What is feature engineering?

Jorge Zazueta

Research Professor and Head of the Modeling Group at the School of Economics, UASLP

FEATURE ENGINEERING IN R

What is feature engineering?

Feature engineering is the art and science of

- creating,
- transforming,
- extracting, and
- selecting

variables to improve model performance and interpretability.

Height of an object as a function of time

```
# A tibble: 100 × 2
   time height
   <dbl> <dbl>
 2 0.101 3.85
 3 0.202 17.7
 4 0.303 15.1
 5 0.404 20.0
 6 0.505 32.6
 7 0.606 30.8
 8 0.707 26.6
```

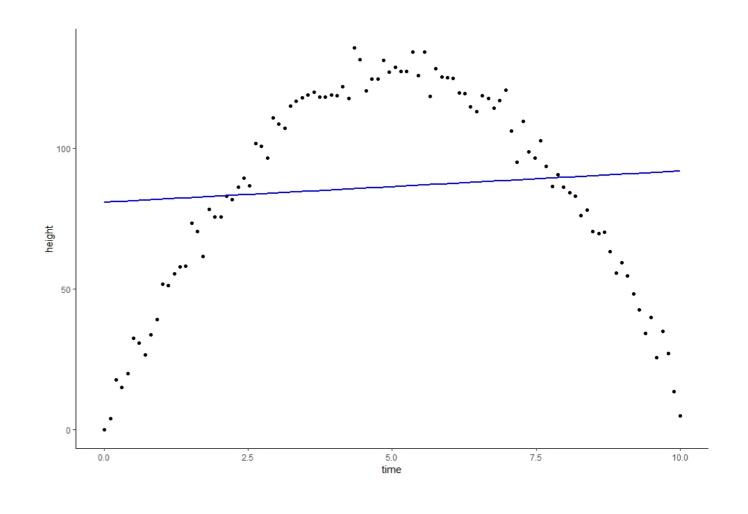
Why engineer features?

We create a simple regression model of height

and graph it to assess accuracy by sight.

Our model fails miserably to represent the data!

Linear regression of height *vs.* time.



Using mutate()

The height of an object follows a parabolic path given by the following formula:

$$y(t) = y_0 + v_0 t - \frac{g}{2} t^2$$
.

Where y represents the height of the object at time t, and y_0 , v_0 , and g are, respectively, the initial height, velocity, and acceleration due to gravity.

We can fit our model, recognizing the dependence of height on both time and the square of time.

mutate() takes a data frame as a first argument and the definition of a new variable to be added to the data frame.

```
df_2 <- df %>% mutate(time_2 = time^2)
```

Predict using the engineered feature

We create another regression model, using our new feature along with the original one.

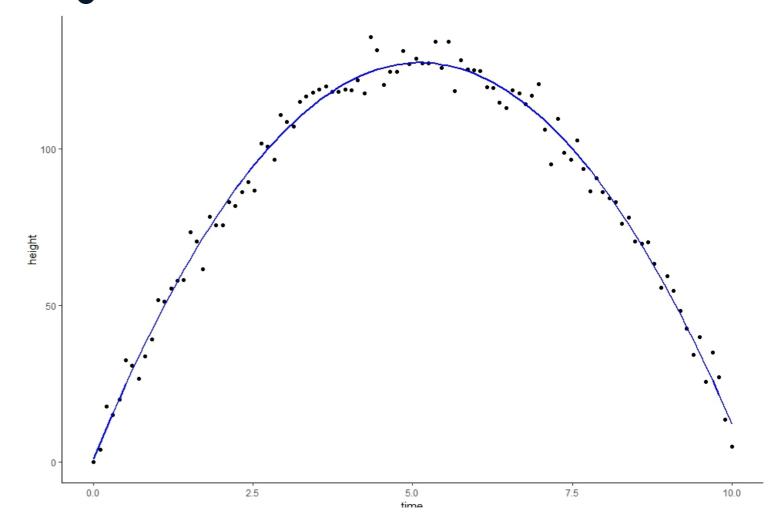
```
lr_height_2 <-
lm(height ~ time + time_2, data = df_2)</pre>
```

And graph our new prediction.

```
df_2 <- df_2 %>%
    bind_cols(lr2_pred = predict(lr_height_2))
df_2 %>%
    ggplot(aes(x = time, y = height)) +
    geom_point() +
    geom_line(aes(y = lr2_pred),
        col = "blue", lwd = .75) +
    theme_classic()
```

That is an impressive improvement without resorting to a different model.

