Reducing dimensionality FEATURE ENGINEERING IN R

Jorge Zazueta

Research Professor and Head of the Modeling Group at the School of Economics, UASLP

Zero variance features

Some datasets include columns with constant values or zero variance. We can filter out those features by adding step_zv() to our recipe().

Col_1	Col_2	•••	Col_n
0.9099	0.9738	0.2959	0.8945
0.1757	0.9738	0.0519	0.9337
0.8688	0.9738	0.8156	0.4716
0.0136	0.9738	0.1120	0.8219
0.3765	0.9738	0.3083	0.0309

Near-zero variance features

Near-zero variance features include predictors with a single value **and** predictors with both of the following characteristics:

- Very few unique values relative to the number of samples
- The ratio of the frequency of the most common value to the frequency of the second most common value is large

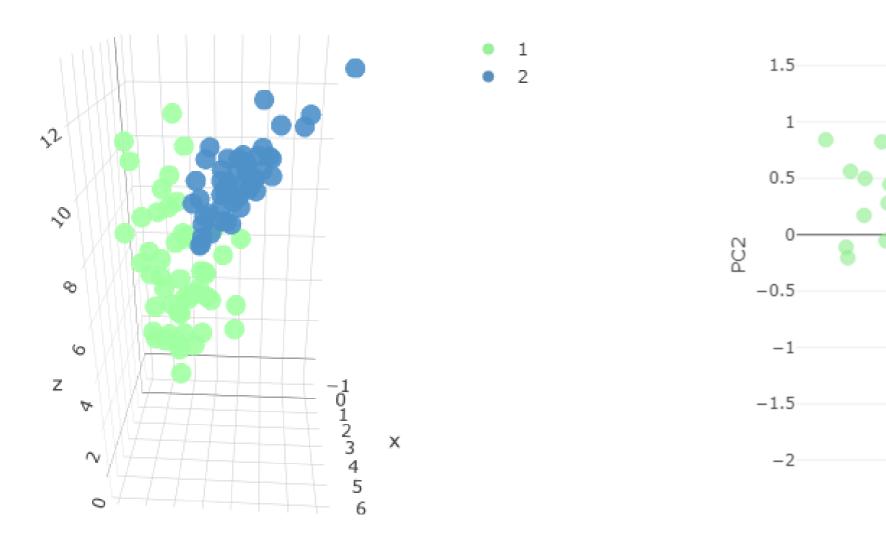
Example of near-zero variance:

• For 100 observations there are two different values but one occurs only once. step_nzv() identifies and removes predictors with these characteristics.

Principal Component Analysis (PCA)

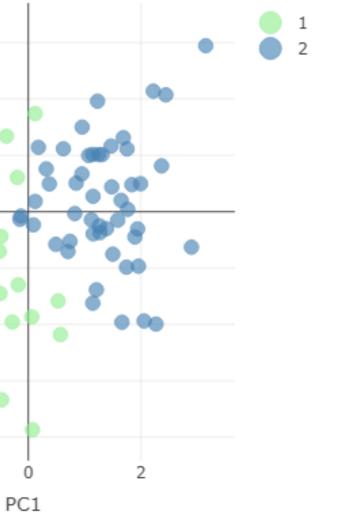
Original three-dimensional dataset with two associated classes.

two principal components.



-2

Reduced dataset representing data using first



Let's prep a recipe

Creating a recipe to perform PCA and retrieving its output via prep().

```
pc_recipe <-</pre>
recipe(~., data = loans_num) %>%
  step_nzv(all_numeric()) %>%
  step_normalize(all_numeric()) %>%
  step_pca(all_numeric())
```

pca_output <- prep(pc_recipe)</pre>

We can look at the information available by calling names() on pca_output.

names(pca_output)

[1] "var_info"

[3] "steps"

[5] "levels"

[7] "requirements" "tr_info"

"term_info" "template" "retained" [9] "orig_lvls" "last_term_info"

Unearthing variance explained

Extract standard deviation from the pca_output object and compute variance explained.

