Introduction to Kmeans

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

kmeans()

print(lineup)

	Χ	У
1	-1	1
2	-2	-3
3	8	6
4	7	-8
• • •	•••	• • •

model <- kmeans(lineup, centers = 2)</pre>

Assigning clusters

print(model\$cluster)

1 1 2 2 1 1 1 2 2 2 1 2

lineup_clustered <- mutate(lineup, cluster = model\$cluster)
print(lineup_clustered)</pre>

	X	У	cluster
	<dbl></dbl>	<dbl></dbl>	<int></int>
1	-1	1	1
2	-2	-3	1
3	8	6	2
4	7	-8	2
•	•••••	• •••	•••

R datacamp

Let's practice!

Evaluating different values of K by eye

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

R datacamp

R datacamp

R datacamp

R datacamp

Generating the elbow plot

model <- kmeans(x = lineup, centers = 2)
model\$tot.withinss</pre>

[1] 1434.5

Generating the elbow plot

library(purrr)

```
tot_withinss <- map_dbl(1:10, function(k){
  model <- kmeans(x = lineup, centers = k)
  model$tot.withinss
})
elbow_df <- data.frame(
  k = 1:10,
  tot_withinss = tot_withinss
)
print(elbow_df)</pre>
```

	k to	t_withinss
1	1	3489.9167
2	2	1434.5000
3	3	881.2500
4	4	637.2500
•••	•••	•••

R datacamp

Generating the elbow plot

```
ggplot(elbow_df, aes(x = k, y = tot_withinss)) +
geom_line() +
scale_x_continuous(breaks = 1:10)
```


R datacamp

Let's practice!

Silhouette analysis: observation level performance

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn

Lead Data Scientist, Memorial Sloan Kettering Cancer Center

Soccer lineup with K = 3

R datacamp

Within Cluster Distance: C(i)

Closest Neighbor Distance: N(i)

R datacamp

Within Cluster Distance: C(i)

Closest Neighbor Distance: N(i)

R datacamp

Within Cluster Distance: C(i)

Closest Neighbor Distance: N(i)

R datacamp

Within Cluster Distance: C(i)

Closest Neighbor Distance: N(i)

R datacamp

Within Cluster Distance: C(i)

Closest Neighbor Distance: N(i)

R datacamp

Silhouette width: S(i)

 $s(i) = \begin{cases} 1 - C(i)/N(i), & \text{if } C(i) < N(i) \\ 0, & \text{if } C(i) = N(i) \\ N(i)/C(i) - 1, & \text{if } C(i) > N(i) \end{cases}$

R datacamp

Silhouette width: S(i)

- 1: Well matched to cluster
- **0:** On border between two clusters
- -1: Better fit in neighboring cluster

Calculating S(i)

library(cluster)
pam_k3 <- pam(lineup, k = 3)
pam_k3\$silinfo\$widths</pre>

	cluster	neighbor	sil_width
4	1	2	0.465320054
2	1	3	0.321729341
10	1	2	0.311385893
1	1	3	0.271890169
9	2	1	0.443606497
• • •		• • • •	• • •

Silhouette plot

sil_plot <- silhouette(pam_k3) plot(sil_plot)</pre>

Average silhouette width: 0.35

R datacamp

Silhouette plot

sil_plot <- silhouette(pam_k3) plot(sil_plot)</pre>

R datacamp

Average silhouette width

pam_k3\$silinfo\$avg.width

[1] 0.353414

- 1: Well matched to each cluster
- **0:** On border between clusters
- -1: Poorly matched to each cluster

Highest average silhouette width

library(purrr)

```
sil_width <- map_dbl(2:10, function(k){
   model <- pam(x = lineup, k = k)
   model$silinfo$avg.width
})
sil_df <- data.frame(
   k = 2:10,
   sil_width = sil_width
)
print(sil_df)</pre>
```

	k	sil_width
1	2	0.4164141
2	3	0.3534140
3	4	0.3535534
4	5	0.3724115
•••	• • •	•••

R datacamp

Choosing K using average silhouette width

```
ggplot(sil_df, aes(x = k, y = sil_width)) +
geom_line() +
scale_x_continuous(breaks = 2:10)
```


R datacamp

Choosing K using average silhouette width

```
ggplot(sil_df, aes(x = k, y = sil_width)) +
geom_line() +
scale_x_continuous(breaks = 2:10)
```


R datacamp

Let's practice!

Making sense of the **K-means clusters**

CLUSTER ANALYSIS IN R

Dmitriy (Dima) Gorenshteyn

Lead Data Scientist, Memorial Sloan **Kettering Cancer Center**

tacamp

Wholesale dataset

- 45 observations
- 3 features:
 - Milk Spending
 - Grocery Spending
 - Frozen Food Spending

print(customers_spend)

	Milk	Grocery	Frozen
1	11103	12469	902
2	2013	6550	909
3	1897	5234	417
4	1304	3643	3045
5	3199	6986	1455
• • •	•••	• • •	• • •

Segmenting with hierarchical clustering

R datacamp

Segmenting with hierarchical clustering

cluster	Milk	Grocery	Frozen	cluster size
1	16950	12891	991	5
2	2512	5228	1795	29
3	10452	22550	1354	5
4	1249	3916	10888	6

Segmenting with K-means

- Estimate the "best" k using average silhouette width
- Run k-means with the suggested k
- Characterize the spending habits of these clusters of customers

Let's cluster!