Height vs. time and time_2



Let's practice!

FEATURE ENGINEERING IN R

Creating new features using domain knowledge

FEATURE ENGINEERING IN R

Jorge Zazueta

Research Professor and Head of the Modeling Group at the School of Economics, UASLP

The importance of domain knowledge

Domain knowledge enables us to identify and create relevant and useful features for a particular model or task.

Feature engineering is about creating new input features from existing ones.

Examples of domain knowledge:

- Financial: The critical determinants of bankruptcy
- Medical: Pre-existing conditions relevant to a specific treatment
- Marketing: Distinguishing features of a consumer group

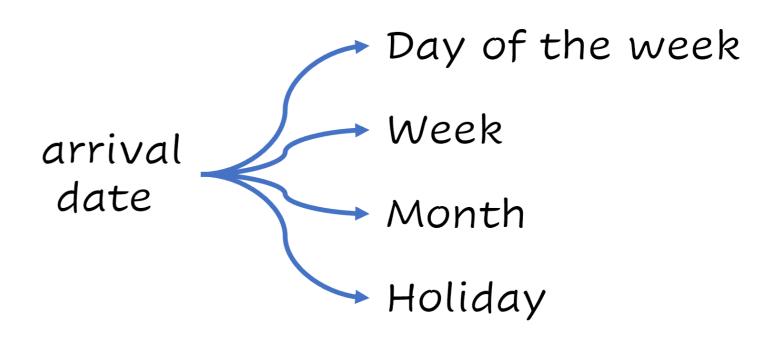
Creating variables based on professional experience

We want to predict hotel cancellations based on the following feature vector:

```
features <-
c("IsCanceled", "LeadTime",
  "arrival_date",
  "StaysInWeekendNights",
  "StaysInWeekNights",
  "PreviousCancellations",
  "PreviousBookingsNotCanceled",
  "ReservedRoomType",
  "AssignedRoomType", "BookingChanges",
  "DepositType", "CustomerType",
  "ADR", "TotalOfSpecialRequests")
```

Features form raw data

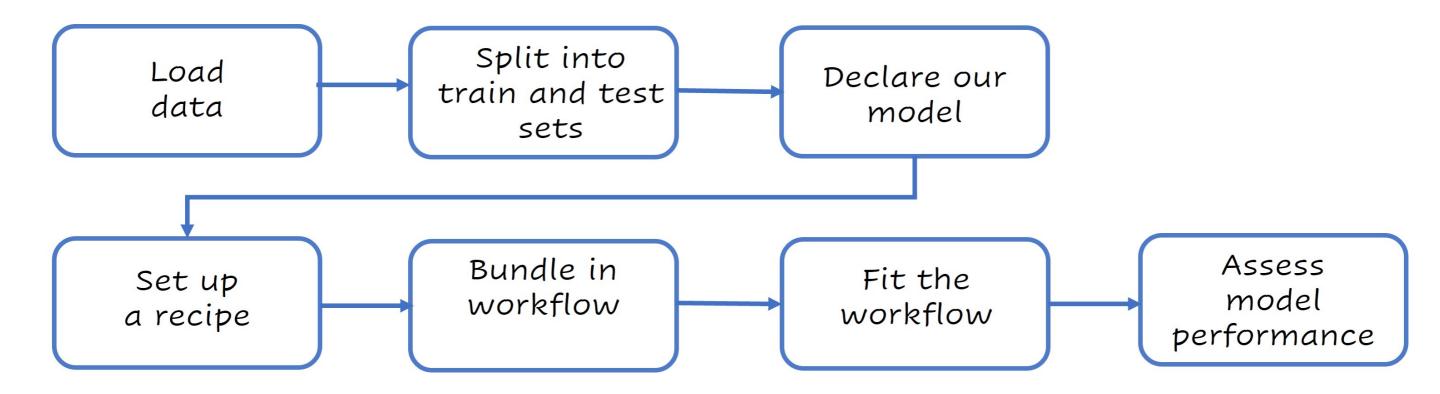
We can generate informative features from arrival_date.



