
The Normal-Normal
model

BAYES IAN MODEL ING WITH  RJAGS

Alicia Johnson

Associate Professor, Macalester College



BAYESIAN MODELING WITH RJAGS

Chapter 2 goals
Engineer the two-parameter Normal-Normal model

De�ne, compile, and simulate the Normal-Normal in RJAGS

Explore Markov chains, the mechanics of an RJAGS

simulation
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Sleep deprivation
Research Question 

How does sleep deprivation impact reaction time?

The Study

Measure reaction time on Day 0

Restrict sleep to 3 hours per night

Measure reaction time on Day 3

Measure the change in reaction time

 Belenky, G. et al (2003). Journal of Sleep Research, 12:1–12.  Data provided
in the lme4 package.
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Modeling change in reaction time
Y  = change in reaction time

(ms)

Assume

Y  are Normally distributed

around some average change

in reaction time m with

standard deviation s.

Y ∼ N(m, s )

i

i
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Prior model for parameter m
Y  = change in reaction time

(ms) Y ∼ N(m, s ) 

m = average Y

Prior information:

With normal sleep, average

reaction time is ~250 ms

Expect average to ↗ by

~50 ms
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Prior model for parameter s
Y  = change in reaction time

(ms) Y ∼ N(m, s ) 

s = standard deviation of Y

Prior information:

s > 0

With normal sleep, s.d. in

reaction times is ~30 ms

s is equally likely to be

anywhere from 0 to 200 ms
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The Normal-Normal Model
Likelihood: 

Y ∼ N(m, s )i
2
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The Normal-Normal Model
Likelihood: 

Y ∼ N(m, s )

Priors: 

m ∼ N(50, 25 ) 

s ∼ Unif(0, 200)

i
2
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Sleep study
Y  = change in reaction time (ms) a�er 3 days of sleep

deprivation

Y ∼ N(m, s )

i

i
2



BAYESIAN MODELING WITH RJAGS

Insights from the priors
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Insights from the data (& likelihood)

mean(sleep_study$diff_3) 
sd(sleep_study$diff_3) 

26.34021 
37.20764 

Assuming these data are

generated from 

Y ∼ N(m, s ), they are most

likely to have occurred if...

m ≈ 26 ms

s ≈ 37 ms

i
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Posterior insights
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DEFINE the Normal-Normal

sleep_model <- "model{ 
    # Likelihood model for Y[i] 
 
 
 
 
    # Prior models for m and s 
 
 
}"   
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DEFINE the Normal-Normal

sleep_model <- "model{ 
    # Likelihood model for Y[i] 
    for(i in 1:length(Y)) { 
 
    } 
 
    # Prior models for m and s 
 
 
}"   
 

Y ∼ N(m, s ) for i in 

1, 2, … , 18
i
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DEFINE the Normal-Normal

sleep_model <- "model{ 
    # Likelihood model for Y[i] 
    for(i in 1:length(Y)) { 
        Y[i] ~ dnorm(m, s^(-2)) 
    } 
 
    # Prior models for m and s 
 
 
}"   
 

Y ∼ N(m, s ) for i in 

1, 2, … , 18
NOTE: precision =

variance  = s

i
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DEFINE the Normal-Normal
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DEFINE the Normal-Normal

sleep_model <- "model{ 
    # Likelihood model for Y[i] 
    for(i in 1:length(Y)) { 
        Y[i] ~ dnorm(m, s^(-2)) 
    } 
 
    # Prior models for m and s 
    m ~ dnorm(50, 25^(-2)) 
    s ~ dunif(0, 200) 
}"   
 

Y ∼ N(m, s ) for i in 

1, 2, … , 18
NOTE: precision =

variance  = s

m ∼ N(50, 25 )

s ∼ Unif(0, 200)
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COMPILE the Normal-Normal

# COMPILE the model     
sleep_jags <- jags.model(textConnection(sleep_model),  
    data = list(Y = sleep_study$diff_3),  
    inits = list(.RNG.name = "base::Wichmann-Hill", 
                 .RNG.seed = 1989)) 
    sleep_study$diff_3 

 [1]  71.8798 -18.0269  33.7877 -36.4096  32.5074  74.9082 
 [7]  15.9673 -10.8008  29.1938  33.7556  18.8188  -0.7697 
[13]  30.0626 125.1784   5.7331  15.2090  11.9091  41.2199 
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SIMULATE the Normal-Normal

# COMPILE the model     
sleep_jags <- jags.model(textConnection(sleep_model),  
    data = list(Y = sleep_study$diff_3), 
    inits = list(.RNG.name = "base::Wichmann-Hill",  
                 .RNG.seed = 1989)) 

