
Reducing the
model's features

FEATURE  ENGINEER ING IN  R

Jorge Zazueta
Research Professor and Head of the
Modeling Group at the School of
Economics, UASLP



FEATURE ENGINEERING IN R

Reasons to reduce the number of features
Eliminating irrelevant or low-information variables can have benefits, including

Reduce model variance without significantly increasing bias

Increase out-of-sample model performance

Reducing computation time

Decreasing model complexity

Improving interpretability
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Sifting data through variable importance
Fitting a model with all features

lr_recipe_full <- 
  recipe(Loan_Status ~., data = train) %>% 
  update_role(Loan_ID, new_role = "ID") 
 
lr_workflow_full <-  
  workflow() %>% 
  add_model(lr_model) %>% 
  add_recipe(lr_recipe_full) 
 
lr_fit_full <-  
  lr_workflow_full %>% 
  fit(data = train) 

Graphing variable vip

lr_fit_full %>% 
  extract_fit_parsnip() %>% 
  vip(aesthetics = list(fill = "steelblue")) 

Variable importance
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Build a reduced model using the formula syntax
We can add features directly by using the basic R formula syntax.

# Create recipe 
recipe_formula <-  
  recipe(Loan_Status ~ Credit_History + Property_Area +  
           LoanAmount, data = train) 

# Bundle with model 
workflow_formula <- # Bundle with model 
  workflow() %>% add_model(lr_model) %>% 
  add_recipe(recipe_formula) 
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Build a reduced model by creating a features vector
A feature vector can be passed used to select features before training.

# Feature vector 
features <- c("Credit_History", "Property_Area", "LoanAmount", "Loan_Status")  

# Training and testing data 
train_features <- train %>% select(all_of(features)) 
test_features <- test %>% select(all_of(features)) 

# Create recipe and bundle with model 
recipe_features <- recipe(Loan_Status ~., data = train_features) 
workflow_features <- workflow() %>% add_model(lr_model) %>% 
  add_recipe(recipe_features)  
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Creating the augmented objects
Augmented objects for both approaches

lr_aug_formula <- 
  workflow_formula %>% 
  fit(data = train) %>% 
  augment(new_data = test) 

lr_aug_features <- 
  workflow_features %>% 
  fit(data = train_features) %>% 
  augment(new_data = test_features) 

Both ways return the same results

[1] TRUE 

all_equal(lr_aug_features,  
lr_aug_formula %>% 
select(all_of(features), 
starts_with(".pred"))) 
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Comparing the full and reduced models
Using all features

lr_fit_full <- # Fit workflow 
  lr_workflow_full %>% 
  fit(data = train) 
lr_aug_full <- # Augment 
  lr_fit_full %>% 
  augment(test) 
lr_aug_full %>% # Evaluate 
  class_evaluate(truth = Loan_Status,  
                 estimate = .pred_class, 
                 .pred_Y) 

# A tibble: 2 × 3 
  .metric  .estimator .estimate 
  <chr>    <chr>          <dbl> 
1 accuracy binary         0.842 
2 roc_auc  binary         0.744 

Using top 3 features*

lr_fit_formula <- # Fit workflow 
  workflow_formula %>% 
  fit(train) 
lr_aug_formula <- # Augment 
  lr_fit_formula %>% 
  augment(new_data = test) 
lr_aug_formula %>% # Evaluate 
  class_evaluate(truth = Loan_Status,  
                 estimate = .pred_class, 
                 .pred_Y) 

# A tibble: 2 × 3 
  .metric  .estimator .estimate 
  <chr>    <chr>          <dbl> 
1 accuracy binary         0.842 
2 roc_auc  binary         0.733 
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Two common regularization techniques
Lasso

Adds penalty term proportional to absolute
value of model weights

Encourages some weights to become
exactly zero

Effectively eliminates the corresponding
features

Can be an automated feature selection
method

Ridge

Adds penalty term proportional to square
of model weights

Does not shrink some coefficients to zero
like Lasso

But can effectively reduce overfitting
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A first look at Lasso
Set up the model

recipe <- # Define recipe 
recipe(Loan_Status ~ ., data = train) %>% 
  step_normalize(all_numeric_predictors()) %>%  
  step_dummy(all_nominal_predictors()) %>% 
  update_role(Loan_ID, new_role = "ID") 
# set up model 
model_lasso_manual <- logistic_reg() %>% 
  set_engine("glmnet") %>% 
  set_args(mixture = 1, penalty = .2) 
# Bundle in workflow 
workflow_lasso_manual <- 
  workflow() %>% 
  add_model(model_lasso_manual) %>% 
  add_recipe(recipe) 

