What's in a Bayesian Model?

BAYESIAN REGRESSION MODELING WITH RSTANARM

Jake Thompson Psychometrician, ATLAS, University of Kansas

datacamp

Posterior distributions

- Posterior distributions sampled in groups called chains
- Each sample in a chain is an iteration

BAYESIAN REGRESSION MODELING WITH RSTANARM

Chain 2

Chain 3

Chain 4

R datacamp

R datacamp

BAYESIAN REGRESSION MODELING WITH RSTANARM

Chain

- Chain 1
- Chain 2 _____
- Chain 3
- Chain 4

Changing the number and length of chains

stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq,</pre>

chains = 3, iter = 1000, warmup = 500)

Model Info:

function:	stan_glm
family:	gaussian [identity]
formula:	kid_score ~ mom_iq
algorithm:	sampling
priors:	<pre>see help('prior_summary')</pre>
sample:	1500 (posterior sample size)
observations:	434
predictors:	2

Estimates:

	mean	sd	2.5%	25%	50%	75%	97.5%
(Intercept)	25.8	6.0	14.1	21.7	25.6	29.9	37.5
mom_iq	0.6	0.1	0.5	0.6	0.6	0.7	0.7
sigma	18.3	0.6	17.2	17.9	18.3	18.7	19.6
mean_PPD	86.9	1.3	84.5	86.0	86.9	87.7	89.2
log-posterior	-1885.4	1.2	-1888.4	-1885.9	-1885.1	-1884.5	-1884.0

Diagnostics:

mcse Rhat n_eff

R datacamp

R datacamp

Chain

- Chain 1
- Chain 2
- Chain 3
- Chain 4

How many iterations?

- Fewer iterations = shorter estimation time
- Not enough iteration = convergence problems

Let's practice!

Prior distributions

BAYESIAN REGRESSION MODELING WITH RSTANARM

Jake Thompson Psychometrician, ATLAS, University of Kansas

What's a prior distribution?

- Information that we bring to the model
- Likelihood + prior = posterior \bullet

BAYESIAN REGRESSION MODELING WITH RSTANARM

R datacamp

Prior distributions in rstanarm

```
stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq)
prior_summary(stan_model)</pre>
```

```
Priors for model 'stan_model'
Intercept (after predictors centered)
 ~ normal(location = 0, scale = 10)
     **adjusted scale = 204.11
Coefficients
 ~ normal(location = 0, scale = 2.5)
     **adjusted scale = 3.40
Auxiliary (sigma)
 ~ exponential(rate = 1)
     **adjusted scale = 20.41 (adjusted rate = 1/adjusted scale)
See help('prior_summary.stanreg') for more details
```


Calculating adjusted scales

- Intercept: 10 * sd(y)
- Coefficients: (2.5 / sd(x)) * sd(y)

prior_summary(stan_model)

```
Priors for model 'stan_model'
Intercept (after predictors centered)
~ normal(location = 0, scale = 10)
     **adjusted scale = 204.11
```

Coefficients

```
~ normal(location = 0, scale = 2.5)
    **adjusted scale = 3.40
```

10 * sd(kidiq\$kid_score) 204.1069 (2.5 / sd(kidiq\$mom_iq)) * sd(kidiq\$kid_score) 3.401781

```
no_scale <- stan_glm(kid_score ~ mom_iq, data = kidiq,
    prior_intercept = normal(autoscale = FALSE),
    prior = normal(autoscale = FALSE),
    prior_aux = exponential(autoscale = FALSE))
prior_summary(no_scale)
```

```
Priors for model 'no_scale'
------
Intercept (after predictors centered)
~ normal(location = 0, scale = 10)
Coefficients
~ normal(location = 0, scale = 2.5)
Auxiliary (sigma)
~ exponential(rate = 1)
-----
See help('prior_summary.stanreg') for more details
```

R datacamp

Let's practice!

User Specified Priors

BAYESIAN REGRESSION MODELING WITH RSTANARM

Jake Thompson Psychometrician, ATLAS, University of Kansas

Why change the default prior?

- Good reason to believe the parameter will take a given value lacksquare
- Constraints on parameter

Specify a prior

```
stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq,</pre>
  prior_intercept = normal(location = 0, scale = 10),
  prior = normal(location = 0, scale = 2.5),
  prior_aux = exponential(rate = 1)
```


Specify a prior

stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq,</pre> prior_intercept = normal(location = 0, scale = 10, autoscale = FALSE), prior = normal(location = 0, scale = 2.5, autoscale = FALSE), prior_aux = exponential(rate = 1, autoscale = FALSE)

Specify a prior

stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq,</pre> prior_intercept = normal(location = 3, scale = 2), prior = cauchy(location = 0, scale = 1))

- Many different priors
 - normal() 0
 - exponential() 0
 - student_t() 0
 - cauchy() 0
- ?priors

Flat priors

stan_model <- stan_glm(kid_score ~ mom_iq, data = kidiq, prior_intercept = NULL, prior = NULL, prior_aux = NULL) prior_summary(stan_model)

```
Priors for model 'stan_model'
```

```
Intercept (after predictors centered)
  ~ flat
```

Coefficients

~ flat

```
Auxiliary (sigma)
```

~ flat

See help('prior_summary.stanreg') for more details

Let's practice!

Altering the estimation process

BAYESIAN REGRESSION MODELING WITH RSTANARM

Jake Thompson Psychometrician, ATLAS, University of Kansas

R datacamp

Divergent transitions

1: There were 15 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help.

- Too big of steps in the estimator
- Adjust step size

stan_model <- stan_glm(popularity ~ song_age, data = songs,</pre> control = list(adapt_delta = 0.95))

stan_model <- stan_glm(popularity ~ song_age, data = songs,</pre> control = list(adapt_delta = 0.99))

Exceeding the Maximum Treedepth

Chain 1 reached the maximum tree depth

- Sample evaluates branches and looks for a good place to "U-Turn"
- Max tree depth indicates poor efficiency

stan_model <- stan_glm(popularity ~ song_age, data = songs,</pre> control = list(max_treedepth = 10))

stan_model <- stan_glm(popularity ~ song_age, data = songs,</pre> control = list(max_treedepth = 15))

Tuning the estimation

- Estimation errors are threats to the validity of the model ullet
- Although complicated, these errors can be addressed easily \bullet

Let's practice!

