
Reducing the
model's features

FEATURE ENGINEER ING IN R

Jorge Zazueta
Research Professor and Head of the
Modeling Group at the School of
Economics, UASLP

FEATURE ENGINEERING IN R

Reasons to reduce the number of features
Eliminating irrelevant or low-information variables can have benefits, including

Reduce model variance without significantly increasing bias

Increase out-of-sample model performance

Reducing computation time

Decreasing model complexity

Improving interpretability

FEATURE ENGINEERING IN R

Sifting data through variable importance
Fitting a model with all features

lr_recipe_full <-
 recipe(Loan_Status ~., data = train) %>%
 update_role(Loan_ID, new_role = "ID")

lr_workflow_full <-
 workflow() %>%
 add_model(lr_model) %>%
 add_recipe(lr_recipe_full)

lr_fit_full <-
 lr_workflow_full %>%
 fit(data = train)

Graphing variable vip

lr_fit_full %>%
 extract_fit_parsnip() %>%
 vip(aesthetics = list(fill = "steelblue"))

Variable importance

FEATURE ENGINEERING IN R

Build a reduced model using the formula syntax
We can add features directly by using the basic R formula syntax.

Create recipe
recipe_formula <-
 recipe(Loan_Status ~ Credit_History + Property_Area +
 LoanAmount, data = train)

Bundle with model
workflow_formula <- # Bundle with model
 workflow() %>% add_model(lr_model) %>%
 add_recipe(recipe_formula)

FEATURE ENGINEERING IN R

Build a reduced model by creating a features vector
A feature vector can be passed used to select features before training.

Feature vector
features <- c("Credit_History", "Property_Area", "LoanAmount", "Loan_Status")

Training and testing data
train_features <- train %>% select(all_of(features))
test_features <- test %>% select(all_of(features))

Create recipe and bundle with model
recipe_features <- recipe(Loan_Status ~., data = train_features)
workflow_features <- workflow() %>% add_model(lr_model) %>%
 add_recipe(recipe_features)

FEATURE ENGINEERING IN R

Creating the augmented objects
Augmented objects for both approaches

lr_aug_formula <-
 workflow_formula %>%
 fit(data = train) %>%
 augment(new_data = test)

lr_aug_features <-
 workflow_features %>%
 fit(data = train_features) %>%
 augment(new_data = test_features)

Both ways return the same results

[1] TRUE

all_equal(lr_aug_features,
lr_aug_formula %>%
select(all_of(features),
starts_with(".pred")))

FEATURE ENGINEERING IN R

Comparing the full and reduced models
Using all features

lr_fit_full <- # Fit workflow
 lr_workflow_full %>%
 fit(data = train)
lr_aug_full <- # Augment
 lr_fit_full %>%
 augment(test)
lr_aug_full %>% # Evaluate
 class_evaluate(truth = Loan_Status,
 estimate = .pred_class,
 .pred_Y)

A tibble: 2 × 3
 .metric .estimator .estimate
 <chr> <chr> <dbl>
1 accuracy binary 0.842
2 roc_auc binary 0.744

Using top 3 features*

lr_fit_formula <- # Fit workflow
 workflow_formula %>%
 fit(train)
lr_aug_formula <- # Augment
 lr_fit_formula %>%
 augment(new_data = test)
lr_aug_formula %>% # Evaluate
 class_evaluate(truth = Loan_Status,
 estimate = .pred_class,
 .pred_Y)

A tibble: 2 × 3
 .metric .estimator .estimate
 <chr> <chr> <dbl>
1 accuracy binary 0.842
2 roc_auc binary 0.733

Let's practice!
FEATURE ENGINEER ING IN R

Shrinkage methods
FEATURE ENGINEER ING IN R

Jorge Zazueta
Research Professor and Head of the
Modeling Group at the School of
Economics, UASLP

