A battle plan DEFENSIVE R PROGRAMMING

Dr. Colin Gillespie Jumping Rivers

R datacamp

Starting small

Great results, can be achieved with small forces.

Sun Tzu, The Art of War

What's in a (file)name?

- All R scripts are stored in files
 - So filenames are important 0
 - Consistency in filenames is very 0 important
 - What sort of rules could we have?

Multiple words

Filenames often contain multiple words

For example

- cluster-analysis.R
- load-survival-data.R
- plot-residuals.R

Spaces, dashes or underscores?

Simple question. How should words be separated?

- Space: analysis clustering.R
- Underscores: analysis_clustering.R \bullet
- Dashes: analysis-clustering.R ${}^{\bullet}$

Take a second and answer these two questions

- Which do you use? \bullet
- What **should** you use?

Spaces in filenames

- Don't use them
- Really, just don't

Spaces in filenames and directories are a bad idea

- If you put the file on the web file name.R becomes file%20name.R
- On the command line harder filenames with spaces need to be surrounded by quotes
- Regular expressions are also more painful
- Spotting the difference between
 - file name.R one space 0
 - file name.R two spaces is hard 0

Dashes or underscores

There are a few **minor** problems with underscores

- Google treats file_name as a single word
 - So searching for just file won't work
- The regular expression character \w treats _ as a character

The same problems don't apply to dashes

Confession time:

- I usually use underscores
- but I'm trying to change

Let's have some practice

Human Readable Filenames

DEFENSIVE R PROGRAMMING

Dr. Colin Gillespie Jumping Rivers

The humble slug

URL slugs are the end part of a web address

Which URL do you prefer?

www.datacamp.com/courses/course1963.htm

We can learn from slugs

- Use sensible names
 - ac.R or analysis-clustering.R
 - 1.R or loading.R 0
 - Be consistent
 - Use the same file extension .R
 - Always lower case

Dates - what do we want?

- Unambiguous
 - So not
 - 01/02/032
 - Sortable in a file system

Dates - ISO8601

Dates should be

YYYY-MM-DD

- All dates are now in an obvious and natural order
- Sorting just works!

2017-01-02 2018-01-01 2018-01-02

Numbers are good

For this course, I created directories called

- chapter01
- chapter02

Simple, yet effective

Let's practice!

Organizing a project DEFENSIVE R PROGRAMMING

Dr. Colin Gillespie Jumping Rivers

R datacamp

It starts with something small

All R analyses start with a little code, but then

- 1 line becomes 10
- 1 imported package becomes 5
- 1 file becomes a mess

Project Set-up

Every project I work on

- Has its own directory
- Has a sensible name

The directory name gives the **context** of the scripts

Directory: input/

This directory contains data, typically

- csv & excel files
- No R code

Data is only edited in R

survival/

Directory: R/

All R code lives in this directory

Notice The directory isn't

- R_analysis
- R_code
- R_survival

just plain **R/**

survival/

Directory: R/

In this directory, I always have a file called

load.R

This file loads the data from input/

Every project I've worked has a similar structure

can give you any project and you can load the data

The load.R file

All paths are relative

battles <- read_csv("input/battles.csv")</pre> foes <- read_xlsx("input/foes.xlsx")</pre>

My code is portable

survival/

R/

load.R

Other R files

Remember, all R files live in the R directory!

- clean.R for cleaning your data
- function.R any helper functions
- analysis.R the actual analysis ${}^{\bullet}$

Standard names used in every project

Your turn defensive r programming

Graphics and Output DEFENSIVE R PROGRAMMING

Dr. Colin Gillespie Jumping Rivers

So far we have encountered

• the base project directory

So far we have encountered

- the base project directory
- input/ for data files

So far we have encountered

- the base project directory
- input/ for data files
- R/ for R scripts

So far we have encountered

- the base project directory
- R/ for R scripts
- input/ for data sets

In this last video, we'll look at

output/ for output generated data files

So far we have encountered

- the base project directory
- R/ for R scripts
- input/ for data sets

In this last video, we'll look at

- output/ for output generated data files
- graphics/ for generated plots

The difference

The scripts in

• the R/ directory

create the contents of

output/ & graphics/

So in theory, we can delete output/ & graphics/ and not cry

The graphics/ directory

This directory just contains

• graphics!

In my R/ directory I have imaginatively named script

graphics.R

that generates all graphics

Make sure to use *relative* paths!

The output/ directory

This directory contains **output**

For example

- List of significant variables, perhaps p-value \bullet
- Data for the next analysis

Personally, I typically don't use this directory

Let's try it DEFENSIVE R PROGRAMMING