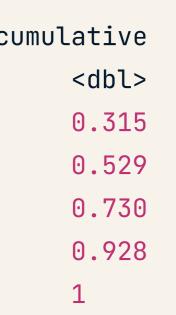
```
stdv <- pca_output$steps[[3]]$res$sdev</pre>
```

var_explained <- stdv^2/sum(stdv^2)</pre>

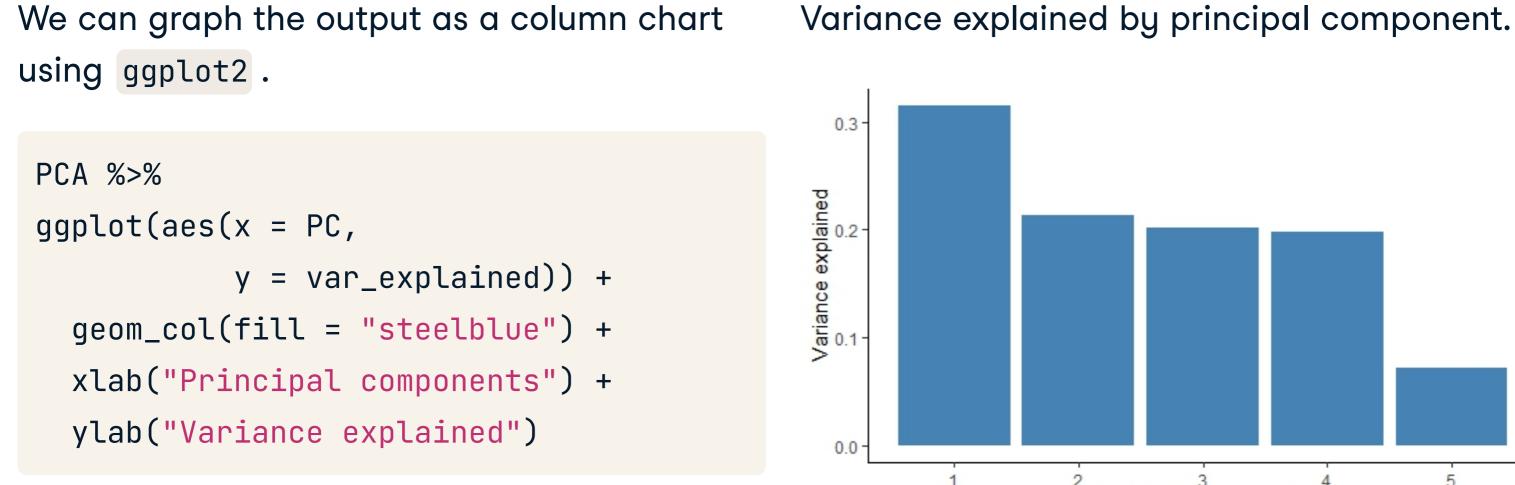
```
PCA = tibble(PC = 1:length(stdv),
          var_explained = var_explained,
          cumulative = cumsum(var_explained))
```

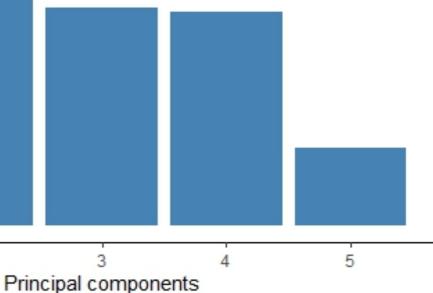
A table showing variance explained by principal component.

#	A tib	ole: 5 × 3	
	PC	var_explained	С
	<int></int>	<dbl></dbl>	
1	1	0.315	
2	2	0.214	
3	3	0.202	
4	4	0.198	
5	5	0.0722	



Visualizing variance explained





Let's practice!

FEATURE ENGINEERING IN R

Jorge Zazueta

Research Professor and Head of the Modeling Group at the School of Economics, UASLP

What is feature hashing?

- Transforms a text variable into a set of numerical variables
- Uses *hash values* as feature indices
- Low memory representation of the data \bullet
- Helpful when we expect new categories when new data is seen

on text values.

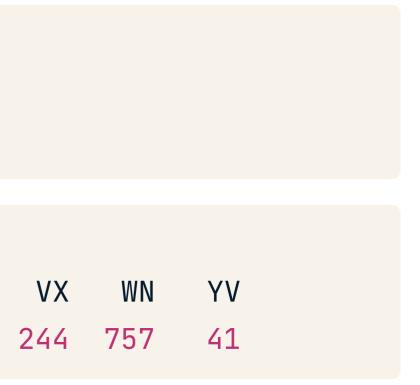
carrier		dummy_hash
UA	->	30
WN	->	32
DL	->	27
EV	->	44
B6	->	18
AA	->	26

Assign an index number to each carrier based

How many carriers are there?

