The Normal-Normal model

BAYESIAN MODELING WITH RJAGS

Alicia Johnson Associate Professor, Macalester College

Chapter 2 goals

- Engineer the two-parameter Normal-Normal model \bullet
- Define, compile, and simulate the Normal-Normal in RJAGS \bullet
- Explore Markov chains, the mechanics of an RJAGS simulation

Sleep deprivation

Research Question

How does sleep deprivation impact reaction time?

The Study

- Measure reaction time on Day 0
- Restrict sleep to 3 hours per night
- Measure reaction time on Day 3
- Measure the change in reaction time

¹ Belenky, G. et al (2003). Journal of Sleep Research, 12:1–12. ² Data provided in the lme4 package.

Modeling change in reaction time

 Y_i = change in reaction time (ms)

Assume

 Y_i are *Normally* distributed around some *average* change in reaction time m with standard deviation s.

$$Y_i \sim N(m,s^2)$$

Prior model for parameter m

 Y_i = change in reaction time (ms) $Y_i \sim N(m,s^2)$ m = average Y_i

Prior information:

- With *normal* sleep, average reaction time is ~250 ms
- Expect average to \nearrow by ~50 ms

Prior model for parameter *m*

 Y_i = change in reaction time (ms) $Y_i \sim N(m,s^2)$ m = average Y_i

Prior information:

- With *normal* sleep, average \bullet reaction time is ~250 ms
- Expect average to \nearrow by ~50 ms
- Average is unlikely to \searrow & unlikely to \nearrow by > ~150 ms

Prior model for parameter *m*

 Y_i = change in reaction time (ms) $Y_i \sim N(m,s^2)$ m = average Y_i

Prior information:

- With *normal* sleep, average \bullet reaction time is ~250 ms
- Expect average to \nearrow by ~50 ms
- Average is unlikely to \searrow & unlikely to \nearrow by > ~150 ms

Prior model for parameter *s*

 Y_i = change in reaction time (ms) $Y_i \sim N(m,s^2)$ s = standard deviation of Y_i

Prior information:

- s > 0
- With *normal* sleep, s.d. in reaction times is ~30 ms
- s is equally likely to be anywhere from 0 to 200 ms

The Normal-Normal Model

Likelihood:

$$Y_i \sim N(m,s^2)$$

The Normal-Normal Model

Likelihood:

$$Y_i \sim N(m,s^2)$$

Priors:

 $m\sim N(50,25^2)$ $s \sim \mathrm{Unif}(0, 200)$

Let's practice!

Simulating the Normal-Normal in RJAGS

BAYESIAN MODELING WITH RJAGS

Alicia Johnson Associate Professor, Macalester College

R datacamp

Sleep study

 Y_i = change in reaction time (ms) after 3 days of sleep deprivation

 $Y_i \sim N(m,s^2)$

acamp

Insights from the priors

Insights from the data (& likelihood)

Assuming these data are generated from $Y_i \sim N(m,s^2)$, they are most likely to have occurred if...

- $mpprox 26~{
 m ms}$
- $spprox 37~{
 m ms}$

mean(sleep_study\$diff_3) sd(sleep_study\$diff_3)

26.34021 37.20764

Posterior insights

sleep_model <- "model{</pre> # Likelihood model for Y[i] for(i in 1:length(Y)) {

}

Prior models for m and s

}"

• $Y_i \sim N(m,s^2)$ for i in $1, 2, \ldots, 18$

acamp

```
sleep_model <- "model{</pre>
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] \sim dnorm(m, s^{-2})
    }
```

```
# Prior models for m and s
```

```
• Y_i \sim N(m,s^2) for i in
  1, 2, \ldots, 18
  \circ NOTE: precision =
```

variance^{$$-1$$} = s^{-2}

}"

COMD


```
sleep_model <- "model{</pre>
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] \sim dnorm(m, s^{-2})
    }
```

```
# Prior models for m and s
m \sim dnorm(50, 25^{-2})
```

```
• Y_i \sim N(m,s^2) for i in
  1, 2, \ldots, 18
```

```
• NOTE: precision =
  variance<sup>-1</sup> = s^{-2}
```

```
• m \sim N(50, 25^2)
```

```
}"
```



```
sleep_model <- "model{</pre>
    # Likelihood model for Y[i]
    for(i in 1:length(Y)) {
        Y[i] \sim dnorm(m, s^{-2})
    }
```

```
# Prior models for m and s
m \sim dnorm(50, 25^{-2})
s ~ dunif(0, 200)
```

- $Y_i \sim N(m,s^2)$ for i in $1, 2, \ldots, 18$
 - NOTE: precision = variance⁻¹ = s^{-2}
- $m \sim N(50, 25^2)$
- $s \sim \text{Unif}(0, 200)$

}"

COMPILE the Normal-Normal

```
# COMPILE the model
sleep_jags <- jags.model(textConnection(sleep_model),</pre>
    data = list(Y = sleep_study$diff_3),
    inits = list(.RNG.name = "base::Wichmann-Hill",
                  .RNG.seed = 1989))
    sleep_study$diff_3
```

