Factor Analysis

An example

The mathematical ability of the graduate students in mathematics program are measured,
based one the testscores in algebra, combinatorics, graph theory, real analysis, measure the-
ory, probability, differential equations and data structure. It is observed that the testsores
from algebra, combinatorics, graph theory and data structure are highly correlated; the
testscores from real analysis, measure theory, probability and differential equations are also
highly correlated. So, we believe there are two types of mathematical ability. One, which can
be called algebraic ability, determines a student’s performance in the first group of branches;
the other one, which can be called analytic ability, determines a student’s performance in
the second group of mathematical branches. So, there are two factors, algebraic ability and
analytic ability, underlying the testscores.

The essential purpose of factor analysis

describe, if possible, the covariance relationships among many variables in terms of a few
underlying, but unobservable, random quantities called factors.

Orthogonal factor model

Xi—m =i+ loF+ -+l P+ e
Xo — pig = log F1 + logFy + - - - + lopy Fy + €2

Xp_Up:lp1F1+lp2F2+"'+lmem+€p

or
X —pu=LF+e¢

where

liy e - lim F €1

L= Do : . F= : ; €=

lpl lp2 e lpm Fm €m
L = (l;;) is called the loading matrix ( ;; called loadings). Fi,..., F,, are called the common
factors, €1, ..., €, are called the specific factors.



Assumptions

E(F) =0,cov(F) = I( the m x m identity matrix), E(e) = 0, and

P 0 - 0
cov(e) =¥ = O v O
o0 e

and € and F' are independent, cov(F,¢) =0

Relation between ¥ and L, ¥

Spxp = B(X — p)(X —p)' =LL' + ¥

Relation between X and F

cov(X,F)=E(X—-—puF=L

So, Var(X;) =12 +---+ 12 +1;, where i1 + - -- + 2 is called the ith communality, and
1; is called the uniqueness, or specific variance. cov(X;, Fj) = l;; is called the loading of the
1th variable on the jth factor.

Some preliminary issues

1. Nonexistence of a proper solution
1 09 0.7
For example, suppose p=3, m=1and X = 0.9 1 0.4 |. And the model is
0.7 04 1

Xi—p =l +aXo—po =11 Fy + €Xs — us =51 F1 + €3

So,
I v 00
S=LL+V=|lyn | (l1 ln lsn)+ | 0 2 0
l31 0 0 43
1 09 07 Lialin liilie lialss Py 0 0
0.7 04 1 12 0 0 s

So, we have,

07 = llll31, 04 == l21l31 09 = llllgl
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which implies Io; = 33115 and 0.9 = ly1l51. Hence I3, = 1.575, I;; = 1.255. Since 1 = I3, + 1/,
1, is equal to -0.575, which is a contradiction because ¥; = var(e;) > 0.
2. Inherent ambiguity (The solution is not unique).
Suppose X — u=LF +¢e¢and ¥ = LL' + V. Let T be any m x m orthogonal matrix such
that TT' =T'T = 1. Let

F*=TF, L*=LT
We have

X—p=LF+e=L"F"+e¢

and

S=LL+V=L"L"+T

. Hence, both (L, F,€) and (L*, F*,¢€) are the solutions to the orthogonal factor models.
Estimation method

Principal component method

Suppose (A1, €1),...,(Ap, €p) are the eigenvalue-eigenvector pairs of 3. According to the

spectral decomposition theorem,

¥ = Merej+Azesen+ - A epe, = (\/)\7161)(\/)\7161)I+(\/)\7262)(\/)\7262)1+' . -—i—(\/)\:ep)(\/)\:ep)'

Vel
Vst

— (\/)\»161\/)\7262 ... \/)\:ep) :
e

Let L = (v Are1v/Azen - - \/)Tpep), then
Lpxp = prle + Opxp-

pXp

But it is not a interesting solution (why?). A more interesting is

L= ((\/)\7161\/)\7262 “e \/Eem)



and

where ¥; = 05 — YT, I7;. Hence
The Choice of m
Suppose S is the sample covariance matrix. The residual matrix from the principal compo-
nent solution is

S— (LD + )
The norm of a matrix A, denoted by ||A]|, is defined to be the sum of squared entries of A.