The flights dataset includes carriers as factors, but we don't know if new carriers will appear when we look at new data.

fligh	flights %>%											
sel	select(carrier) %>%											
tak	ole()											
	ian											
carr	Ler											
9 E	AA	AS	B6	DL	EV	F9	FL	HA	MQ	00	UA	US
859	1744	26	2503	2619	3014	38	186	14	1540	2	3367	1228



Let us hash that feature

We can assign create dummy hashes to represent the factor values. Using the textrecipes package.

```
recipe <- recipe(~carrier,</pre>
                  data = flights_train) %>%
  step_dummy_hash(carrier, prefix = NULL,
                   signed = FALSE,
                   num terms = 50L)
# Prep the recipe
object <- recipe %>%
  prep()
# Bake the recipe object with new data
baked <- bake(object,</pre>
               new_data = flights_test)
```

```
A peak at the step_dummy_hash()
representation.
```

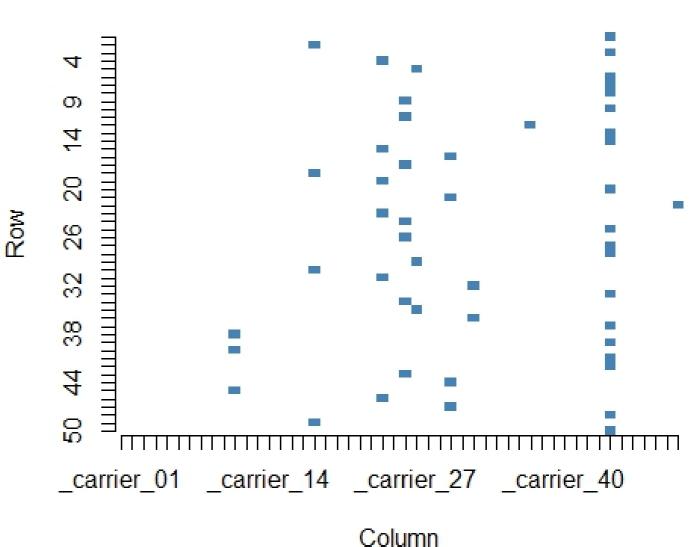
New names:					
• `` -> `	·1`				
# A tibbl	Le: 10 × 4				
1	`_carrier_17`	`_carrier_18`	`_carrier_19`		
<chr></chr>	<int></int>	<int></int>	<int></int>		
1 EV	0	0	Ο		
2 B6	0	1	Ο		
3 EV	0	0	Ο		
<mark>4</mark> MQ	0	0	Θ		
5 DL	0	0	Θ		
6 EV	0	0	0		

bind_cols(flights_test\$carrier,baked)[1:6,c(1,18:20)]

Visualizing the hashing

We can take a look at the matrix with the help of the plot.matrix package.

```
flights_hash <-
    as.matrix(baked)[1:50,]
plot(flights_hash,
     col = c("white","steelblue"),
     key = NULL,
     border = NA)
```



flights_hash

Let's practice!

Encoding categorical data using supervised learning

FEATURE ENGINEERING IN R

Jorge Zazueta

Research Professor and Head of the Modeling Group at the School of Economics, UASLP

Introducing supervised encoding

Supervised encoding, in contrast, uses the outcome values to derive numeric features from nominal predictors.

Introducing supervised encoding

Supervised encoding uses the outcome values to derive numeric features from nominal predictors.

Some supervised encoding functions available in the embed package

Function	Definition
step_lencode_glm()	Uses likelihood encodings to convert a nominal single set of scores derived from a generalized
step_lencode_bayes()	Applies Bayesian likelihood encodings to conve into a single set of scores derived from a gener estimated using Bayesian analysis.
step_lencode_mixed()	Converts nominal predictors into a single set of a generalized linear mixed model.

I predictor into a linear model.

ert a nominal predictor ralized linear model

of scores derived from

Predicting grant application success

We are interested in predicting grant application success based solely on sponsor code.

```
lr_model <- logistic_reg() # declare model</pre>
lr_recipe_qlm <- # Set recipe qlm</pre>
  recipe(class ~ sponsor_code,
         data = grants_train) %>%
  step_lencode_glm(sponsor_code,
                    # Declare outcome variable
                    outcome = vars(class))
lr_workflow_glm <- # Create Workflow</pre>
  workflow() %>%
  add_model(lr_model) %>%
  add_recipe(lr_recipe_glm)
```