But this becomes tedious quickly. We need to automate it!

The tidymodels framework

We'll use a workflow based on tidymodels, a collection of packages for modeling and machine learning using tidyverse principles (1) with emphasis on feature engineering.



We can learn more at www.tidymodels.org

¹ [Tidyverse guiding principles.](https://design.tidyverse.org/unifying-principles.html)

Setting up our data for analysis

Let's start by getting our data ready.

```
cancelations <-
  cancelations %>%
  mutate(across(where(is_character), as.factor))

set.seed(123)
split <- cancellations %>%
    initial_split(
    strata = "IsCanceled")

train <- training(split)
test <- testing(split)</pre>
```

The prop parameter can be used to change the train/test data split (the default is 3/4).

```
initial_split(data, prop = 3/4, strata = NULL)
```

Verify that train and test sets exhibit similar proportions of canceled reservations.

```
train %>%
  select(IsCanceled) %>% table() %>%
  prop.table()

IsCanceled
     0     1
0.5826946 0.4173054
```

```
test %>%
  select(IsCanceled) %>% table() %>%
  prop.table()

IsCanceled
     0      1
0.5827788 0.4172212
```

Building a workflow

Declare our model

```
lr_model <- logistic_reg()</pre>
```

Build a recipe

```
lr_recipe <-
  recipe(IsCanceled ~., data = train) %>%
  update_role(Agent, new_role = "ID" ) %>%
  step_date(arrival_date,
      features = c("dow", "week", "month")) %>%
  step_holiday(arrival_date,
      holidays = timeDate::listHolidays("US")) %>%
  step_rm(arrival_date) %>%
  step_dummy(all_nominal_predictors())
```

Print lr_recipe

```
Recipe
Inputs:
     role #variables
       TD
  outcome
predictor
                  13
Operations:
Date features from arrival date
Holiday features from arrival_date
Variables removed arrival date
Dummy variables from all_nominal_predictors()
```

Building a workflow

Bundle the model and the recipe into a workflow object.

```
lr_workflow <-
workflow()%>%
add_model(lr_model)%>%
add_recipe(lr_recipe)
```

Fit the workflow

```
lr_fit <-
    lr_workflow %>%
    fit(data = train)
```

Building a workflow

We can use tidy(lr_fit) to summarize our model.

```
# A tibble: 65 \times 5
                          estimate std.error statistic
  term
                                                   p.value
  <chr>
                             <dbl>
                                     <dbl> <dbl>
                                                      <dbl>
1 (Intercept)
                          -1.92 0.228 -8.43 3.57e- 17
                           0.00414 0.000268 15.4 1.16e-53
2 LeadTime
                                  0.0382 2.25 2.45e- 2
3 StaysInWeekendNights
                           0.0860
4 StaysInWeekNights
                           0.0804
                                  0.0185 4.34 1.40e- 5
5 PreviousCancellations
                     2.39
                                  0.147 16.2 2.45e- 59
                                         -9.77 1.45e- 22
6 PreviousBookingsNotCanceled -0.440
                                  0.0450
7 BookingChanges
                          -0.449
                                  0.0463 -9.69 3.18e- 22
8 ADR
                           0.0104
                                  0.000782 13.2 4.85e- 40
                                  0.0316
                                             -23.0 5.29e-117
9 TotalOfSpecialRequests -0.727
10 arrival_date_week
                  0.0245
                                  0.0171 1.43 1.53e- 1
# ... with 55 more rows
```