Fit and inspect

fit_lasso_manual <- # Fit workflow 
  workflow_lasso_manual %>%  
  fit(train) 
#Inspect coefficients 
tidy(fit_lasso_manual) 

# A tibble: 15 × 3 
   term                    estimate penalty 
   <chr>                      <dbl>   <dbl> 
 1 (Intercept)               -0.816     0.2 
 2 ApplicantIncome            0         0.2 
 3 CoapplicantIncome          0         0.2 
 4 LoanAmount                 0         0.2 
 5 Loan_Amount_Term           0         0.2 
 6 Credit_History            -0.220     0.2 
 7 Gender_Female              0         0.2 
 ...                          ...        ... 
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Simple logistic regression vs. Lasso
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Hyperparameter tuning
Setting a model with tuning

model_lasso_tuned <- logistic_reg() %>% 
  set_engine("glmnet") %>% 
  set_args(mixture = 1,  
  penalty = tune())  
 
workflow_lasso_tuned <- 
  workflow() %>% 
  add_model(model_lasso_tuned) %>% 
  add_recipe(recipe) 
 
penalty_grid <- grid_regular( 
  penalty(range = c(-3, 1)), 
  levels = 30) 

Looking at the tuning output

tune_output <- tune_grid(  
  workflow_lasso_tuned, 
  resamples = vfold_cv(train, v = 5), 
  metrics = metric_set(roc_auc), 
  grid = penalty_grid) 
autoplot(tune_output) 
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Exploring the results
Auto-chosen features

best_penalty <-  
select_by_one_std_err(tune_output,  
metric = 'roc_auc', desc(penalty))  
 
# Fit Final Model 
final_fit<-  
finalize_workflow(workflow_lasso_tuned,  
best_penalty) %>% 
  fit(data = train) 

final_fit_se %>% tidy() 

# A tibble: 15 × 3 
   term                    estimate penalty 
   <chr>                      <dbl>   <dbl> 
 1 (Intercept)               -0.660  0.0452 
 2 ApplicantIncome            0      0.0452 
 3 CoapplicantIncome          0      0.0452 
 4 LoanAmount                 0      0.0452 
 5 Loan_Amount_Term           0      0.0452 
 6 Credit_History            -0.948  0.0452 
 7 Gender_Female              0      0.0452 
 8 Married_Yes               -0.191  0.0452 
 9 Dependents_X1              0      0.0452 
10 Dependents_X2              0      0.0452 
11 Dependents_X3.             0      0.0452 
12 Education_Not.Graduate     0      0.0452 
13 Self_Employed_Yes          0      0.0452 
14 Property_Area_Rural        0      0.0452 
15 Property_Area_Semiurban   -0.163  0.0452 
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Simple logistic regression vs. tuned Lasso
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Ridge regularization
Ridge is the option when mixture = 0 tune_output <- tune_grid(  

  workflow_ridge_tuned, 
  resamples = vfold_cv(train, v = 5), 
  metrics = metric_set(roc_auc), 
  grid = penalty_grid)   
 autoplot(tune_output) 

model_ridge_tuned <- logistic_reg() %>% 
  set_engine("glmnet") %>% 
  set_args(mixture = 0, penalty = tune())  

workflow_ridge_tuned <- 
  workflow() %>% 
  add_model(model_ridge_tuned) %>% 
  add_recipe(recipe) 

tune_output <- tune_grid(  
  workflow_ridge_tuned, 
  resamples = vfold_cv(train, v = 5), 
  metrics = metric_set(roc_auc), 
  grid = penalty_grid) 
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Ridge regularization
best_penalty <-  
select_by_one_std_err(tune_output, 
metric = 'roc_auc', desc(penalty))  
best_penalty 
 
final_fit<-  
finalize_workflow(workflow_ridge_tuned,  
best_penalty) %>% 
  fit(data = train) 

tidy(final_fit) 

