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Chapter 4 goals
Incorporate categorical predictors into Bayesian models

Engineer multivariate Bayesian regression models

Extend our methodology for Normal regression models to

generalized linear models: Poisson regression
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Rail-trail volume
Goal: 

Explore daily volume on a rail-

trail in Massachuse�s.
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Modeling volume
Y  = trail volume (# of users)

on day i  

Model 

Y ∼ N(m , s )
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Modeling volume by weekday
Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends

Model 

Y ∼ N(m , s )
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Modeling volume by weekday
Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends

Model 
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Modeling volume by weekday
Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends

Model 

Y ∼ N(m , s ) 
m = a+ bX
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Modeling volume by weekday
Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends

Model 

Y ∼ N(m , s ) 
m = a+ bX

a = typical weekend volume
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Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends

Model 

Y ∼ N(m , s ) 
m = a+ bX

a = typical weekend volume

a+ b = typical weekday

volume

b = contrast between typical

weekday vs weekend

volume

s = residual standard

deviation
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Priors for a & b

Typical weekend volume is

most likely around 400 users

per day, but possibly as low as

100 or as high as 700 users.

We lack certainty about how

weekday volume compares to

weekend volume. It could be

more, it could be less.
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Prior for s

The standard deviation in

volume from day to day

(whether on weekdays or

weekends) is equally likely to

be anywhere between 0 and

200 users.
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Bayesian model of volume by weekday status
Y ∼ N(m , s ) 
m = a+ bX  

a ∼ N(400, 100 ) 
b ∼ N(0, 200 ) 
s ∼ Unif(0, 200)
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DEFINE the Bayesian model in RJAGS
Y ∼ N(m , s ) 
m = a+ bX  

a ∼ N(400, 100 ) 
b ∼ N(0, 200 ) 
s ∼ Unif(0, 200)

rail_model_1 <- "model{ 
    # Likelihood model for Y[i] 
 
 
 
 
 
    # Prior models for a, b, s 
 
 
 
 
}"   

i i
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DEFINE the Bayesian model in RJAGS
Y ∼ N(m , s ) 
m = a+ bX  

a ∼ N(400, 100 ) 
b ∼ N(0, 200 ) 
s ∼ Unif(0, 200)

rail_model_1 <- "model{ 
    # Likelihood model for Y[i] 
    for(i in 1:length(Y)) { 
        Y[i] ~ dnorm(m[i], s^(-2)) 
 
    } 
 
    # Prior models for a, b, s 
    a ~ dnorm(400, 100^(-2)) 
    s ~ dunif(0, 200) 
 
 
}"   
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DEFINE the Bayesian model in RJAGS
m[i] <- a + b[X[i]]

X[1]  = weekend, X[2]  =

weekday

b  has 2 levels: b[1] , b[2]

weekend trend (m = a) 

m[i] <- a + b[1]

rail_model_1 <- "model{ 
    # Likelihood model for Y[i] 
    for(i in 1:length(Y)) { 
        Y[i] ~ dnorm(m[i], s^(-2)) 
        m[i] <- a + b[X[i]] 
    } 
 
    # Prior models for a, b, s 
    a ~ dnorm(400, 100^(-2)) 
    s ~ dunif(0, 200) 
 
 
}"   
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DEFINE the Bayesian model in RJAGS
m[i] <- a + b[X[i]]

X[1]  = weekend, X[2]  =

weekday

b  has 2 levels: b[1] , b[2]

weekend trend (m = a) 

m[i] <- a + b[1]  

b[1] <- 0

rail_model_1 <- "model{ 
    # Likelihood model for Y[i] 
    for(i in 1:length(Y)) { 
        Y[i] ~ dnorm(m[i], s^(-2)) 
        m[i] <- a + b[X[i]] 
    } 
 
    # Prior models for a, b, s 
    a ~ dnorm(400, 100^(-2)) 
    s ~ dunif(0, 200) 
    b[1] <- 0 
 
}"   
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DEFINE the Bayesian model in RJAGS
m[i] <- a + b[X[i]]

X[1]  = weekend, X[2]  =

weekday

b  has 2 levels: b[1] , b[2]

weekend trend (m = a) 

m[i] <- a + b[1]  

b[1] <- 0

weekday (m = a+ b) 

m[i] <- a + b[2]

rail_model_1 <- "model{ 
    # Likelihood model for Y[i] 
    for(i in 1:length(Y)) { 
        Y[i] ~ dnorm(m[i], s^(-2)) 
        m[i] <- a + b[X[i]] 
    } 
 
    # Prior models for a, b, s 
    a ~ dnorm(400, 100^(-2)) 
    s ~ dunif(0, 200) 
    b[1] <- 0 
    b[2] ~ dnorm(0, 200^(-2)) 
}"   

b[2] ~ dnorm(0, 200^(-2))

i
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Modeling volume
Y  = trail volume (# of users)

on day i

 Photo courtesy commons.wikimedia.org
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Modeling volume by weekday
Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends

i
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Modeling volume by temperature
Y  = trail volume (# of users)

on day i 

Z  = high temperature on day i

(in F)

i

i
∘
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Modeling volume by temperature & weekday
Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends 