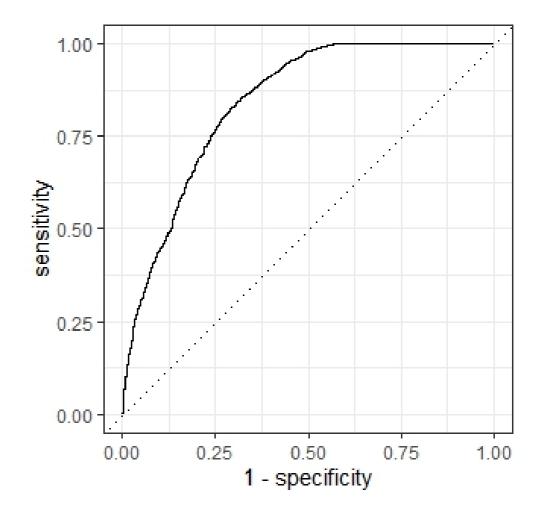

Assessing model performance

We can now assess our model's performance.

```
lr_aug <- lr_fit %>% augment(test)

bind_rows(
    lr_aug %>%
    roc_auc(truth = IsCanceled,.pred_0),
    lr_aug %>%
    accuracy(truth = IsCanceled,.pred_class))
```

```
lr_aug %>%
  roc_curve(truth = IsCanceled, .pred_0) %>%
  autoplot()
```



Let's practice!

FEATURE ENGINEERING IN R

Increasing the information content of raw data

FEATURE ENGINEERING IN R

Jorge Zazueta

Research Professor and Head of the Modeling Group at the School of Economics, UASLP

Dealing with raw data

A typical dataset with missing values

Col_1	Col_2		Col_n
Data	Data	Data	NA
NA	Data	Data	Data
Data	NA	Data	Data
Data	NA	Data	Data
Data	Data	Data	NA

Values as factors

Col_1
Factor_1
Factor_2
Factor_4
Factor_3
Factor_2

Dealing with raw data

Dataset with imputed values

Col_1	Col_2		Col_n
Data	Data	Data	Data
Data	Data	Data	Data
Data	Data	Data	Data
Data	Data	Data	Data
Data	Data	Data	Data

Factors represented as dummy variables

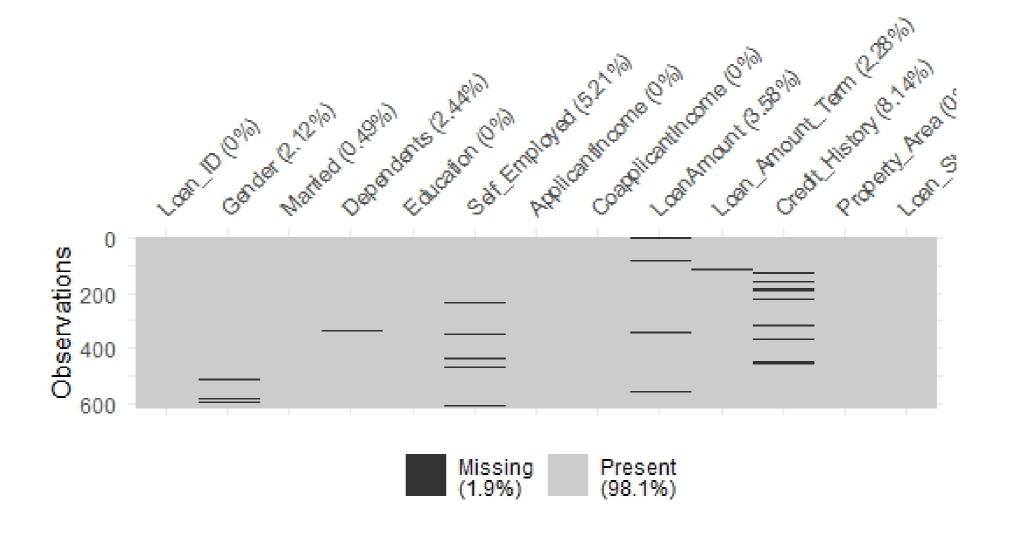
Factor_2	Factor_3	Factor_4
0	0	0
1	0	0
0	0	1
0	1	0
1	0	0

