Comparing more than two observations

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

The closest observation to a pair

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

- Is 2 is closest to group 1,4?
- Is 3 is closest to group 1,4?

Linkage criteria: complete

	1	2	3
2	11.7		
3	16.8	18.0	
4	10.0	20.6	15.8

- Is 2 is closest to group 1,4?
 max(D(2,1), D(2,4)) = 20.6
- Is 3 is closest to group 1,4?
 max(D(3,1), D(3,4)) = 16.8

Hierarchical clustering

Complete Linkage: maximum distance between two sets

R datacamp

R datacamp

R datacamp

Linkage criteria

Complete Linkage: maximum distance between two sets

Single Linkage: minimum distance between two sets

Average Linkage: average distance between two sets

Let's practice!

Capturing K clusters CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan **Kettering Cancer Center**

Hierarchical clustering in R

print(players)

— X	y y
<dbl></dbl>	<dbl></dbl>
-1	1
-2	-3
8	6
7	-8
-12	8
-15	0
	x <dbl> -1 -2 8 7 -12 -15</dbl>

dist_players <- dist(players, method = 'euclidean')
hc_players <- hclust(dist_players, method = 'complete')</pre>

R datacamp

Extracting K clusters

cluster_assignments <- cutree(hc_players, k = 2)
print(cluster_assignments)</pre>

[1] 1 1 1 1 2 2

library(dplyr)
players_clustered <- mutate(players, cluster = cluster_assignments)
print(players_clustered)</pre>

	Х	у	cluster
	<dbl></dbl>	<dbl></dbl>	<int></int>
1	-1	1	1
2	-2	-3	1
3	8	6	1
4	7	-8	1
5	-12	8	2
6	-15	0	2

R datacamp

Visualizing K Clusters

R datacamp

Let's practice!

Visualizing the dendrogram

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

R datacamp

Cluster Dendrogram

hclust (*, "complete")

R datacamp

Cluster Dendrogram

hclust (*, "complete")

R datacamp

hclust (*, "complete")

R datacamp

hclust (*, "complete")

R datacamp

Cluster Dendrogram

hclust (*, "complete")

datacamp

hclust (*, "complete")

R datacamp

Cluster Dendrogram

hclust (*, "complete")

latacamp

Cluster Dendrogram

hclust (*, "complete")

datacamp

Plotting the dendrogram

plot(hc_players)

hclust (*, "complete")

R datacamp

Let's practice!

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

Cluster Dendrogram

hclust (*, "complete")

R datacamp

Cluster Dendrogram

hclust (*, "complete")

R datacamp

Cluster Dendrogram

hclust (*, "complete")

R datacamp

Coloring the dendrogram - height

library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 15)
plot(dend_colored)</pre>

Coloring the dendrogram - height

library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 15)
plot(dend_colored)</pre>

& datacamp

Coloring the dendrogram - height

library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, h = 10)
plot(dend_colored)</pre>

Coloring the dendrogram - K

library(dendextend)
dend_players <- as.dendrogram(hc_players)
dend_colored <- color_branches(dend_players, k = 2)
plot(dend_colored)</pre>

& datacamp

cutree() using height

```
cluster_assignments <- cutree(hc_players, h = 15)
print(cluster_assignments)
[1] 1 1 1 1 2 2
library(dplyr)
players_clustered <- mutate(players, cluster = cluster_assignments)</pre>
```

print(players_clustered)

	Х	У	cluster
	<dbl></dbl>	<dbl></dbl>	<int></int>
1	-1	1	1
2	-2	-3	1
3	8	6	1
4	7	-8	1
5	-12	8	2
6	-15	0	2

R datacamp

Let's practice!

Making sense of the clusters

CLUSTER ANALYSIS IN R

Dmitriy Gorenshteyn

Lead Data Scientist, Memorial Sloan **Kettering Cancer Center**

Wholesale dataset

- 45 observations
- 3 features:
 - Milk Spending
 - Grocery Spending
 - Frozen Food Spending

Wholesale dataset

print(customers_spend)

	Milk	Grocery	Frozen
1	11103	12469	902
2	2013	6550	909
3	1897	5234	417
4	1304	3643	3045
5	3199	6986	1455
•••	•••	• • •	•••

Exploring more than 2 dimensions

- Plot 2 dimensions at a time
- Visualize using PCA
- Summary statistics by feature

Segment the customers