Z  = high temperature on day i

(in F)

Y ∼ N(m , s )

m = a+ bX + cZ

Weekends: m = a+ cZ
Weekdays: 

m = (a+ b) + cZ
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Modeling volume by temperature & weekday
Y  = trail volume (# of users)

on day i 

X  = 1 for weekdays, 0 for

weekends 

Z  = high temperature on day i

(in F)

Y ∼ N(m , s )

m = a+ bX + cZ

Weekends: m = a+ cZ
 Weekdays: 

m = (a+ b) + cZ
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Modeling volume by temperature & weekday
m = a+ bX + cZ

Weekends: m = a+ cZ

Weekdays: 

m = (a+ b) + cZ

a = weekend y-intercept

a+ b = weekday y-int.

b = contrast between

weekday vs weekend y-

intercepts

c = common slope

s = residual standard

deviation

i i i

i i
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Priors for a and b

We lack certainty about the y-

intercept for the relationship

between temperature &

weekend volume.

We lack certainty about how

typical volume compares on

weekdays vs weekends of

similar temperature.
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Priors for c and s

Whether on weekdays or

weekends, we lack certainty

about the association between

trail volume & temperature.

The typical deviation from the

trend is equally likely to be

anywhere between 0 and 200

users.
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Bayesian model of volume by weekday status
Y ∼ N(m , s ) 
m = a+ bX + cZ  

a ∼ N(0, 200 ) 
b ∼ N(0, 200 ) 
c ∼ N(0, 20 ) 
s ∼ Unif(0, 200)
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DEFINE the Bayesian model in RJAGS
Y ∼ N(m , s ) 
m = a+ bX + cZ  

a ∼ N(0, 200 ) 
b ∼ N(0, 200 ) 
c ∼ N(0, 20 ) 
s ∼ Unif(0, 200)

rail_model_2 <- "model{ 
  # Likelihood model for Y[i] 
  for(i in 1:length(Y)) { 
    Y[i] ~ dnorm(m[i], s^(-2)) 
    m[i] <- a + b[X[i]] + c * Z[i] 
  } 
 
  # Prior models for a, b, c, s 
  a ~ dnorm(0, 200^(-2)) 
  b[1] <- 0 
  b[2] ~ dnorm(0, 200^(-2)) 
  c ~ dnorm(0, 20^(-2)) 
  s ~ dunif(0, 200) 
}"   
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Normal likelihood structure
Y  = volume (# of users) on a

given day 

Y ∼ N(m, s )

Technically...

The Normal model assumes 

Y  has a continuous scale

and can be negative.

But Y  is a discrete count

and cannot be negative.

2
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The Poisson model
Y  = volume (# of users) on a

given day 

Y ∼ Pois(l)

Y  is the # of independent

events that occur in a �xed

interval (0, 1, 2,...).

Rate parameter l represents

the typical # of events per

time interval

(l > 0).
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The Poisson model
Y  = volume (# of users) on a

given day 

Y ∼ Pois(l)

Y  is the # of independent

events that occur in a �xed

interval (0, 1, 2,...).

Rate parameter l represents

the typical # of events per

time interval

(l > 0).
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The Poisson model
Y  = volume (# of users) on a

given day 

Y ∼ Pois(l)

Y  is the # of independent

events that occur in a �xed

interval (0, 1, 2,...).

Rate parameter l represents

the typical # of events per

time interval

(l > 0).
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The Poisson model
Y  = volume (# of users) on a

given day 

Y ∼ Pois(l)

Y  is the # of independent

events that occur in a �xed

interval (0, 1, 2,...).

Rate parameter l represents

the typical # of events per

time interval

(l > 0).
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Poisson regression
Y ∼ Pois(l ) where l > 0i i i
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Poisson regression
Y ∼ Pois(l ) where l > 0

l = a+ bX + cZ

i i i

i i i
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Poisson regression
Y ∼ Pois(l ) where l > 0

l = a+ bX + cZ

A problem: 

Linking l  directly to the linear

model assumes l  can be

negative.

i i i

i i i

i
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Poisson regression
Y ∼ Pois(l ) where l > 0

log(l ) = a+ bX + cZ

A solution: 

Use a log link function to link l

to the linear model. In turn:

l = e

i i i

i i i

i

i
a+bX +cZi i
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Poisson regression
Y ∼ Pois(l ) where l > 0

log(l ) = a+ bX + cZ

A solution: 

Use a log link function to link l

to the linear model. In turn:

l = e

i i i

i i i
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i
a+bX +cZi i
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Poisson regression in RJAGS
Y ∼ Pois(l ) 
log(l ) = a+ bX + cZ  

a ∼ N(0, 200 ) 
b ∼ N(0, 2 ) 
c ∼ N(0, 2 )

poisson_model <- "model{ 
  # Likelihood model for Y[i] 
 