Fitting, augmenting, and assessing

We fit and evaluate our model

Performance results are stored in glm_model

lr_fit_glm <- # Fit</pre>

lr_workflow_glm %>% fit(grants_train)

```
lr_aug_glm <- # Augment</pre>
  lr_fit_glm %>%
  augment(grants_test)
```

```
glm_model <- lr_aug_glm %>% # Assess
  class_evaluate(truth = class,
                 estimate = .pred_class,
                 .pred_successful)
```

glm_model

A tibble: 2×3

.metric .estimator .estimate

<chr> <chr>

- 1 accuracy binary
- 2 roc_auc binary

<dbl> 0.728 0.684

Binding models together

We build bayes_model and mixed_model to compare the performance of the corresponding steps.

```
# Define model names
model <- c("glm", "glm",</pre>
           "bayes", "bayes",
           "mixed", "mixed")
# Bind models in a tibble
models <-
bind_rows(glm_model,
          bayes_model,
          mixed_model)%>%
  add_column(model = model)%>%
  select(-.estimator) %>%
  spread(model,.estimate)
```

A convenient performance table

models			
# A tibble:	: 2 × 4	4	
.metric	bayes	glm	mix
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<db< td=""></db<>
1 accuracy	0.718	0.728	0.7
2 roc_auc	0.686	0.684	0.6

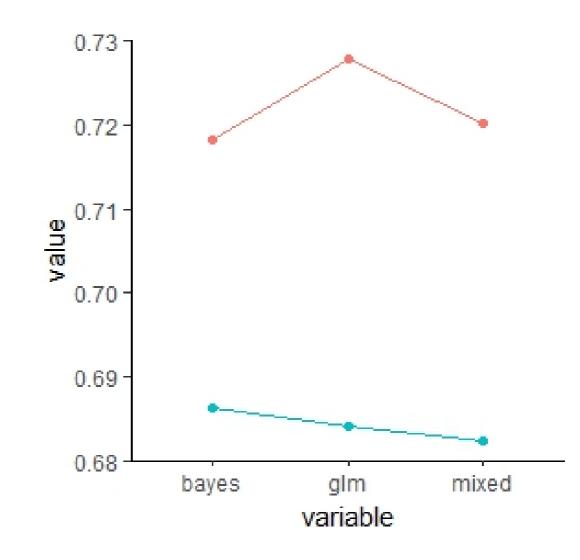
ked			
)l>			
720			
682			

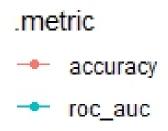
Visualizing our results

Visualize results in a parallel coordinates chart from the Gally package.

Libraries library(GGally) # Parallel coordinates chart ggparcoord(models, columns = 2:4,groupColumn = 1, scale="globalminmax", showPoints = TRUE)

Parallel coordinates chart of accuracy and roc_auc comparing all models.





Let's practice!

Variable Importance

FEATURE ENGINEERING IN R

Jorge Zazueta

Research Professor. Head of the Modeling Group at the School of Economics, UASLP

Adding more predictors

A more complete model includes many variables.

```
lr_model <- logistic_reg()</pre>
lr_recipe <-</pre>
  recipe(class~ sponsor_code +
         contract_value_band +
         category_code,
         data = grants_train) %>%
  step_lencode_glm(sponsor_code,
                    contract_value_band,
                    category_code,
                    outcome = vars(class))
```

