
Random Vectors

and the
Variance–Covariance Matrix

Definition 1. A random vector ~X is a vector (X1, X2, . . . , Xp) of jointly
distributed random variables. As is customary in linear algebra, we will
write vectors as column matrices whenever convenient.

Expectation

Definition 2. The expectationE ~X of a random vector ~X = [X1, X2, . . . , Xp]T

is given by

E ~X =


EX1

EX2
...

EXp

 .
This is a definition, but it is chosen to merge well with the linear properties

of the expectation, so that, for example:

E ~X = E


X1

0
...
0

+ E


0
X2
...
0

+ · · ·+ E


0
0
...
Xp



=


EX1

0
...
0

+


0

EX2
...
0

+ · · ·+


0
0
...

EXp



=


EX1

EX2
...

EXp

 .
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The linearity properties of the expectation can be expressed compactly by
stating that for any k × p-matrix A and any 1× j-matrix B,

E(A ~X) = AE ~X and E( ~XB) = (E ~X)B.

The Variance–Covariance Matrix

Definition 3. The variance–covariance matrix (or simply the covariance

matrix ) of a random vector ~X is given by:

Cov( ~X) = E
[
( ~X − E ~X)( ~X − E ~X)T

]
.

Proposition 4.
Cov( ~X) = E[ ~X ~XT ]− E ~X(E ~X)T .

Proposition 5.

Cov( ~X) =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xp)

Cov(X2, X1) Var(X2) · · · Cov(X2, Xp)
...

...
. . .

...
Cov(Xp, X1) Cov(Xp, X2) · · · Var(Xp)

 .
Thus, Cov( ~X) is a symmetric matrix, since Cov(X, Y ) = Cov(Y,X).

Exercise 1. Prove Propositions 4 and 5.

Linear combinations of random variables

Consider random variables X1, . . . , Xp. We want to find the expectation
and variance of a new random variable L(X1, . . . , Xp) obtained as a linear
combination of X1, . . . , Xp; that is,

L(X1, . . . , Xp) =

p∑
i=1

aiXi.

Using vector–matrix notation we can write this in a compact way:

L( ~X) = ~aT ~X,
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where ~aT = [a1, . . . , ap]. Then we get:

E[L( ~X)] = E[~aT ~X] = ~aTE ~X ,

and

Var[L( ~X)] = E[~aT ~X ~XT~a]− E(~aT ~X)[E(~aT ~X)]T

= ~aTE[ ~X ~XT ]~a− ~aTE ~X(E ~X)T~a

= ~aT
(
E[ ~X ~XT ]− E ~X(E ~X)T

)
~a

= ~aT Cov( ~X)~a

Thus, knowing E ~X and Cov( ~X), we can easily find the expectation and
variance of any linear combination of X1, . . . , Xp.

Corollary 6. If Σ is the covariance matrix of a random vector, then for any
constant vector ~a we have

~aT Σ~a ≥ 0.

That is, Σ satisfies the property of being a positive semi-definite matrix.

Proof. ~aT Σ~a is the variance of a random variable.

This suggests the question: Given a symmetric, positive semi-definite
matrix, is it the covariance matrix of some random vector? The answer is
yes.

Exercise 2. Consider a random vector ~X with covariance matrix Σ. Then,
for any k dimensional constant vector ~c and any p × k-matrix A, the k-
dimensional random vector ~c+AT ~X has mean ~c+ATE ~X and has covariance
matrix

Cov(~c+ AT ~X) = AT ΣA.

Exercise 3. IfX1, X2, . . . , Xp are i.i.d. (independent identically distributed),
then Cov([X1, X2, . . . , Xp]T ) is the p×p identity matrix, multiplied by a non-
negative constant.

Theorem 7 (Classical result in Linear Algebra). If Σ is a symmetric, positive
semi-definite matrix, there exists a matrix Σ1/2 (not unique) such that

(Σ1/2)T Σ1/2 = Σ.

Exercise 4. Given a symmetric, positive semi-definite matrix Σ, find a ran-
dom vector with covariance matrix Σ.
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The Multivariate Normal Distribution

A p-dimensional random vector ~X has the multivariate normal distribution
if it has the density function

f( ~X) = (2π)−p/2|Σ|−1/2 exp

(
−1

2
( ~X − ~µ)T Σ−1( ~X − ~µ)

)
,

where ~µ is a constant vector of dimension p and Σ is a p × p positive semi-
definite which is invertible (called, in this case, positive definite). Then,

E ~X = ~µ and Cov( ~X) = Σ.
The standard multivariate normal distribution is obtained when ~µ = 0

and Σ = Ip, the p× p identity matrix:

f( ~X) = (2π)−p/2 exp

(
−1

2
~XT ~X

)
.

This corresponds to the case where X1, . . . , Xp are i.i.d. standard normal.

Exercise 5. Let X1 and X2 be random variables with standard deviation σ1

and σ2, respectively, and with correlation ρ. Find the variance–covariance
matrix of the random vector [X1, X2]

T .

Exercise 6 (The bivariate normal distribution). Consider a 2-dimensional

random vector ~X distributed according to the multivariate normal distribu-
tion (in this case called, for obvious reasons, the bivariate normal distribu-
tion). Starting with the formula for the density in matrix notation, derive

the formula for the density of ~X depending only on µ1, µ2 (the means of X1

and X2), σ1, σ2 (the standard deviations of X1 and X2), and the correlation
coefficient ρ, and write it out without using matrix notation.

Exercise 7. Consider a bivariate normal random vector ~X = [X1, X2]
T ,

where E ~X = [5,−4]T , the standard deviations are StDev(X1) = 2 and
StDev(X2) = 3, and the correlation coefficient of X1 and X2 is −4/5. Use

R (or any other software package) to generate 100 independent draws of ~X,
and plot them as points on the plane.

Hint: To find Σ1/2, find the eigenvalue decomposition of Σ as:

Σ = PDP T ,
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where D is diagonal. Construct D1/2 by taking the square root of each diag-
onal entry, and define

Σ1/2 = PD1/2P T .

In R, you can find the eigenvalue decomposition of Σ using:

ed <- eigen(sigma)

D <- diag(ed$values)

P <- ed$vectors

5