# SIMULATE the posterior 
sleep_sim <- coda.samples(model = sleep_jags,  
    variable.names = c("m", "s"),  
    n.iter = 10000) 
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SIMULATE the Normal-Normal
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SIMULATE the Normal-Normal
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Posterior simulation
Normal-Normal model:

Y  = change in reaction time

(ms)

Y ∼ N(m, s ) 

m ∼ N(50, 25 ) 

s ∼ Unif(0, 200)

Approximate posteriors:

i

i
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Markov chains

head(sleep_chains, 20) 

m  is a Markov chain, NOT a

random sample from the

posterior

RJAGS  goal: Utilize Markov

chains to approximate

posteriors that are otherwise

too complicated to de�ne or

sample

          m        s iter 
1  17.25796 31.46256    1 
2  34.58469 37.88655    2 
3  36.45480 39.58056    3 
4  25.00971 39.69494    4 
5  29.95475 35.90001    5 
6  28.43894 37.46466    6 
7  38.32427 35.44081    7 
8  27.90956 42.07951    8 
9  28.09270 52.36360    9 
10 29.70648 28.30665   10 
11 32.10350 46.64174   11 
12 34.41397 28.86993   12 
13 23.33649 37.46498   13 
14 39.26587 32.91031   14 
15 27.95317 43.13887   15 
16 18.91718 44.64376   16 
17 28.63141 43.49800   17 
18 41.22929 47.42336   18 
19 33.12585 42.81980   19 
20 35.86270 30.47737   20 
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Markov chain dependence

head(sleep_chains, 20) 

          m        s iter 
1  17.25796 31.46256    1 
2   
3   
4 
5 
6 
7 
8 
9 
10 
11 
... 
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Markov chain dependence
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          m        s iter 
1  17.25796 31.46256    1 
2  34.58469 37.88655    2 
3  36.45480 39.58056    3 
4  25.00971 39.69494    4 
5  29.95475 35.90001    5 
6  28.43894 37.46466    6 
7  38.32427 35.44081    7 
8  27.90956 42.07951    8 
9  28.09270 52.36360    9 
10 29.70648 28.30665   10 
11 32.10350 46.64174   11 
12 34.41397 28.86993   12 
13 23.33649 37.46498   13 
14 39.26587 32.91031   14 
15 27.95317 43.13887   15 
16 18.91718 44.64376   16 
17 28.63141 43.49800   17 
18 41.22929 47.42336   18 
19 33.12585 42.81980   19 
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Markov chain dependence
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Markov chain trace plot
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Markov chain distribution
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Markov chain distribution
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Markov chain distribution
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Markov chain distribution: an approximation of the
posterior!

The m Markov chain...

traverses the sample space of 

m,

mimics a random sample, and

converges to the posterior.
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Markov chain output
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Questions to consider
What does a "good" Markov chain look like?

How accurate is the Markov chain approximation of the

posterior?

For how many iterations should we run the Markov chain?
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Diagnostic: trace plots
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Diagnostic: trace plots

Good: stability! Bad: instability
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Diagnostic: multiple chains

# COMPILE the model 
sleep_jags <- jags.model(..., n.chains = 1) 
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Diagnostic: multiple chains

# COMPILE the model 
sleep_jags <- jags.model(..., n.chains = 2) 
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Diagnostic: multiple chains

# COMPILE the model 
sleep_jags <- jags.model(..., n.chains = 4) 
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Diagnostic: multiple chains

# COMPILE the model 
sleep_jags <- jags.model(..., n.chains = 4) 
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summary(sleep_sim) 

1. Empirical mean and standard deviation for each variable, 
   plus standard error of the mean: 
 
   Mean    SD Naive SE Time-series SE 
m 29.10 8.968   0.2836         0.2820 
s 40.07 7.887   0.2494         0.4227 
 
2. Quantiles for each variable: 
 
   2.5%   25%   50%   75% 97.5% 
m 11.42 23.27 28.85 34.76 46.76 
s 28.31 34.65 38.93 43.91 57.56 

Estimate of the posterior mean of m = 29.10 ms

(Naive) standard error of this estimate = 0.2836 ms 

SD  / √ number of iterations
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Diagnostic: standard error

Estimated mean = 29.10 ms

(Naive) standard error =

0.2836 ms

29.10 ± 2 ∗ 0.2836
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Markov chain work flow
De�ne, compile, simulate the model

Examine the following diagnostics:

Trace plots

Multiple chain output

Standard errors

Finalize the simulation
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Finalizing the Markov chain: Reproducibility

sleep_jags <- jags.model(textConnection(sleep_model),  
    data = list(Y = sleep_study$diff_3), 
    inits = list(.RNG.name = "base::Wichmann-Hill", 
                 .RNG.seed = 1989)) 
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