Random Vectors and the Variance–Covariance Matrix

Definition 1. A random vector \vec{X} is a vector (X_1, X_2, \ldots, X_p) of jointly distributed random variables. As is customary in linear algebra, we will write vectors as column matrices whenever convenient.

Expectation

Definition 2. The expectation $E\vec{X}$ of a random vector $\vec{X} = [X_1, X_2, \dots, X_p]^T$ is given by

$$E\vec{X} = \begin{bmatrix} EX_1 \\ EX_2 \\ \vdots \\ EX_p \end{bmatrix}.$$

This is a definition, but it is chosen to merge well with the linear properties of the expectation, so that, for example:

$$E\vec{X} = E\begin{bmatrix} X_1\\0\\\vdots\\0\end{bmatrix} + E\begin{bmatrix} 0\\X_2\\\vdots\\0\end{bmatrix} + \cdots + E\begin{bmatrix} 0\\0\\\vdots\\X_p\end{bmatrix}$$
$$= \begin{bmatrix} EX_1\\0\\\vdots\\0\end{bmatrix} + \begin{bmatrix} 0\\EX_2\\\vdots\\0\end{bmatrix} + \cdots + \begin{bmatrix} 0\\0\\\vdots\\EX_p\end{bmatrix}$$
$$= \begin{bmatrix} EX_1\\EX_2\\\vdots\\EX_p\end{bmatrix}.$$

The linearity properties of the expectation can be expressed compactly by stating that for any $k \times p$ -matrix A and any $1 \times j$ -matrix B,

$$E(A\vec{X}) = AE\vec{X}$$
 and $E(\vec{X}B) = (E\vec{X})B$.

The Variance–Covariance Matrix

Definition 3. The variance-covariance matrix (or simply the covariance matrix) of a random vector \vec{X} is given by:

$$\operatorname{Cov}(\vec{X}) = E\left[(\vec{X} - E\vec{X})(\vec{X} - E\vec{X})^T \right].$$

Proposition 4.

$$\operatorname{Cov}(\vec{X}) = E[\vec{X}\vec{X}^T] - E\vec{X}(E\vec{X})^T.$$

Proposition 5.

$$\operatorname{Cov}(\vec{X}) = \begin{bmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \cdots & \operatorname{Cov}(X_1, X_p) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \cdots & \operatorname{Cov}(X_2, X_p) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_p, X_1) & \operatorname{Cov}(X_p, X_2) & \cdots & \operatorname{Var}(X_p) \end{bmatrix}.$$

Thus, $\operatorname{Cov}(\vec{X})$ is a symmetric matrix, since $\operatorname{Cov}(X, Y) = \operatorname{Cov}(Y, X)$.

Exercise 1. Prove Propositions 4 and 5.

Linear combinations of random variables

Consider random variables X_1, \ldots, X_p . We want to find the expectation and variance of a new random variable $L(X_1, \ldots, X_p)$ obtained as a linear combination of X_1, \ldots, X_p ; that is,

$$L(X_1,\ldots,X_p) = \sum_{i=1}^p a_i X_i.$$

Using vector-matrix notation we can write this in a compact way:

$$L(\vec{X}) = \vec{a}^T \vec{X},$$

where $\vec{a}^T = [a_1, \ldots, a_p]$. Then we get:

$$E[L(\vec{X})] = E[\vec{a}^T \vec{X}] = \boxed{\vec{a}^T E \vec{X}},$$

and

$$\begin{aligned} \operatorname{Var}[L(\vec{X})] &= E[\vec{a}^T \vec{X} \vec{X}^T \vec{a}] - E(\vec{a}^T \vec{X})[E(\vec{a}^T \vec{X})]^T \\ &= \vec{a}^T E[\vec{X} \vec{X}^T] \vec{a} - \vec{a}^T E \vec{X} (E \vec{X})^T \vec{a} \\ &= \vec{a}^T \left(E[\vec{X} \vec{X}^T] - E \vec{X} (E \vec{X})^T \right) \vec{a} \\ &= \left[\vec{a}^T \operatorname{Cov}(\vec{X}) \vec{a} \right] \end{aligned}$$

Thus, knowing $E\vec{X}$ and $Cov(\vec{X})$, we can easily find the expectation and variance of any linear combination of X_1, \ldots, X_p .

