DEFINE

# DEFINE the model + X ~ Bin(n, p)
vote_model <- "model{ ¢ P~ Beta(a, b)
# Likelihood model for X
X ~ dbin(p, n) e Warning:
the rjags function dbin()
# Prior model for p is different than base
p ~ dbeta(a, b) dbinom()
po
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Bayesian models in RIAGS: COMPILE

# DEFINE the model
vote_model <- "model{
# Likelihood model for X
X ~ dbin(p, n)

# Prior model for p
p ~ dbeta(a, b)
}_Il

# COMPILE the model
vote_jags_A <- jags.model(textConnection(vote_model),
data = list(a = 45, b = 55, X = 6, n = 10),
inits = 1ist(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 100))
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Bayesian models in RUIAGS: SIMULATE

# DEFINE the model
vote_model <- "model{
# Likelihood model for X
X ~ dbin(p, n)
# Prior model for p
p ~ dbeta(a, b)
1o
# COMPILE the model
vote_jags <- jags.model(textConnection(vote_model),
data = list(a = 45, b = 55, X = 6, n = 10),
inits = 1ist(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 100))
# SIMULATE the posterior
vote_sim <- coda.samples(model = vote_jags,
variable.names = c("p"),
n.iter = 10000)
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Bayesian models in RUIAGS: SIMULATE

# PLOT the simulated posterior
plot(vote_sim, trace = FALSE)

Density of p

| [ | |
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N = 10000 Bandwidth = 0.007935
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Let's practice!
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