It can be shown that

||S—(LL’+\IJ)||§A3n+1+---+)\§

Contribution to s; from F is l3.
Contribution to tr(S) = s11 + -+ + sy, from Fy is I§) + 15, + -+ 12, = Ay
The same can be stated for the jth factor F;. Hence the proportion of the total sample
variance due to the jth factor is
Aj
811+ So2 + -+ Sy

Principal factor method

It is an iterative procedure to approximate S by LL' + V.
min ||S — (LL' + ¥)])?
LW

1. Initialize ¥ as U;.

2. Decompose S — Wy, and select the largest m eigenvectors to form L.
3. Set Wy = diag(S — L1 L}).

4. ITterate step 2 and step 3 until convergence.

(Question: when we expect a solution such that S = LL' and ¥ = 07?)
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Maximum likelihood method
Assume that F' and e are normally distributed. Let L(u,X) be the likelihood function

dependent on u, L and W. Then,

max L(u, L, ¥) = L, ¥(mles for L and )
Lo 1L=A

MLE for the 7th communality: izf = l?l +-F l?m
Proportion of the total sample variance due to the jth factor is

811+"'+8pp

Comparison between principal component method and maximum likelihood method
Suppose x1, Za, ..., 5 denote the observed weekly rates of return Applied Chemical, Du Pont,

Union Carbide, Exxon, and Texaco, respectively. The sample correlation matrix is as follows.

1.000 .577 --- 0.462

D77 1.000 --- 0.322

0.462 0.322 --- 1.000
Principal component Maximum likelihood
variable  Fj F, v Fy Fy Yi
1.Applied Ch .783 —.217 34 684 189 .50
2.Du Pont .772 —.458 19 .694 517 .25
3.Union Car .794 —.234 31 .681  .248 A7
4.FExxon .713  .412 27 621 —.073 .61
5.Texaco .712  .524 22792 —.442 18

Cum.Prop .571  .733 485  0.598

The residual matrix from the principal component method
0 —.127 —.164 —-.069 .017

. - 0 —-.122  .0556  .012
R—LL — ¥ = 0 —-.019 -.017
0 —.232

0

The residual matrix from the maximum likelihood method:

0 .006 —.004 —-.024 —.004
0 —.003 —-.004 .000

R—LL —¥ = 0 031  —.004
0 —.000
0



Which method is better? and what is your conclusion
Test for the number of common factors (m)
Hy:YX=LyL ., +V H, : Yany other positive definite matrix

pXm

Likelihood ratio statistic:

3] 2
—2InT" = nln(| S ‘) ~ Xaf
where
1 1 1 ,
1#2?@+U—MM+U—;Mm—m=§W—M)—@+M]

(For any given p, m < %(2}) +1—+/8p+ 1) to guarantee that df is positive)
Bartlett correction:

we reject Hy at the a level of significance if

| 2|

(n—1- (2p+4m+5)/6)ln(| S,

) > xg(a)
Factor rotation
Let L* = LT, where TT' = T'T = I, we have

LI+ =1 L* + 0

Idea: Find T' to give a simpler and more interpretable solution

1. Graphical method:

- ~
prz = Lp><2T2><2

cos¢ sin¢
—sin¢g cos¢

cos¢p —sing

where T = ( ) (clockwise rotation), or 7' = ( sing  cos¢

) (counterclock-
wise rotation).