The loans dataset

```
# A tibble: 614 × 13
            Gender Married Dependents Educa…¹ Self_…² Appli…³ Coapp…? LoanA…? Loan_…?
             <fct> <fct>
   <fct>
                             <fct>
                                         <fct> <fct>
                                                             <dbl>
                                                                     <dbl>
                                                                              <dbl>
                                                                                       <dbl>
 1 LP001002 Male
                                         Gradua... No
                                                              5849
                                                                                 NA
                    No
                                                                          0
                                                                                         360
 2 LP001003 Male
                                         Gradua... No
                                                              4583
                                                                      1508
                                                                                128
                                                                                         360
                    Yes
 3 LP001005 Male
                                         Gradua... Yes
                    Yes
                                                              3000
                                                                         0
                                                                                 66
                                                                                         360
 4 LP001006 Male
                                         Not Gr... No
                                                              2583
                                                                      2358
                                                                                         360
                    Yes
                                                                                120
 5 LP001008 Male
                                         Gradua... No
                                                              6000
                                                                                         360
                    No
                                                                          0
                                                                                141
 6 LP001011 Male
                                         Gradua... Yes
                                                              5417
                                                                      4196
                                                                                267
                                                                                         360
                    Yes
 7 LP001013 Male
                                         Not Gr... No
                                                              2333
                                                                      1516
                                                                                 95
                                                                                         360
                    Yes
 8 LP001014 Male
                                         Gradua... No
                                                                      2504
                             3+
                                                              3036
                                                                                158
                                                                                         360
                    Yes
 9 LP001018 Male
                                         Gradua... No
                                                                      1526
                                                                                         360
                                                              4006
                                                                                168
                    Yes
10 LP001020 Male
                                         Gradua... No
                    Yes
                                                             12841
                                                                     10968
                                                                                349
                                                                                         360
# ... with 604 more rows, 3 more variables: Credit_History <dbl>, Property_Area <fct>,
    Loan_Status <fct>, and abbreviated variable names <sup>1</sup>?Education, <sup>2</sup>?Self_Employed,
    <sup>3</sup>?ApplicantIncome, ??CoapplicantIncome, ??LoanAmount, ??Loan_Amount_Term
# ? Use `print(n = ...)` to see more rows, and `colnames()` to see all variable names
```


Missing values

We can visually identify missing values in loans using vis_miss(loans) from the package naniar.

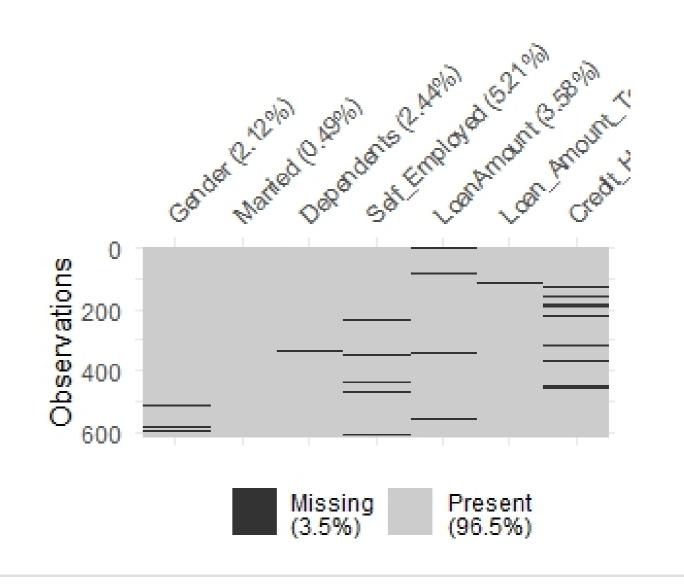


Missing values

We can zoom the table by selecting only the columns with missing values.