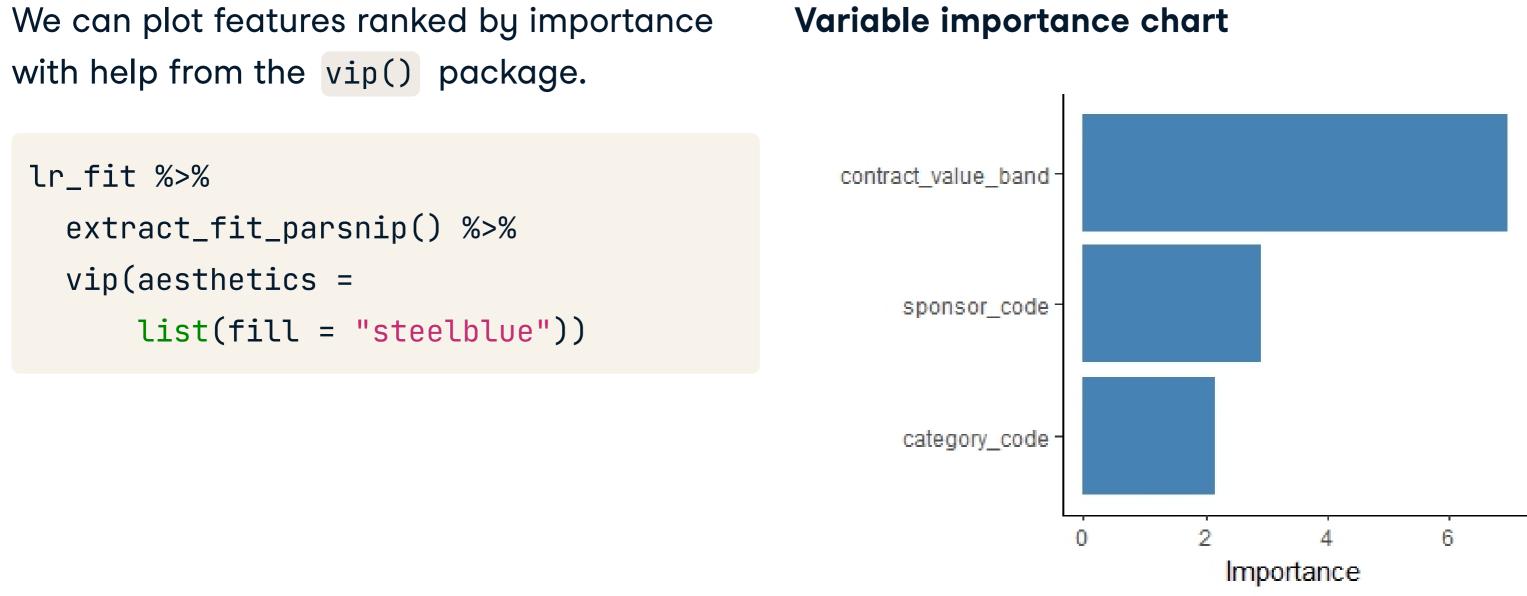
With more appealable results.

lr_aug %>% class_evaluate(truth = class, estimate = .pred_class, .pred_successful)

2 × 3
.estimator .
<chr></chr>
binary
binary

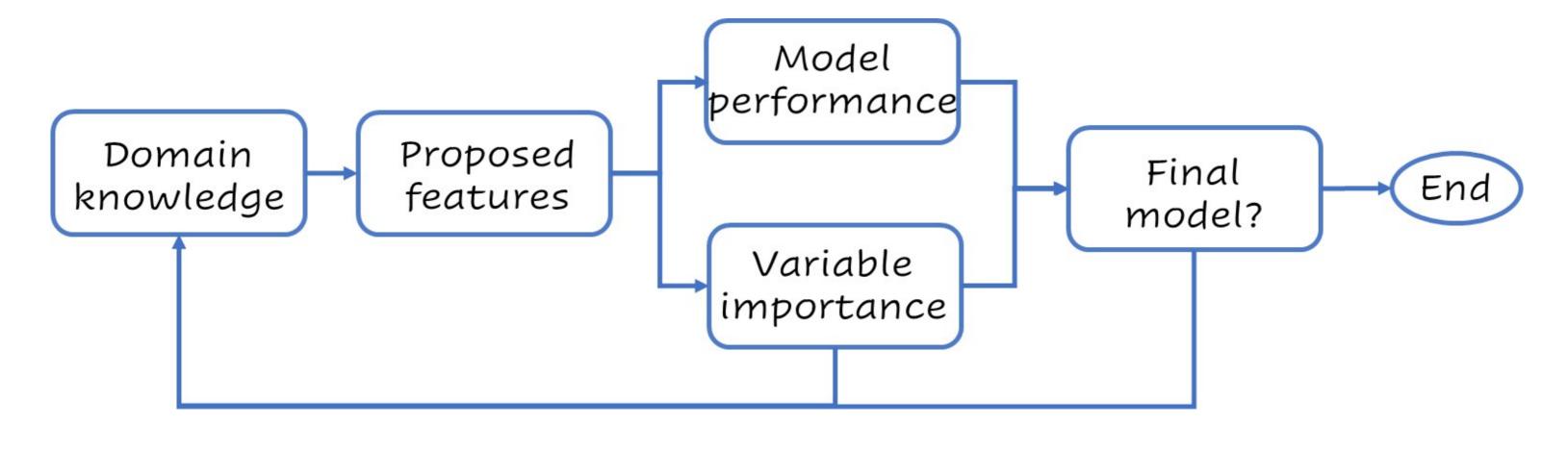
estimate <dbl> 0.890 0.951

Which variables matter most?



Variable importance and feature engineering

Variable importance can be a powerful feedback mechanism for refining feature engineering based on domain knowledge.



Let's practice!

