
Preparing your
defences

DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

Preparing your defenses
The wise warrior avoids the ba�le.

? Sun Tzu, The Art of War

Avoid problems!

We all make mistakes

Let's minimise the number!

DEFENSIVE R PROGRAMMING

Are you wet or dry
DRY: a standard principle of so�ware development

Do not repeat yourself

WET: write everything twice

We enjoy typing

DEFENSIVE R PROGRAMMING

The copy and paste rule
1. Copying and pasting once is OK

2. Twice is suspect

3. Three times is almost always wrong

DEFENSIVE R PROGRAMMING

Functions and for loops
Whenever you copy & paste

A function

Or a for loop

Let's see this in
action

DEFENS IVE R PROGRAMMING

Just one comment
DEFENS IVE R PROGRAMMING

Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

I don't know about you...
Code that is obvious today

Is o�en a lot less obvious in a few weeks times

DEFENSIVE R PROGRAMMING

Comments
You can add comments to your R code via #

It turns out that writing good comments is tricky!

This is a comment
The above comment isn't very helpful
Or is it?

DEFENSIVE R PROGRAMMING

Tip 1: Avoid obvious comments
What's obvious is sometimes hard to decide

For example, the comments

 # Loop through data sets
 for (dataset in datasets) {
 # Read in data set
 r <- read.csv(dataset)
 }

look reasonable

But are perhaps a li�le too obvious

DEFENSIVE R PROGRAMMING

Tip 2: Avoid comments that you will never update
The most common example is header comments at the top of the �le

Last updated: 1967-02-25
Author: D Law
Status: No 1

These sorts of comments are almost never updated

I once saw # list of packages used: XXX, YYY

DEFENSIVE R PROGRAMMING

Tip 3: Be consistent
Always start with a single # or double ##

Start with a capital le�er - follow the rules of grammar

Be careful with jokes

What you �nd funny, others may take o�ense

Be sure to comment on code that "looks wrong"

Use # TODO or # XXX to indicate a future problem

Let's practice
DEFENS IVE R PROGRAMMING

A little bit dotty
DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

The full stop
In R, the full stop has a very special meaning

It is the mechanism that is used in S3 OOP

When you call the summary() function

R looks for the function summary.class_name

DEFENSIVE R PROGRAMMING

Example: the summary() function
When you call

m <- lm(mpg ~ disp, data = mtcars)

class(m)

#[1] "lm"

DEFENSIVE R PROGRAMMING

Example: the summary() function
So when you call

summary(m)

you end up calling

summary.lm(m)

The key point here, is that the full stop is very important

DEFENSIVE R PROGRAMMING

One bit of advice
There are few R rules that everyone agrees on

But everyone agrees that you should avoid . in variable names

It just prevents confusion

The final stop
DEFENS IVE R PROGRAMMING

Coding Style
DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

Consistency
Everyone agrees that consistency is key

This may mean changing styles when in di�erent teams!

DEFENSIVE R PROGRAMMING

Uncontroversial rules
Assignment wars: = vs ->

x = 5
or
x <- 5

Everyone agrees you shouldn't mix & match

I prefer the superior = for assignment but

DataCamp prefers <- for their courses

So be consistent

DEFENSIVE R PROGRAMMING

Spacing
Consistent spacing makes code far easier to read

Compare

res<-t.test(x,paired=FALSE)

with

res <- t.test(x, paired = FALSE)

DEFENSIVE R PROGRAMMING

Spacing
Two widely accepted rules are

spaces around assignment x <- 5

spaces a�er a comma - x[1, 1] instead of x[1,1]

Let's practice!
DEFENS IVE R PROGRAMMING

Static Code Analysis
for R

DEFENS IVE R PROGRAMMING

Dr. Colin Gillespie

Jumping Rivers

DEFENSIVE R PROGRAMMING

The lintr Package
lintr is an R package o�ering static code analysis for R

It checks adherence to a

given style

syntax errors

possible semantic issues

Similar to how spell checkers work

DEFENSIVE R PROGRAMMING

Using lintr
To use lintr

We store the code in a �le

Pass the code to the lint() function

DEFENSIVE R PROGRAMMING

lintr in Action
Suppose I have the following code

my_bad<-function(x, y) {
 x+y
}

saved in the �le code.R .

Running lint::lintr("code.R") highlights two issues

DEFENSIVE R PROGRAMMING

Issue 1

my_bad<-function(x,y) {
 x+y
}

r[[1]]
tmp.R:1:7: style: Put spaces around all infix operators.
my_bad<-function(x,y) {
 ~^~~

my_bad <- function()

DEFENSIVE R PROGRAMMING

Issue 2

my_bad<-function(x,y) {
 x+y
}

r[[3]]
tmp.R:2:4: style: Put spaces around all infix operators.
 x+y
 ~^~

 x + y

Let's see Lintr in
Action

DEFENS IVE R PROGRAMMING