A closer view of missing values

```
loans %>%
select(Gender,
       Married,
       Dependents,
       Self_Employed,
       LoanAmount,
       Loan_Amount_Term,
       Credit_History) %>%
  vis_miss()
```



Missing values and dummy variables

We can address missing values and create dummy variables in the same recipe.

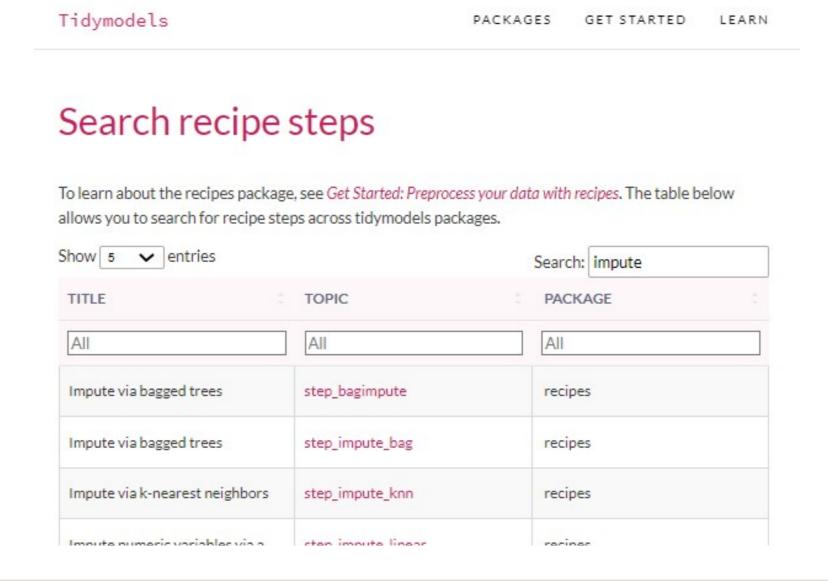
Print the recipe

```
lr_recipe
```

```
Recipe
Inputs:
      role #variables
        ID
   outcome
                   30
predictor
Operations:
K-nearest neighbor imputation for all_predictors()
Dummy variables from all_nominal_predictors()
```

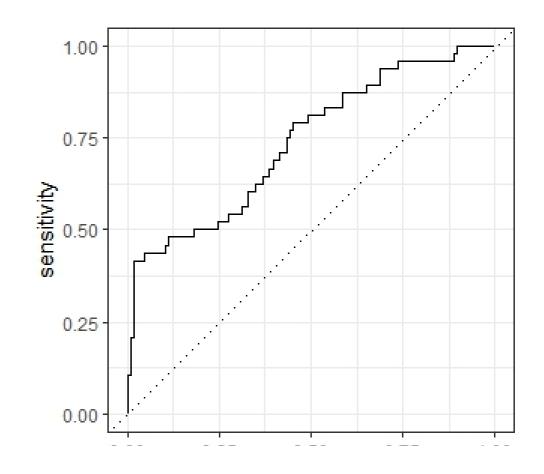
Finding the right recipe step

We can find other imputation methods and all recipe steps in the tidymodels documentations at www.tidymodels.org/find/recipes



Fitting and assessing our model

```
# Fit
lr_fit <-</pre>
  lr_workflow %>% fit(data = train)
lr_aug <-</pre>
  lr_fit %>% augment(test)
# Assess
lr_aug %>%
  roc_curve(truth = Loan_Status, .pred_N) %>%
  autoplot()
bind_rows(lr_aug %>%
             roc_auc(truth = Loan_Status,
                     .pred_N),
          lr_aug %>%
             accuracy(truth = Loan_Status,
                      .pred_class))
```



Let's practice!

FEATURE ENGINEERING IN R