# A tibble: 15 × 3 
   term                      estimate penalty 
   <chr>                        <dbl>   <dbl> 
 1 (Intercept)             -0.799          10 
 2 ApplicantIncome          0.00232        10 
 3 CoapplicantIncome        0.0000537      10 
 4 LoanAmount               0.00291        10 
 5 Loan_Amount_Term         0.00161        10 
 6 Credit_History          -0.0245         10 
 7 Gender_Female            0.00850        10 
 8 Married_Yes             -0.0140         10 
 9 Dependents_X1            0.00497        10 
10 Dependents_X2           -0.0100         10 
11 Dependents_X3.           0.00259        10 
12 Education_Not.Graduate   0.00308        10 
13 Self_Employed_Yes        0.00892        10 
14 Property_Area_Rural      0.0109         10 
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Ridge vs. Lasso
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A stylized process modeling flow
Typical high-level modeling steps.
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A stylized process modeling flow
Typical high-level modeling steps.
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Prepare
Start by doing some basic housekeeping and
setting up our splits.

loans <- # Basic housekeeping 
  loans %>% 
  mutate(across(where(is_character), 
                  as_factor)) %>% 
  mutate(across(Credit_History, 
                  as_factor)) 
 
set.seed(123) # Set up splits 
split <- initial_split(loans,  
        strata = Loan_Status) 
test <- testing(split) 
train <- training(split) 

glimpse(train) 

Rows: 460 
Columns: 13 
$ Loan_ID           <fct> LP001003... 
$ Gender            <fct> Male, Ma... 
$ Married           <fct> Yes, No,... 
$ Dependents        <fct> 1, 0, 0,... 
$ Education         <fct> Graduate... 
$ Self_Employed     <fct> No, No, ... 
$ ApplicantIncome   <dbl> 4583, 18... 
$ CoapplicantIncome <dbl> 1508, 28... 
$ LoanAmount        <dbl> 128, 114... 
$ Loan_Amount_Term  <dbl> 360, 360... 
$ Credit_History    <fct> 1, 1, 0,... 
$ Property_Area     <fct> Rural, R... 
$ Loan_Status       <fct> N, N, N,... 



FEATURE ENGINEERING IN R

Preprocess
Our recipe can be quite short or very
complex.

recipe 

Recipe 

Inputs: 

      role #variables 
        ID          1 
   outcome          1 
 predictor         11 

Operations: 

Centering and scaling for all_numeric_predictors() 
K-nearest neighbor imputation for all_predictors() 
Dummy variables from all_nominal_predictors() 

recipe <- recipe(Loan_Status ~ ., 
data = train) %>% 
  update_role(Loan_ID,  
  new_role = "ID") %>% 
  step_normalize(all_numeric_predictors()) %>%  
  step_impute_knn(all_predictors()) %>% 
  step_dummy(all_nominal_predictors()) 
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Model
Set up workflow

lr_model <- logistic_reg() %>% 
  set_engine("glmnet") %>% 
  set_args(mixture = 1, penalty = tune()) 
 
lr_penalty_grid <- grid_regular( 
  penalty(range = c(-3, 1)), 
  levels = 30) 
 
lr_workflow <- 
  workflow() %>% 
  add_model(lr_model) %>% 
  add_recipe(recipe) 

lr_workflow 

--Workflow ------------------------------- 
Preprocessor: Recipe 
Model: logistic_reg()
 
-- Preprocessor -------------------------- 
3 Recipe Steps 
- step_normalize() 
- step_impute_knn() 
- step_dummy() 
 
-- Model --------------------------------- 
Logistic Regression Model Specification (classification) 
 
Main Arguments: 
  penalty = tune() 
  mixture = 1 
Computational engine: glmnet 
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Assess
Tune penalty for Lasso

lr_tune_output <- tune_grid(  
  lr_workflow, 
  resamples = vfold_cv(train, v = 5), 
  metrics = metric_set(roc_auc), 
  grid = penalty_grid) 

autoplot(tune_output) 

ROC_AUC vs. Regularization
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Assess
Fitting the final model

best_penalty <- 
select_by_one_std_err(lr_tune_output, 
metric = 'roc_auc', desc(penalty))  
 
lr_final_fit<- 
finalize_workflow(lr_workflow, best_penalty) %>% 
  fit(data = train) 
 
lr_final_fit %>% 
  augment(test) %>%  
  class_evaluate(truth = Loan_Status, 
              estimate = .pred_class, 
                         .pred_Y) 

Our performance metrics

# A tibble: 2 × 3 
  .metric  .estimator .estimate 
  <chr>    <chr>          <dbl> 
1 accuracy binary         0.818 
2 roc_auc  binary         0.813 
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You've gone a great distance.
From zero to hero in four lessons!
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Where to go from here?
Data science is a never ending journey that keeps refreshing itself. These are some datacamp
courses that you might considering as next steps.

Dimensionality reduction in R

Advanced dimensionality reduction in R

Modeling with tidymodels in R



Go get them all!
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