Supervised feature selection

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Feature Selection

- Drop missing-value features
- Drop low-variance features
- Drop correlated features

Supervised feature selection explained

entropy = 0.764

entropy = 0.863

DIMENSIONALITY REDUCTION IN R

entropy = 0.989

→ Recursive feature elimination

Recursive feature elimination

Recursive feature elimination

Let's practice! DIMENSIONALITY REDUCTION IN R

Model Building and Evaluation with tidymodels

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Model fitting with tidymodels

Workflow

Model fitting with tidymodels

Model fitting with tidymodels

linear_reg()
logistic_reg()
decision_tree()
random_forest()

Splitting out train and test sets

split <- initial_split(credit_df, prop = 0.8, strata = credit_score)</pre>

train <- split %>% training()

test <- split %>% testing()

Creating a recipe and a model

```
feature_selection_recipe <-</pre>
  recipe(credit_score ~ ., data = train) %>%
  step_filter_missing(all_predictors(), threshold = 0.5) %>%
  step_scale(all_numeric_predictors()) %>%
  step_nzv(all_predictors()) %>%
  prep()
```

```
lr_model <- logistic_reg() %>%
 set_engine("glm")
```


Create and fit the workflow

```
credit_wflow <- workflow() %>%
 add_recipe(feature_selection_recipe) %>%
 add_model(lr_model)
```

credit_fit <-</pre> credit_wflow %>% fit(data = train)

Evaluate the model

Predict test data credit_pred_df <- predict(credit_fit, test) %>% bind_cols(test %>% select(credit_score))

Evaluate F score f_meas(credit_pred_df, credit_score, .pred_class)

A tibble: 1×3 .metric .estimator .estimate <chr> <chr> <dbl> 0.519 1 f_meas macro

Explore the recipe with tidy()

tidy(feature_selection_recipe, number = 1)

#	A tibble: 2×2	
	terms	id
	<chr></chr>	<chr></chr>
1	age	filter_missing_gVVfc
2	outstanding_debt	filter_missing_gVVfc

Explore the model with tidy()

Display model estimates tidy(credit_fit)

# A tibble: 44 × 5							
term	estimate	std.error	statistic	p.\			
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<			
1 (Intercept)	2.88	0.918	3.13	0.0			
2 monthAugust	-0.449	0.236	-1.91	0.0			
3 monthFebruary	17.7	677.	0.0262	0.9			
4 monthJanuary	17.7	661.	0.0268	0.9			
• • •	• • •	• • •	• • •	• • •			

latacamp

- 00173 0565 979 979
- <dbl>
- value

Let's practice! DIMENSIONALITY REDUCTION IN R

Lasso Regression DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Lasso regression overview

- Supervised feature selection
- L1 regularization
- Penalizes the regression coefficients
- Shrinks coefficients
- Less important coefficients shrink to zero
- Naturally performs feature selection \bullet

linear_reg(engine = "glmnet", penalty = 0.001 , mixture = 1)

Standardize data

- Standardize data first, so penalty applies equally across features
- Use scale() for target variable
 - returns matrix, so convert to vector with as.vector() 0
- Use step_normalize() for predictor variables

Example

```
# Scale target variable
df <- df %>% mutate(target = as.vector(scale(target)))
. . .
# Scale predictor variables
recipe() %>% step_normalize(all_numeric_predictors())
```


Choosing a penalty value

- Penalty is a hyperparameter to optimize
- Search for the best penalty value
- Use tune() in tidymodels

linear_reg(engine = "glmnet", penalty = tune() , mixture = 1)

Preparing the data

Scale the target variable

house_sales_subset_df <- house_sales_subset_df %>% mutate(price = as.vector(scale(price)))

Create the training and testing sets

split <- initial_split(house_sales_subset_df, prop = 0.8)</pre>

- train <- split %>% training()
- test <- split %>% testing()

