Feature selection vs. feature extraction

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Approaches to dimensionality reduction

- Feature selection like pulling weeds
- Feature extraction like making a salad

¹ Image Source: Daderot, CCO, via Wikimedia Commons

& datacamp

Feature selection

Original features	F1	F2	F3	F4	

F5

F6

Feature selection

Feature selection

V datacamp

Example credit data

credit_df %>% head(n=5)

	annual_income	num_bank_accounts	num_credit_card	outstanding_debt	cre
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
1	87630.	2	5	526.	
2	16574.	2	5	NA	
3	24931.	2	5	NA	
4	136680.	2	5	NA	
5	76850.	2	5	1112.	

edit_history_months <dbl> 286 122 351 216 272

Create an zero-variance filter

```
na_filter <- credit_df %>%
  summarize(across(everything(), ~ var(., na.rm = TRUE))) %>%
  pivot_longer(everything(), names_to = "feature", values_to = "variance") %>%
  filter(variance == 0) %>%
  pull(feature)
na_filter
```

"num_bank_accounts" "num_credit_card"

Create missing values filter

```
na_filter <- credit_df %>%
  summarize(across(everything(), ~ sum(is.na(.)))) %>%
  pivot_longer(everything(), names_to = "feature", values_to = "num_missing_values") %>%
  filter(num_missing_values > 0) %>%
  pull(feature)
na_filter
```

"outstanding_debt"

Applying the combined filter

```
combined_filter <-</pre>
```

```
c(low_var_filter, na_filter)
```

```
credit_df %>%
  select(-all_of(combined_filter)) %>%
  head(3)
```

	annual_income	credit_history_months
	<dbl></dbl>	<dbl></dbl>
1	87630.	286
2	16574.	122
3	24931.	351

Feature extraction

Original features (6 dimensions)

F1	F2	F3	F4	

F5

Feature extraction

Original features (6 dimensions)

Feature extraction and mutual information

Feature extraction: Combining mutual exclusive info

Original features (6 dimensions)

Selected features (4 dimensions)

Feature extraction: Combining mutual exclusive info

Original features (6 dimensions)

F1 F3 F2 F4 F3 F4

Selected features (4 dimensions)

Advantages and disadvantages of feature extraction

Advantages

can combine information into new features

Disadvantages

- implementation is more complicated
- new features are difficult to interpret

Let's practice! DIMENSIONALITY REDUCTION IN R

Selecting based on missing values

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Calculate missing values ratio

 $Missing Value Ratio = \frac{\# of missing values}{\# of observations}$

n <- nrow(credit_df)</pre>

```
missing_vals_df <- credit_df %>%
  summarize(across(everything(), ~ sum(is.na(.)))) %>%
  pivot_longer(everything(), names_to = "feature", values_to = "num_missing_values") %>%
 mutate(missing_val_ratio = num_missing_values / n)
```


Missing values ratio output

missing_vals_df

A tibble: 5×3

	feature	num_missing_values	<pre>missing_val_rati</pre>	0
	<chr></chr>	<int></int>	<dbl< td=""><td>></td></dbl<>	>
1	credit_score	0	Θ	
2	annual_income	0	Θ	
3	age	84	0.61	3
4	outstanding_debt	129	0.94	2
5	num_of_loan	0	0	

Rules of thumb for missing value ratio threshold

- No objective cutoffs
- Depends on feature importance
 - Example: outstanding_debt vs. age 0

Threshold	Rule of Thumb
< 0.20	Кеер
0.2 to 0.8	Keep if feature is important
> 0.8	Discard

Create the missing values filter

missing_vals_filter <- missing_vals_df %>% filter(missing_val_ratio <= 0.5) %>% pull(feature)

missing_vals_filter

[1] "credit_score" "annual_income" "num_of_loan"

Apply missing values filter

filtered_credit_df <- credit_df %>% select(missing_vals_filter)

filtered_credit_df %>% head(3)

π Λ LINNLU. J \wedge J	#	A 1	tib	ble	: 5	×	3
--------------------------------------	---	-----	-----	-----	-----	---	---

credit_score annual_income num_of_loan

	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	Standard	87630.	4
2	Standard	16574.	7
3	Standard	24931.	2

The tidymodel approach **Create the recipe**

```
missing_vals_recipe <-</pre>
  recipe(credit_score ~ ., data = credit_df) %>%
  step_filter_missing(all_predictors(), threshold = 0.5) %>%
  prep()
```

Apply the recipe

```
filtered_credit_df <-</pre>
  bake(missing_vals_recipe, new_data = NULL)
```


Baked recipe output

filtered_credit_df %>% head(5)

#	A tibble: 5 ×	3	
	annual_income	num_of_loan	credit_score
	<dbl></dbl>	<dbl></dbl>	<fct></fct>
1	87630.	4	Standard
2	16574.	7	Standard
3	24931.	2	Standard
4	136680.	1	Good
5	76850.	3	Standard

Let's practice! DIMENSIONALITY REDUCTION IN R

Selecting based on variance

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Variance of unscaled data

R datacamp

Variance of scaled data

R datacamp

Calculate scaled variances

credit_variances <- credit_df %>% summarize(across(everything(), ~ var(scale(., center = FALSE)), na.rm = TRUE)) %>% pivot_longer(everything(), names_to = "feature", values_to = "variance") %>% arrange(desc(variance))

credit_variances

# A tibble: 17 × 2		
feature	variance	
<chr></chr>	<dbl></dbl>	
1 num_of_loan	0.996	
<pre>2 num_of_delayed_payment</pre>	0.986	

tacamp

# /	A tibble: 17 × 2	
	feature	variance
	<chr></chr>	<dbl></dbl>
1	num_of_loan	0.996
2	num_of_delayed_payment	0.986
3	total_emi_per_month	0.984
4	interest_rate	0.983
5	num_bank_accounts	0.975
6	annual_income	0.973
7	amount_invested_monthly	0.909
8	monthly_inhand_salary	0.369
9	delay_from_due_date	0.293
10	outstanding_debt	0.248