For example,



MLE rotated

variable  Fj F, F  Fy 9
Applied Ch .684 .189 .601 377 .50
Du Pont .694 517 850 .164 .25
Union Car .681 248 643 .335 .47
Exxon .621 —.073 .365 .507 .61
Texaco .792 —.442 .208 .883 .18

Cum.Prop. .485 .598 .335 .598

Questions: 1. how do you determine the rotation angles? 2. Do the communalities change?
3. Does the proportion of the total variance due to each factor change after rotation?

2. Analytic method (varimax criterion)

lll l12 e llm
. l21 l22 e l2m
lpl lp2 e lpm

1. Define I}; = I5; /h;
2.

maxV = maXpZil Zl*z 2 /p]

i=1

3. Scale back the solution from step 2, l:}iL

Oblique rotation

Orthogonal rotation sometime still does not give an easy interpretation. No-orthogonal rota-
tion will be used. This allows for possible simplicity at the expense of losing the independence
of the factors.

Factor scores

fj = the estimates of the values f; attained by Fj ( the jth factors.

Orthogonal factor model:

X—pu=LF+e¢

Weighted least squares method:



And

Regression method:
Assume that F' and e are normally distributed. The joint distribution of x — p and F' is

Npip(0,X%), and

se_ (S=LL+¥ L
= I I

mean = E(F |2) = L'S Yz — p) = L'(LL' + ) Yz — p)
covariance = Cov(F |z) = — L'S™'"L =1 L'(LL' + ¥)7'L
The factor scores are

fi=LSYz —z)=L(LL + %)™
Miscellaneous issues in Factor Analysis
1. m, the number of common factors
(1) The proportion of the total variance explained

2) Small residual matrix

)
(2)
(3) Likelihood ratio test under normal assumptions
(4) Subject-matter knowledge

(5) reasonableness of the results

2. Factor scores

Factor scores are used for diagnostic purposes, as well as subsequent analysis.

(1) outliers detection: plot the scores of F; against those of Fj

(2) Compare results from different methods, identify insignificant factors



3. Sor R Let

si1 O 0
V= 0 3.22 0
0 0 Spp
Then R = VY25V 12,
(1) Principal component method
Suppose
S~ L L, + 3, R~ L, L.+ ¥,

(V-Y2L,, V=120,V ~1/2) and (L,, ¥,) are different, but usually they are close to each other.
(2)Principal factor method
Suppose (L, ¥) is the solution to min ||S— LL' — V||, and (L,, ¥,) is the solution to min || R—

LL" — V||. Since for any given data, there usually exits a constant C' such that
|V-Y28v =12 vy 2L(v2Ly —v2ev 2| < C|S - LI — |

ie.,

|R -V 2L(VY2L)Y — V=12V —12| < C||S — LL' — |

Hence, (V~Y2L,, V=12,V ~1/2 would not be very different from (L, ¥, ).

(3)Maximum likelihood method.

let s; = Y (xp; — T;)/n for i = 1,2,...,p. Suppose (IAJS, \ifs) is the solution based on S;
(L,,¥,) is the solution based on R. They are equivalent under the transformation involving
V.

In general, we don’t expect significant different between the solution directly derived from
R and the transformed solution from S, vise versa.

4. Relationship of FA to PCA

(1)PCA <= Original variables <= common factors

2)

PCA: 1. eliminate correlation via linear transformation. 2. focus on explain the (sample)
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total variance Y s;;.

FA: model the covariance structure via a small number of factors

(3)

PCA: no assumptions

FA: make many assumptions. validations are difficult

(4)

PCA: interpretability is limited.

FA: provide flexibility in interpretation

(5)

PCA: results can be used directly for subsequent analysis

FA: need to be cautious when used for subsequent analysis

5. Factor analysis in practice.

(1) Try all possible methods and compare the results.

(2) For large datasets, split them in half and perform FA on each part, and compare results
(3) WOW criterion

Some concerns:

(1)unverifiable assumptions.

(2)existence of unobservable variables (latent variables)

(3)the number of factors is subjective
(4)

4)solution is not unique
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