Create a recipe

Create a recipe

```
lasso_recipe <-</pre>
  recipe(price ~ ., data = train) %>%
  step_normalize(all_numeric_predictors())
```


Create the workflow

Create the model spec

lasso_model <- linear_reg(penalty = 0.01, mixture = 1, engine = "glmnet")</pre>

Create the workflow

lasso_workflow <- workflow(preprocessor = lasso_recipe, spec = lasso_model)</pre>

Fit the workflow

tidy(lasso_workflow %>% fit(train)) %>% filter(estimate > 0)

A tibble: 9×3

	term	estimate	penalty
	<chr></chr>	<dbl></dbl>	<dbl></dbl>
1	bathrooms	0.0477	0.01
2	sqft_living	0.434	0.01
3	floors	0.0262	0.01
4	waterfront	0.133	0.01
5	view	0.0510	0.01
6	condition	0.0319	0.01
•	• •	• • •	• • •

Create a tunable model workflow

Create a tunable model spec

lasso_model <- linear_reg(penalty = tune(), mixture = 1, engine = "glmnet") lasso_workflow <- workflow(preprocessor = lasso_recipe, spec = lasso_model)

Create cross validation training sample

train_cv <- vfold_cv(train, v = 5)</pre>

Create grid of penalty values

penalty_grid <- grid_regular(penalty(range = c(-3, -1)), levels = 20)

• A penalty range of 0.001 to 0.1 is specified as range = c(-3, -1)

Fit a grid of models

Create grid of fitted models

- lasso_grid <- tune_grid(</pre>
 - lasso_workflow,
 - resamples = train_cv,
 - grid = penalty_grid)

Plot model performances

```
autoplot(lasso_grid, metric = "rmse")
```


Penalty performance plot

R datacamp

Finalize the model

Retrieve the penalty value for the best model

best_rmse <- lasso_grid %>% select_best("rmse")

Refit the best model

final_lasso <-</pre> finalize_workflow(lasso_workflow, best_rmse) %>% fit(train)

Display the best model's coefficients

tidy(final_lasso) %>% filter(estimate > 0)

Let's practice! DIMENSIONALITY REDUCTION IN R

Random forest models

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Random Forest

- An ensemble model
 - a "wisdom of the crowds" approach 0
- Aggregates predictions of many random trees
- Random uncorrelated trees mitigate error
- Avoids overfitting
- Accurate
- Performs feature selection

Random Forest

atacamp

Train a Random Forest

```
library(tidymodels)
```

```
rf <- rand_forest(mode = "classification", trees = 200) %>%
 set_engine("ranger", importance = "impurity")
```

```
rf_fit <- rf %>%
 fit(credit_score ~ ., data = train)
```

```
predict_df <- test %>%
 bind_cols(predict = predict(rf_fit, test))
```


Evaluate the Model

f_meas(predict_df, credit_score, .pred_class)

0.6895

Variable Importance

library(vip)
rf_fit %>% vip()

Feature Mask

top_features <- rf_fit %>%
 vi(rank = TRUE) %>%
 filter(Importance <= 10) %>%
 pull(Variable)
top_features

- [1] "outstanding_debt"
- [3] "delay_from_due_date"
- [5] "credit_history_months"
- [7] "monthly_balance"
- [9] "annual_income"

"interest_rate"
"changed_credit_limit"
"num_credit_card"
"num_of_delayed_payment"
"amount_invested_monthly"

R datacamp

Reduce the data

train_reduced <- train[top_features]</pre> test_reduced <- test[top_features]</pre>

Performance

rf_fit <- rf %>% fit(credit_score ~ ., data = train_reduced) predict_reduced_df <- test_reduced %>% bind_cols(predict = predict(rf_fit, test_reduced)) f_meas(predict_reduced_df, credit_score, .pred_class)

0.6738

F-score of the unreduced model:

0.6895

Let's practice! DIMENSIONALITY REDUCTION IN R

