### The prior model BAYESIAN MODELING WITH RJAGS



Alicia Johnson Associate Professor, Macalester College



## **Course goals**

- Explore foundational, generalizable Bayesian models (eg: Beta-Binomial, Normal-Normal, and Bayesian regression)
- **Define**, **compile**, and **simulate** Bayesian models using RJAGS
- Conduct Bayesian posterior inference using RJAGS output

### **Bayesian elections: The prior**

#### 0.3 0.4 0.7 0.5 0.6 proportion of votes



### **Bayesian elections: The prior**





### **Bayesian elections: The prior**







### **Bayesian elections: The data**







### **Bayesian elections: The posterior**







### **Bayesian elections: New data**







### **Bayesian elections: New posterior**







### **Bayesian elections: Newer data**







### **Bayesian elections: Newer posterior**







## **Bayesian thinking**

A Bayesian posterior model:

- Combines insights from the ulletprior model & observed data
- Evolves as new data come  $\bullet$ in





# **Building a prior model**

- p = proportion that supportyou
- p is between 0 and 1
- The prior model for p is a Beta distribution with shape parameters 45 and 55

 $p \sim ext{Beta}(45, 55)$ 





## **Tuning the prior**







# Let's practice!



# **Data & the likelihood**

### **BAYESIAN MODELING WITH RJAGS**



Alicia Johnson Associate Professor, Macalester College



## Polling data

#### Parameter

p = proportion that supportyou

#### Data

X=6 of n=10 polled voters plan to vote for you

#### Insights

You are more likely to have observed these data if p pprox 0.6 than if p < 0.5.





## Modeling the dependence of X on p

#### **Poll assumptions:**

voters are independent p = probability that a voter supports you

- X = number of n polled voters that support you (count of successes in *n* independent trials, each having probability of success p)
- Conditional distribution of X given p:  $X \sim \operatorname{Bin}(n,p)$



Dependence of X on p







### Dependence of X on p







Dependence of X on p



datacamp



Dependence of X on p





### What's the likelihood?







## Likelihood

### The likelihood function

summarizes the likelihood of observing polling data Xunder different values of the underlying support parameter p. It is a function of p.

- High likelihood  $\Rightarrow p$  is  $\bullet$ compatible with the data
- Low likelihood  $\Rightarrow p$  is not compatible with the data





# Let's practice!



### The posterior model BAYESIAN MODELING WITH RJAGS



Alicia Johnson Associate Professor, Macalester College



### **Bayesian election model**

prior:  $p \sim ext{Beta}(45, 55)$ 



р





### **Bayesian election model**

Prior:  $p \sim ext{Beta}(45, 55)$ 

Likelihood:  $X \sim \mathrm{Beta}(10, p)$ 



р



### **Bayesian election model**

Prior:  $p \sim ext{Beta}(45, 55)$ 

Likelihood:  $X \sim {
m Bin}(10,p)$ 



р



### Posterior model of p

Prior:  $p \sim ext{Beta}(45, 55)$ 

Likelihood:  $X \sim {
m Bin}(10,p)$ 

**Bayes' Rule:** 

posterior  $\propto$  prior  $\times$  likelihood



р



### Getting started with RJAGS

RJAGS combines the power of R with the JAGS (Just Another Gibbs Sampler) engine. To get started:

- Download the JAGS program outside R
- Within R, install the rjags package  $\bullet$



### **Bayesian models in RJAGS: DEFINE**

```
DEFINE the model
#
vote_model <- "model{</pre>
    # Likelihood model for X
    X \sim dbin(p, n)
    # Prior model for p
```

```
p ~ dbeta(a, b)
```

}"

- $X \sim \operatorname{Bin}(n,p)$
- $p \sim \text{Beta}(a, b)$
- Warning: the rjags function dbin() is different than base dbinom()



### **Bayesian models in RJAGS: COMPILE**

```
# DEFINE the model
vote_model <- "model{</pre>
    # Likelihood model for X
    X \sim dbin(p, n)
    # Prior model for p
    p ~ dbeta(a, b)
}"
# COMPTLE the model
vote_jags_A <- jags.model(textConnection(vote_model),</pre>
    data = list(a = 45, b = 55, X = 6, n = 10),
    inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 100))
```



### **Bayesian models in RJAGS: SIMULATE**

```
# DEFINE the model
vote_model <- "model{</pre>
    # Likelihood model for X
    X \sim dbin(p, n)
    # Prior model for p
    p ~ dbeta(a, b)
}"
# COMPILE the model
vote_jags <- jags.model(textConnection(vote_model),</pre>
    data = list(a = 45, b = 55, X = 6, n = 10),
    inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 100))
# SIMULATE the posterior
vote_sim <- coda.samples(model = vote_jags,</pre>
    variable.names = c("p"),
    n.iter = 10000)
```

### **Bayesian models in RJAGS: SIMULATE**

# PLOT the simulated posterior plot(vote\_sim, trace = FALSE)



N = 10000 Bandwidth = 0.007935

tacamp

# Let's practice!

