
Early warning
systems

DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

Early warning systems
Avoid problems where possible

Handle issues as they arise in a sensible way

As an example, using the shortcuts T / F for TRUE / FALSE

DEFENSIVE R PROGRAMMING

Problem 1: TRUE and FALSE
TRUE and FALSE are special values

We can't override them

TRUE <- 5

Error in TRUE <- 5 : invalid (do_set) left-hand side to assignment

DEFENSIVE R PROGRAMMING

Problem 2: TRUE and FALSE
Suppose we are working out an F-statistic. It would be natural to have

df is the F-density function
(F <- df(1, 9, 67))

[1] 0.7798

But R treats positive numbers as TRUE , so

if(F) message("Yer aff yer heid!")

Yer aff yer heid!

F is now treated as TRUE !

DEFENSIVE R PROGRAMMING

Get in the habit of using TRUE and FALSE
not T and F

If you testing for TRUE , use isTRUE()

isTRUE(T)

[1] TRUE

isTRUE(2)

[1] FALSE

T <- 10
isTRUE(T)

[1] FALSE

Let's have a little
practice

DEFENS IVE R PROGRAMMING

The message()
function

DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

The message() function
Signals to the user the state of a process

This isn't an error - it's just helpful information

For example, suppose you're running cross-validation, then output could be

CV 1 of 10 complete
CV 2 of 10 complete
CV 3 of 10 complete

DEFENSIVE R PROGRAMMING

We can turn it o� with suppressMessages() noisy = function(a, b) {
 message("I'm doing stuff")
 a + b
}
noisy(1, 2)

I'm doing stuff
[1] 3

suppressMessages(noisy(1, 2))

[1] 3

DEFENSIVE R PROGRAMMING

Telling packages to be quiet
Occasionally, packages can be a bit noisy

Sometimes loading ggplot2, it presents a message

Don't worry, we can tell it to be quiet

suppressPackageStartupMessages(library("ggplot2"))

DEFENSIVE R PROGRAMMING

Using message()
The message() function is helpful for le�ing

you

and other users

know what's happening.

It's very handy for long running processes

Let's do some work!
DEFENS IVE R PROGRAMMING

The warning()
function

DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

The warning message
The warning() function

warning("You have been warned!")

Warning message:
You have been warned!

signals that something may have gone wrong

R continues (unlike an error)

"Warning message:" is (pre) appended

DEFENSIVE R PROGRAMMING

Suppress Warnings
Similar to messages, you can suppress warnings via

suppressWarnings()`

This is almost never a good idea

Fix the underlying problem!

DEFENSIVE R PROGRAMMING

When should you use a warning?

DEFENSIVE R PROGRAMMING

A good use of warning
Suppose we're performing regression on

d = data.frame(y = 1:4, x1 = 1:4)
d$x2 = d$x1 + 1

So x2 = x1 + 1

When we �t a multiple linear regression model

m = lm(y ~ x1 + x2, data = d)
summary(m)

Some output removed
Warning message:
In summary.lm(m) : essentially perfect fit: summary may be unreliable

Your turn
DEFENS IVE R PROGRAMMING

Stop (right now)
DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

I saw the sign
Sometimes things are just broken

We need to raise an error

For example:

1 + "stuff"

Error in 1 + "stuff": non-numeric argument to binary operator

DEFENSIVE R PROGRAMMING

Stop right now thank you very much
To raise an error, we use the stop() function

stop("A Euro 1996 error has occurred")

Error: A Euro 1996 error has occurred

conf_int <- function(mean, std_dev) {
 if(std_dev <= 0)
 stop("Standard deviation must be positive")

 c(mean - 1.96 * std_dev, mean - 1.96 * std_dev)
}

DEFENSIVE R PROGRAMMING

Catch em while you can
You can't suppress (or ignore) errors

The de�nition of an error is that R can't continue

Instead, we catch errors

DEFENSIVE R PROGRAMMING

The try() function
The try() function acts a bit like suppress()

res <- try("Scotland" + "World cup", silent = TRUE)

It tries to execute something, if it doesn't work, it moves on

DEFENSIVE R PROGRAMMING

The try() idiom

res <- try("Scotland" + "World cup", silent = TRUE)
res

[1] 'Error in "Scotland" + "World cup": non-numeric argument to binary operator'
attr(,"class")
[1] "try-error"
attr(,"condition")
<simpleError in "Scotland" + "World cup":
 non-numeric argument to binary operator>

DEFENSIVE R PROGRAMMING

The try() idiom

result <- try("Scotland" + "World cup", silent = TRUE)
class(result)

[1] "try-error"

if(class(result) == "try-error")
 ## Do something useful

Let's practice
DEFENS IVE R PROGRAMMING

