
WHY DOES THE SAMPLE VARIANCE HAVE N-1 IN THE DENOMINATOR? 
 
 
In Chapter 4 (p. 59), the sample variance of a sample y1, y2, … , yn was defined as 
 
 s2 = !!!! !!

!!!
!!!

, 
and described as “almost” the mean of the squared deviations 𝑦! − 𝑦 !. It might seem 
more natural to use an n in the denominator, so that we really have the mean of the 
squared deviations (which we’ll abbreviate as mosqd), 
 

mosqd  = !!!! !!
!!!

!
 

 
The reason we use n-1 rather than n is so that the sample variance will be what is called 
an unbiased estimator of the population variance 𝜎!. To explain what this means, we first 
define the term estimator: 
 

An estimator is a random variable whose underlying random process is choosing a 
sample, and whose value is a statistic (as defined on p. 285), based on that sample, 
that is used to estimate a population parameter.  
 
Examples: 

•  p̂  (considered as a random variable) is an estimator of p, the population 
proportion. (We’ll use  𝑃 to denote the random variable and reserve p̂  for the 
statistic that is the value of the random variable for a particular sample.) 

• 𝑦 (considered as a random variable) is an estimator of 𝜇, the population mean. 
(We’ll use 𝑌 to denote the random variable and reserve 𝑦 to denote the 
statistic that is the value of the random variable for a particular sample.) 
 

Note that the concepts of estimate and estimator are related but not the same: a 
particular value (calculated from a particular sample) of the estimator is an estimate.  

• If we use the notation introduced in parentheses above, then  𝑃 and 𝑌 are 
estimators, while p̂  and 𝑦 are estimates. 

• The distinction between estimator and estimate is similar to the distinction 
between a function and the value of a function when a particular number is 
plugged into the function. 

  
Note also that the distribution of an estimator is the sampling distribution of the 
related statistic. (e.g., the distribution of  𝑃 is the sampling distribution of p̂ .)  
 

An unbiased estimator is an estimator whose expected value (i.e., the mean of the 
distribution of the estimator) is the parameter being estimated. (Intuitively, this seems 
like a desirable property for an estimator.)   
 
Examples: 



• The calculation E( 𝑃) = p on p. 434 shows that the sample proportion  𝑃  is an 
unbiased estimator of the population proportion p.  

• The sample mean 𝑌 is an unbiased estimator of the population mean 𝜇: 
E( 𝑌) =  𝜇. (This is not difficult to prove, using the definition of sample mean and 
properties of expected values.) 

 
If we consider mosqd as an estimate of 𝜎!, we get a corresponding estimator, which we’ll 
call MOSqD: The process for MOSqD is picking a random sample from the population 
for Y, and the value of MOSqD is mosqd calculated from that sample. (Note that the 
distribution of MOSqD is the sampling distribution of mosqd.)  
 
We want to ask: Is MOSqD an unbiased estimator of the population variance 𝜎!?  

• In other words, is 𝜎! the expected value of MOSqD?  
• In equation form: Is E(MOSqD) = 𝜎!? 

 
To check this out informally, 1000 samples of size 10 from a standard normal distribution 
were generated. For each sample, mosqd was calculated. If MOSqD is an unbiased 
estimator of the population variance (which in this case is 1, since samples were from a 
standard normal distribution), the mean of the 1000 values of MOSqd should be pretty 
close to 1. This mean was in fact 0.9288 -- not very close to 1. But the mean of the values 
of the 1000 sample variances was 1.0320, which is pretty close to 1.   
 
Comment: Here is a histogram of the 
sample variances from these 1000 
samples. Note that it does not look like it 
represents a normal distribution. In fact, 
the sampling distribution of variances is 
not normal – although if we used 
samples of size noticeably larger than 10, 
we would get a distribution that was 
closer to normal. 

 
 

We will prove that the sample variance, S2 (not MOSqD) is an unbiased estimator of the 
population variance 𝜎!.  

• Note: To help distinguish between the estimator and an estimate for a particular 
sample, we are using S2 to stand for the estimator (random variable) and s2 to 
stand for a particular value of S2 (i.e., s2 stands for the sample variance of a 
particular sample.) 

 
The proof will use the following two formulas: 
 
(1) 𝑦! − 𝑦 !!

!!!  = 𝑦!!!
!!!  - n𝑦2  

 
(Note that this gives an alternate formula for the numerator of the formula for the 
sample variance s2) 



Exercise: Prove formula (1). [Hint: Multiply out 𝑦! − 𝑦 ! and use properties of 
summations and the definition of 𝑦.] 
 

(2) For any random variable Y, Var(Y) = E(Y2) – [E(Y)]2. 
 

You have probably seen the proof of this in M362K. If not, or you’d like to 
refresh your memory, you can prove it yourself, starting with the definition of 
Var(Y) = E([Y – E(Y)]2), multiplying out [Y – E(Y)]2, and using properties of E. 
 

We will use formula (2) in the rearranged form 
 
(3) E(Y2) = Var(Y) + [E(Y)]2 
 
Proof that S2 is an unbiased estimator of the population variance 𝜎!: 
 
(This proof depends on the assumption that sampling is done with replacement.) 
 
Let Yi denote the random variable whose process is “choose a random sample y1, y2, … , 
yn of size n” from the random variable Y, and whose value for that choice is yi. With this 
notation, the formula for s2 translates into a formula for S2: 
 

 S2 = !
!!!

𝑌!!!
!!! − 𝑛 !!

!
!!!
!

!
 

 
  = !

!!!
𝑌!!!

!!! - !
!(!!!)

𝑌!!
!!!

! 
 
So 
 
 E(S2) = E !

!!!
𝑌!!!

!!! −   !
!(!!!)

𝑌!!
!!!

!  
 
  = !

!!!
𝐸 𝑌!!!

!!! −   !
!(!!!)

𝐸 𝑌!!
!!!

!      (using properties of E) 
 
Now apply formula (3) to each term 𝐸 𝑌!!  and 𝐸 𝑌!!

!!!
!   to get 

 
 E(S2) = !

!!!
𝑉𝑎𝑟 𝑌! +   𝐸 𝑌! !!

!!! −   !
!(!!!)

𝑉𝑎𝑟 𝑌!!
!!! +   𝐸 𝑌!!

!!!
!       

 
Since each Yi represents a choice from the random variable Y, we know that each Yi has 
the same distribution (hence the same mean and variance) as Y. So if 𝜇 and 𝜎! are the 
mean and variance of Y, then E(Yi) =  𝜇 and Var(Yi) = 𝜎! for each i. Also, since the 
samples are chosen without replacement, we know that the Yi’s are independent.  Using 
these (plus the additivity property of E), we can simplify the expression above to get 
 
 E(S2) = !

!!!
𝜎! +  𝜇!!

!!! −   !
!(!!!)

𝑉𝑎𝑟 𝑌!!
!!! +   𝐸 𝑌!!

!!!
!  



        by independence of Yi’s 
       

= !
!!!

𝜎! + 𝜇!  - !
!(!!!)

𝑉𝑎𝑟(𝑌!)!
!!! + 𝑛𝜇 !   

=  !
!!!

𝜎! + 𝜇!  - !
!(!!!)

𝑛𝜎! + 𝑛𝜇 !  
 

= !
!!!

𝜎! + 𝜇!  - !
!!!

𝜎! + 𝑛𝜇!  
 
= !!

!!!"!!!!! !"!

!!!
 = 𝜎! 

 
(Be sure to check where each property is used in the calculations!) 
      
 
  
 
 
 
 
 
 
 
 