Corollary 6. If Σ is the covariance matrix of a random vector, then for any constant vector \vec{a} we have

$$\vec{a}^T \Sigma \vec{a} \ge 0.$$

That is, Σ satisfies the property of being a positive semi-definite matrix.

Proof. $\vec{a}^T \Sigma \vec{a}$ is the variance of a random variable.

This suggests the question: Given a symmetric, positive semi-definite matrix, is it the covariance matrix of some random vector? The answer is yes.

Exercise 2. Consider a random vector \vec{X} with covariance matrix Σ . Then, for any k dimensional constant vector \vec{c} and any $p \times k$ -matrix A, the k-dimensional random vector $\vec{c} + A^T \vec{X}$ has mean $\vec{c} + A^T E \vec{X}$ and has covariance matrix

$$\operatorname{Cov}(\vec{c} + A^T \vec{X}) = A^T \Sigma A.$$

Exercise 3. If X_1, X_2, \ldots, X_p are i.i.d. (independent identically distributed), then $\text{Cov}([X_1, X_2, \ldots, X_p]^T)$ is the $p \times p$ identity matrix, multiplied by a non-negative constant.

Theorem 7 (Classical result in Linear Algebra). If Σ is a symmetric, positive semi-definite matrix, there exists a matrix $\Sigma^{1/2}$ (not unique) such that

$$(\Sigma^{1/2})^T \Sigma^{1/2} = \Sigma.$$

Exercise 4. Given a symmetric, positive semi-definite matrix Σ , find a random vector with covariance matrix Σ .

The Multivariate Normal Distribution

A *p*-dimensional random vector \vec{X} has the *multivariate normal distribution* if it has the density function

$$f(\vec{X}) = (2\pi)^{-p/2} |\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(\vec{X} - \vec{\mu})^T \Sigma^{-1}(\vec{X} - \vec{\mu})\right),$$

where $\vec{\mu}$ is a constant vector of dimension p and Σ is a $p \times p$ positive semidefinite which is invertible (called, in this case, *positive definite*). Then, $E\vec{X} = \vec{\mu}$ and $Cov(\vec{X}) = \Sigma$.

The standard multivariate normal distribution is obtained when $\vec{\mu} = 0$ and $\Sigma = I_p$, the $p \times p$ identity matrix:

$$f(\vec{X}) = (2\pi)^{-p/2} \exp\left(-\frac{1}{2}\vec{X}^T\vec{X}\right).$$

This corresponds to the case where X_1, \ldots, X_p are i.i.d. standard normal.

Exercise 5. Let X_1 and X_2 be random variables with standard deviation σ_1 and σ_2 , respectively, and with correlation ρ . Find the variance–covariance matrix of the random vector $[X_1, X_2]^T$.

Exercise 6 (The bivariate normal distribution). Consider a 2-dimensional random vector \vec{X} distributed according to the multivariate normal distribution (in this case called, for obvious reasons, the *bivariate normal distribution*). Starting with the formula for the density in matrix notation, derive the formula for the density of \vec{X} depending only on μ_1 , μ_2 (the means of X_1 and X_2), σ_1 , σ_2 (the standard deviations of X_1 and X_2), and the correlation coefficient ρ , and write it out without using matrix notation.

Exercise 7. Consider a bivariate normal random vector $\vec{X} = [X_1, X_2]^T$, where $E\vec{X} = [5, -4]^T$, the standard deviations are $\text{StDev}(X_1) = 2$ and $\text{StDev}(X_2) = 3$, and the correlation coefficient of X_1 and X_2 is -4/5. Use R (or any other software package) to generate 100 independent draws of \vec{X} , and plot them as points on the plane.

Hint: To find $\Sigma^{1/2}$, find the eigenvalue decomposition of Σ as:

$$\Sigma = PDP^T,$$

where D is diagonal. Construct $D^{1/2}$ by taking the square root of each diagonal entry, and define

$$\Sigma^{1/2} = PD^{1/2}P^T.$$

In R, you can find the eigenvalue decomposition of Σ using:

ed <- eigen(sigma) D <- diag(ed\$values) P <- ed\$vectors