Foundations of feature extraction principal components

Matt Pickard Owner, Pickard Predictives, LLC

R datacamp

Feature extraction review

Feature extraction review

¹ Image Source: Daderot, CCO, via Wikimedia Commons

& datacamp

Salad recipe

- 1 head of lettuce
- 3 carrots
- 2 tomatoes
- 1 cucumber

Do not use the whole plant, just the best parts

R datacamp

Principal component 1

R datacamp

PC1: feature vectors

R datacamp

PC1: name

R datacamp

Principal component 2

R datacamp

PC2: feature vectors

R datacamp

datacamp

Yes ٠

Code for a PCA plot

```
library(ggfortify)
pca_res <- prcomp(attrition_df %>% select(-Attrition), scale. = TRUE)
autoplot(pca_res,
```

```
data = attrition_df,
colour = "Attrition",
alpha = 0.7,
loadings = TRUE,
loadings.label = TRUE,
loadings.colour = "black",
loadings.label.colour = "black",
loadings.label.repel = TRUE)
```


Let's practice! DIMENSIONALITY REDUCTION IN R

Principal **Component Analysis** (PCA)

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

Performing a PCA

pca_res <- prcomp(attrition_df %>% select(-Attrition), scale. = TRUE) summary(pca_res)

Importance of components:						
		PC1	PC2	PC3	PC4	
Standard dev:	iation	1.4259	1.3295	0.8618	0.48401	0.4
Proportion o	f Variance	0.4067	0.3535	0.1485	0.04685	0.0
Cumulative P	roportion	0.4067	0.7602	0.9087	0.95556	1.(

pca_res

Standard deviations (1, ..., p=5): [1] 1.43 1.33 0.86 0.48 0.47

Rotation $(n \times k) = (5 \times 5)$:

	PC1	PC2	PC3	PC4	PC5
MonthlyIncome	0.6244	-0.024	0.3665	-0.280	-0.630
TotalWorkingYears	0.6390	-0.011	0.2674	0.293	0.659
YearsSinceLastPromotion	0.4488	0.018	-0.8902	-0.061	-0.047
PercentSalaryHike	-0.0018	0.707	0.0426	-0.647	0.284
PerformanceRating	0.0210	0.707	-0.0033	0.643	-0.294

latacamp

	PC1	PC2
MonthlyIncome	0.6244	-0.024
TotalWorkingYears	0.6390	-0.011
YearsSinceLastPromotion	0.4488	0.018
PercentSalaryHike	-0.0018	0.707
PerformanceRating	0.0210	0.707

4 datacamp

DIMENSIONALITY REDUCTION IN R

88 0.018 18 0.707 10 0.707

PC2

	Ρ
MonthlyIncome	0.62
TotalWorkingYears	0.63
YearsSinceLastPromotion	0.44
PercentSalaryHike	-0.00
PerformanceRating	0.02

DIMENSIONALITY REDUCTION IN R

PC2 C1 -0.02444 -0.01190 88 0.018 18 0.707 0.707 10

	P
MonthlyIncome	0.62
TotalWorkingYears	0.63
YearsSinceLastPromotion	0.44
PercentSalaryHike	-0.00
PerformanceRating	0.02

PC2 C1 -0.02444 -0.01190 88 0.018 18 0.707 0.707 10

PCA with tidymodels

pca_recipe <- recipe(Attrition ~ . , data = train) %>% step_normalize(all_numeric_predictors()) %>% step_pca(all_numeric_predictors(), num_comp = 2)

attrition_fit <- workflow(preprocessor = pca_recipe, spec = logistic_reg()) %>% fit(train)

attrition_pred_df <- predict(attrition_fit, test) %>% bind_cols(test %>% select(Attrition))

f_meas(attrition_pred_df, Attrition, .pred_class)

See the PCs in the model details

attrition_fit

Call:	stats::glr	n(formula =	y ~ ., family	= stats::binomial,
Coeffic	cients:			
(Interc	cept)	PC1	PC2	
-2.4	ú2067	0.80493	-0.03429	
Degrees	s of Freedo	om: 1339 Tot	al (i.e. Null);	1337 Residual
Null De	eviance:	951.8		
Residua	al Deviance	e: 870.6	AIC: 876.6	

data = data)

Let's practice! DIMENSIONALITY REDUCTION IN R

t-Distributed Stochastic Neighborhood Embedding (t-SNE)

Matt Pickard Owner, Pickard Predictives, LLC

R datacamp

PCA	t-SN
Linear	Non-linear

PCA	t-Sľ
Linear	Non-linear
Deterministic	Non-determinist

tic (random)