[1]	71.8798 -18.0269	33.7877 -3	6.4096	32.5074	74.9082
[7]	15.9673 -10.8008	29.1938 3	3.7556	18.8188	-0.7697
[13]	30.0626 125.1784	5.7331 1	5.2090	11.9091	41.2199

SIMULATE the Normal-Normal

```
# COMPILE the model
sleep_jags <- jags.model(textConnection(sleep_model),</pre>
    data = list(Y = sleep_study$diff_3),
    inits = list(.RNG.name = "base::Wichmann-Hill",
                  .RNG.seed = 1989))
# SIMULATE the posterior
sleep_sim <- coda.samples(model = sleep_jags,</pre>
    variable.names = c("m", "s"),
    n.iter = 10000)
```

R datacamp

SIMULATE the Normal-Normal

SIMULATE the Normal-Normal

Let's practice!

Markov chains

BAYESIAN MODELING WITH RJAGS

Alicia Johnson Associate Professor, Macalester College

Posterior simulation

Normal-Normal model:

 Y_i = change in reaction time (ms)

 $Y_i \sim N(m,s^2)$ $m \sim N(50, 25^2)$ $s \sim \mathrm{Unif}(0, 200)$

Approximate posteriors:

Markov chains

head(sleep_chains, 20)

- m is a Markov chain, NOT a random sample from the posterior
- **RJAGS** goal: Utilize Markov chains to *approximate* posteriors that are otherwise too complicated to define or sample

	m	S	iter
1	17.25796	31.46256	1
2	34.58469	37.88655	2
3	36.45480	39.58056	3
4	25.00971	39.69494	4
5	29.95475	35.90001	5
6	28.43894	37.46466	6
7	38.32427	35.44081	7
8	27.90956	42.07951	8
9	28.09270	52.36360	9
10	29.70648	28.30665	10
11	32.10350	46.64174	11
12	34.41397	28.86993	12
13	23.33649	37.46498	13
14	39.26587	32.91031	14
15	27.95317	43.13887	15
16	18.91718	44.64376	16
17	28.63141	43.49800	17
18	41.22929	47.42336	18
19	33.12585	42.81980	19
20	35.86270	30.47737	20

tacamp

R datacamp

	m	S	iter
1	17.25796	31.46256	1
2	34.58469	37.88655	2
3	36.45480	39.58056	3
4	25.00971	39.69494	4
5	29.95475	35.90001	5
6	28.43894	37.46466	6
7	38.32427	35.44081	7
8	27.90956	42.07951	8
9	28.09270	52.36360	9
10	29.70648	28.30665	10
11	32.10350	46.64174	11
12	34.41397	28.86993	12
13	23.33649	37.46498	13
14	39.26587	32.91031	14
15	27.95317	43.13887	15
16	18.91718	44.64376	16
17	28.63141	43.49800	17
18	41.22929	47.42336	18
19	33.12585	42.81980	19
20	35.86270	30.47737	20

R datacamp

Markov chain trace plot

Markov chain distribution

Markov chain distribution

Markov chain distribution

Markov chain distribution: an approximation of the posterior!

The *m* Markov chain... traverses the sample space of m,

mimics a random sample, and

converges to the posterior.

Let's practice!

Markov chain diagnostics & reproducibility

BAYESIAN MODELING WITH RJAGS

Alicia Johnson Associate Professor, Macalester College

Markov chain output

Questions to consider

- What does a "good" Markov chain look like?
- How accurate is the Markov chain approximation of the posterior?
- For how many iterations should we run the Markov chain?

Diagnostic: trace plots

Diagnostic: trace plots

60-40 E 20 0-750 250 1000 500 0 iter

Good: stability!

Bad: instability

& datacamp

R datacamp

R datacamp

R datacamp

1. Empirical mean and standard deviation for each variable, plus standard error of the mean:

SD Naive SE Time-series SE Mean m 29.10 8.968 0.2836 0.2820 s 40.07 7.887 0.2494 0.4227

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5% m 11.42 23.27 28.85 34.76 46.76 s 28.31 34.65 38.93 43.91 57.56

- **Estimate** of the posterior mean of m = 29.10 ms
- (Naive) standard error of this estimate = 0.2836 ms SD / $\sqrt{\text{number of iterations}}$

Diagnostic: standard error

- Estimated mean = 29.10 ms
- $29.10 \pm 2 * 0.2836$
- (Naive) standard error = 0.2836 ms

Markov chain work flow

- Define, compile, simulate the model
- Examine the following diagnostics:
 - Trace plots 0
 - Multiple chain output 0
 - Standard errors 0
- Finalize the simulation

Finalizing the Markov chain: Reproducibility

sleep_jags <- jags.model(textConnection(sleep_model),</pre> data = list(Y = sleep_study\$diff_3), inits = list(.RNG.name = "base::Wichmann-Hill", .RNG.seed = 1989))

Let's practice!