11 changed_credit_li

- 12 monthly_balance
- 13 credit_history_mo
- 14 age
- 15 num_credit_inquir
- 16 credit_utilizatio
- 17 num_credit_card

DIME

.mit	0.238
	0.186
onths	0.0980
	0.0783
ies	0.0647
n_ratio	0.0251
	0.00523

tacamp

# A tibble: 17 × 2				
	feature	variance		
	<chr></chr>	<dbl></dbl>		
1	num_of_loan	0.996		
2	num_of_delayed_payment	0.986		
3	total_emi_per_month	0.984		
4	interest_rate	0.983		
5	num_bank_accounts	0.975		
6	annual_income	0.973		
7	amount_invested_monthly	0.909		
8	monthly_inhand_salary	0.369		
9	delay_from_due_date	0.293		
10	outstanding_debt	0.248		

11 changed_credit_li

- 12 monthly_balance
- 13 credit_history_mo
- 14 age
- 15 num_credit_inquir
- 16 credit_utilizatio
- 17 num_credit_card

.mit	0.238
	0.186
onths	0.0980
	0.0783
ies	0.0647
n_ratio	0.0251
	0.00523

R datacamp

# A tibble: 17 × 2				
	feature	variance		
	<chr></chr>	<dbl></dbl>		
1	num_of_loan	0.996		
2	num_of_delayed_payment	0.986		
3	total_emi_per_month	0.984		
4	interest_rate	0.983		
5	num_bank_accounts	0.975		
6	annual_income	0.973		
7	amount_invested_monthly	0.909		
8	monthly_inhand_salary	0.369		
9	delay_from_due_date	0.293		
10	outstanding_debt	0.248		

11	changed_credit_li
12	monthly_balance
13	credit_history_mo
14	age
15	num_credit_inquir
16	credit_utilizatio
17	num_credit_card

mit	0.238
	0.186
nths	0.0980
	0.0783
ies	0.0647
n_ratio	0.0251
	0.00523

R datacamp

# A tibble: 17 × 2				
	feature	variance		
	<chr></chr>	<dbl></dbl>		
1	num_of_loan	0.996		
2	num_of_delayed_payment	0.986		
3	total_emi_per_month	0.984		
4	interest_rate	0.983		
5	num_bank_accounts	0.975		
6	annual_income	0.973		
7	amount_invested_monthly	0.909		
8	monthly_inhand_salary	0.369		
9	delay_from_due_date	0.293		
10	outstanding_debt	0.248		

11	changed_credit_li
12	monthly_balance
13	credit_history_mo
14	age
15	num_credit_inquir
16	credit_utilizatio
17	num_credit_card

.mit	0.238
	0.186
nths	0.0980
	0.0783
ies	0.0647
n_ratio	0.0251
	0.00523

Variance cutoff plot

R datacamp

Create variance filter

low_var_filter <- credit_variances %>% filter(variance < 0.1) %>% pull(feature)

low_var_filter

[1] "credit_history_months" [3] "num_credit_inquiries" [5] "num_credit_card"

"age" "credit_utilization_ratio"

The tidymodel approach

Create the recipe

low_variance_recipe <- recipe(credit_score ~ ., data = credit_df) %>% step_zv(all_predictors()) %>% step_scale(all_numeric_predictors()) %>% step_nzv(all_predictors()) %>% prep()

Apply the recipe

filtered_credit_df <- bake(low_variance_recipe, new_data = NULL)</pre>

Investigating effect of a specific step

```
low_variance_recipe <- recipe(credit_score ~ ., data = credit_df) %>%
 step_zv(all_predictors()) %>%
 step_scale(all_numeric_predictors()) %>%
 step_nzv(all_predictors()) %>%
 prep()
```

tidy(low_variance_recipe, number = 3)

	terms	id
	<chr></chr>	<chr></chr>
1	num_credit_card	nzv_ni8L7
2	num_credit_inquiries	nzv_ni8L7

Let's practice! DIMENSIONALITY REDUCTION IN R

Selecting based on correlation with other features

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Review correlation plot creation

```
healthcare_df %>%
 select(where(is.numeric)) %>%
 correlate() %>%
 shave() %>%
 rplot(print_cor = TRUE) +
 theme(axis.text.x = element_text(angle = 90, hjust = 1))
```

Correlation plot

datacamp

Correlation strength

datacamp

< 0.3	Low
0.3 to 0.7	Medium
> 0.7	High

	Age	TotalWorkingYears	MonthlyIncome	PercentSalaryHike	PerformanceRating	YearsInCurrentRole	YearsAtCompany
YearsSinceLastPromotion	.22	.39	.34		.04	.55	.62
YearsAtCompany	.32	.62	.51			.76	
YearsInCurrentRole	.22	.46	.36	.01	.05		
PerformanceRating	.01	.01	01	.77			
PercentSalaryHike	.01	01					
MonthlyIncome	.51	.77					
TotalWorkingYears	.69						

V datacamp

A correlation filter recipe

```
# create and prep the recipe
corr_recipe <-
  recipe(Attrition ~ ., data = healthcare_df) %>%
  step_corr(all_numeric_predictors(), threshold = 0.7) %>%
  prep()
```

```
# Apply the recipe to the data
filtered_healthcare_df <-</pre>
  corr_recipe %>%
  bake(new_data = NULL)
```

Identify the features that were removed tidy(corr_recipe, number = 1)

Let's practice! DIMENSIONALITY REDUCTION IN R