 
 
 
 
  # Prior models for a, b, c 
 
 
 
 
}" 
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Poisson regression in RJAGS
Y ∼ Pois(l ) 
log(l ) = a+ bX + cZ  

a ∼ N(0, 200 ) 
b ∼ N(0, 2 ) 
c ∼ N(0, 2 )

poisson_model <- "model{ 
  # Likelihood model for Y[i] 
 
 
 
 
 
  # Prior models for a, b, c 
  a ~ dnorm(0, 200^(-2)) 
  b[1] <- 0 
  b[2] ~ dnorm(0, 2^(-2)) 
  c ~ dnorm(0, 2^(-2)) 
}" 
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Poisson regression in RJAGS
Y ∼ Pois(l ) 
log(l ) = a+ bX + cZ  

a ∼ N(0, 200 ) 
b ∼ N(0, 2 ) 
c ∼ N(0, 2 )

poisson_model <- "model{ 
  # Likelihood model for Y[i] 
  for(i in 1:length(Y)) { 
   Y[i] ~ dpois(l[i]) 
 
  } 
 
  # Prior models for a, b, c 
  a ~ dnorm(0, 200^(-2)) 
  b[1] <- 0 
  b[2] ~ dnorm(0, 2^(-2)) 
  c ~ dnorm(0, 2^(-2)) 
}" 
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Poisson regression in RJAGS
Y ∼ Pois(l ) 
log(l ) = a+ bX + cZ  

a ∼ N(0, 200 ) 
b ∼ N(0, 2 ) 
c ∼ N(0, 2 )

poisson_model <- "model{ 
  # Likelihood model for Y[i] 
  for(i in 1:length(Y)) { 
   Y[i] ~ dpois(l[i]) 
   log(l[i]) <- a + b[X[i]] + c*Z[i] 
  } 
 
  # Prior models for a, b, c 
  a ~ dnorm(0, 200^(-2)) 
  b[1] <- 0 
  b[2] ~ dnorm(0, 2^(-2)) 
  c ~ dnorm(0, 2^(-2)) 
}" 
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Caveats
Y ∼ Pois(l )

Assumption: Among days with similar temperatures and

weekday status, variance in Y  is equal to the mean of Y .

Our data demonstrate potential overdispersion - the variance

is larger than the mean.

Though not perfect, this model is an OK place to start.

i

i i
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Bayesian modeling with RJAGS
De�ne, compile, & simulate intractable Bayesian models.

Explore the Markov chain mechanics behind RJAGS

simulation.
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The power of Bayesian modeling
Combine insights from your data and priors to inform

posterior insights.
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The power of Bayesian modeling
Combine insights from your data and priors to inform

posterior insights.

Conduct intuitive posterior inference: posterior credible

intervals & probabilities.
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Foundational, flexible, & generalizable Bayesian
models
my_model <- "model{ 
  # Likelihood model 
  for(i in 1:length(Y)) { 
    Y[i] ~ dnorm(m, s^(-2)) 
  } 
 
  # Prior models 
  m ~ dnorm(...) 
  s ~ dunif(...) 
}" 
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Foundational, flexible, & generalizable Bayesian
models
my_model <- "model{ 
  # Likelihood model 
  for(i in 1:length(Y)) { 
    Y[i] ~ dnorm(m[i], s^(-2)) 
    m[i] <- a + b * X[i] 
  } 
 
  # Prior models 
  a ~ dnorm(...) 
  b ~ dnorm(...) 
  s ~ dunif(...) 
}" 
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Foundational, flexible, & generalizable Bayesian
models
my_model <- "model{ 
  # Likelihood model 
  for(i in 1:length(Y)) { 
    Y[i] ~ dnorm(m[i], s^(-2)) 
    m[i] <- a + b[X[i]] 
  } 
 
  # Prior models 
  a ~ dnorm(...) 
  b[1] <- 0 
  b[2] ~ dnorm(...) 
  s ~ dunif(...) 
}" 



BAYESIAN MODELING WITH RJAGS

Foundational, flexible, & generalizable Bayesian
models
my_model <- "model{ 
  # Likelihood model 
  for(i in 1:length(Y)) { 
    Y[i] ~ dnorm(m[i], s^(-2)) 
    m[i] <- a + b[X[i]] + c * Z[i] 
  } 
  # Prior models 
  a ~ dnorm(...) 
  b[1] <- 0 
  b[2] ~ dnorm(...) 
  c ~ dnorm(...) 
  s ~ dunif(...) 
}" 
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Foundational, flexible, & generalizable Bayesian
models
my_model <- "model{ 
 # Likelihood model 
 for(i in 1:length(Y)) { 
 Y[i] ~ dpois(l[i]) 
 log(l[i]) <- a + b[X[i]] + c*Z[i] 
 } 
 # Prior models 
 a ~ dnorm(...) 
 b[1] <- 0 
 b[2] ~ dnorm(...) 
 c ~ dnorm(...) 
}" 
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