PCA	t-Sľ
Linear	Non-linear
Deterministic	Non-determinist
Does not handle outliers well	Handles outliers

tic (random)

well

PCA	t-Sľ
Linear	Non-linear
Deterministic	Non-determinist
Does not handle outliers well	Handles outliers
Computationally cheap	Computationally

tic (random)

well

expensive

PCA	t-SI
Linear	Non-linear
Deterministic	Non-determinist
Does not handle outliers well	Handles outliers
Computationally cheap	Computationally
No hyperparameters	Hyperparameter

tic (random)

well

expensive

°S

Plotting PCA and t-SNE PCA

t-SNE

Preserves global structure

tacamp

Preserves local structure (keeps neighbors next to each other)

Attrition No Yes 20 40

t-SNE hyperparameters

- **Perplexity** determines the number of \bullet nearest neighbors considered
- **Learning rate** rate the weights of the neural network are adjusted
- **Iterations** number of backpropogation iterations

t-SNE in R

library(Rtsne)

```
set.seed(1234)
tsne <- Rtsne(attrition_df %>% select(-Attrition))
tsne_df <- attrition_df %>%
  bind_cols(tsne_x = tsne$Y[,1], tsne_y = tsne$Y[,2])
tsne_df %>%
```

```
ggplot(aes(x = tsne_x, y = tsne_y, color = Attrition)) +
geom_point(alpha = 0.5)
```


t-SNE plot

R datacamp

DIMENSIONALITY REDUCTION IN R

Attrition

• No

• Yes

Let's practice! DIMENSIONALITY REDUCTION IN R

Uniform Manifold Approximation and Projection (UMAP)

DIMENSIONALITY REDUCTION IN R

Matt Pickard Owner, Pickard Predictives, LLC

PCA	t-SNE	
Linear	Non-linear	Non-linear

UMAP

PCA	t-SNE	
Linear	Non-linear	Non-linear
Deterministic	Non-deterministic	Non-deter

UMAP

ministic

PCA	t-SNE	
Linear	Non-linear	Non-linear
Deterministic	Non-deterministic	Non-deter
Computationally cheap	Computationally expensive	Computati

UMAP

ministic

ionally efficient

PCA	t-SNE	
Linear	Non-linear	Non-linear
Deterministic	Non-deterministic	Non-deter
Computationally cheap	Computationally expensive	Computati
Preserves global structure	Preserves local structure	Preserves structure

UMAP

ministic ionally efficient local and global

PCA	t-SNE	
Linear	Non-linear	Non-linear
Deterministic	Non-deterministic	Non-deter
Computationally cheap	Computationally expensive	Computati
Preserves global structure	Preserves local structure	Preserves structure
No hyperparameters	Hyperparameters	Hyperpara

UMAP has similar hyperparameters that can be tuned.

UMAP

ministic

ionally efficient

local and global

meters

UMAP plot

library(embed)

```
set.seed(1234)
umap_df <- recipe(Attrition ~ ., data = attrition_df) %>%
step_normalize(all_predictors()) %>%
step_umap(all_predictors(), num_comp = 2) %>%
prep() %>%
juice()
```

```
umap_df %>%
ggplot(aes(x = UMAP1, y = UMAP2, color = Attrition)) +
geom_point(alpha = 0.7)
```

R datacamp

UMAP: employee attrition

Attrition

- No
- Yes

UMAP in tidymodels

Create recipe

umap_recipe <- recipe(Attrition ~ ., data = train) %>% step_normalize(all_predictors()) %>% step_umap(all_predictors(), num_comp = 4)

Create model spec

umap_lr_model <- linear_reg()</pre>

UMAP in tidymodels

Create workflow

umap_lr_workflow <- workflow() %>% add_recipe(umap_recipe) %>% add_model(umap_lr_model)

Fit the workflow

umap_lr_fit <- umap_lr_workflow %>% fit(data = train)

UMAP in tidymodels

Evaluate the model

predict_umap_df <- test %>% bind_cols(predict = predict(umap_lr_fit, test))

rmse(predict_umap_df, Attrition, .pred_class)

Let's practice! DIMENSIONALITY REDUCTION IN R

Wrap up dimensionality reduction in r

Matt Pickard Owner, Pickard Predictives, LLC

Chapter 1 - Dimensionality reduction, feature information

- Information missing values, low variance, and correlation
- Information gain and feature importance \bullet
- Curse of dimensionality ${}^{\bullet}$

Chapter 2 - Unsupervised feature selection

- Feature selection vs. feature extraction
- Unsupervised feature selection: \bullet
 - missing value ratio filter 0
 - low-variance filter 0
 - correlation filter 0
- tidymodels recipe steps

Feature Selection

Feature Extraction

Chapter 3 - Supervised feature selection

- Reviewed model building with tidymodels \bullet
- Supervised feature selection methods: lasso regression, random forest
- Evaluated reduced model performance

Chapter 4 - Feature extraction

- Principal components and feature vectors
- Principal component analysis \bullet
- t-SNE
- UMAP \bullet

Congratulations! DIMENSIONALITY REDUCTION IN R