FEATURE ENGINEERING IN R

Two common regularization techniques
Lasso

Adds penalty term proportional to absolute
value of model weights

Encourages some weights to become
exactly zero

Effectively eliminates the corresponding
features

Can be an automated feature selection
method

Ridge

Adds penalty term proportional to square
of model weights

Does not shrink some coefficients to zero
like Lasso

But can effectively reduce overfitting

FEATURE ENGINEERING IN R

A first look at Lasso
Set up the model

recipe <- # Define recipe
recipe(Loan_Status ~ ., data = train) %>%
 step_normalize(all_numeric_predictors()) %>%
 step_dummy(all_nominal_predictors()) %>%
 update_role(Loan_ID, new_role = "ID")
set up model
model_lasso_manual <- logistic_reg() %>%
 set_engine("glmnet") %>%
 set_args(mixture = 1, penalty = .2)
Bundle in workflow
workflow_lasso_manual <-
 workflow() %>%
 add_model(model_lasso_manual) %>%
 add_recipe(recipe)

Fit and inspect

fit_lasso_manual <- # Fit workflow
 workflow_lasso_manual %>%
 fit(train)
#Inspect coefficients
tidy(fit_lasso_manual)

A tibble: 15 × 3
 term estimate penalty
 <chr> <dbl> <dbl>
 1 (Intercept) -0.816 0.2
 2 ApplicantIncome 0 0.2
 3 CoapplicantIncome 0 0.2
 4 LoanAmount 0 0.2
 5 Loan_Amount_Term 0 0.2
 6 Credit_History -0.220 0.2
 7 Gender_Female 0 0.2

FEATURE ENGINEERING IN R

Simple logistic regression vs. Lasso

FEATURE ENGINEERING IN R

Hyperparameter tuning
Setting a model with tuning

model_lasso_tuned <- logistic_reg() %>%
 set_engine("glmnet") %>%
 set_args(mixture = 1,
 penalty = tune())

workflow_lasso_tuned <-
 workflow() %>%
 add_model(model_lasso_tuned) %>%
 add_recipe(recipe)

penalty_grid <- grid_regular(
 penalty(range = c(-3, 1)),
 levels = 30)

Looking at the tuning output

tune_output <- tune_grid(
 workflow_lasso_tuned,
 resamples = vfold_cv(train, v = 5),
 metrics = metric_set(roc_auc),
 grid = penalty_grid)
autoplot(tune_output)

FEATURE ENGINEERING IN R

Exploring the results
Auto-chosen features

best_penalty <-
select_by_one_std_err(tune_output,
metric = 'roc_auc', desc(penalty))

Fit Final Model
final_fit<-
finalize_workflow(workflow_lasso_tuned,
best_penalty) %>%
 fit(data = train)

final_fit_se %>% tidy()

A tibble: 15 × 3
 term estimate penalty
 <chr> <dbl> <dbl>
 1 (Intercept) -0.660 0.0452
 2 ApplicantIncome 0 0.0452
 3 CoapplicantIncome 0 0.0452
 4 LoanAmount 0 0.0452
 5 Loan_Amount_Term 0 0.0452
 6 Credit_History -0.948 0.0452
 7 Gender_Female 0 0.0452
 8 Married_Yes -0.191 0.0452
 9 Dependents_X1 0 0.0452
10 Dependents_X2 0 0.0452
11 Dependents_X3. 0 0.0452
12 Education_Not.Graduate 0 0.0452
13 Self_Employed_Yes 0 0.0452
14 Property_Area_Rural 0 0.0452
15 Property_Area_Semiurban -0.163 0.0452

FEATURE ENGINEERING IN R

Simple logistic regression vs. tuned Lasso

FEATURE ENGINEERING IN R

Ridge regularization
Ridge is the option when mixture = 0 tune_output <- tune_grid(

 workflow_ridge_tuned,
 resamples = vfold_cv(train, v = 5),
 metrics = metric_set(roc_auc),
 grid = penalty_grid)
 autoplot(tune_output)

model_ridge_tuned <- logistic_reg() %>%
 set_engine("glmnet") %>%
 set_args(mixture = 0, penalty = tune())

workflow_ridge_tuned <-
 workflow() %>%
 add_model(model_ridge_tuned) %>%
 add_recipe(recipe)

tune_output <- tune_grid(
 workflow_ridge_tuned,
 resamples = vfold_cv(train, v = 5),
 metrics = metric_set(roc_auc),
 grid = penalty_grid)

FEATURE ENGINEERING IN R

Ridge regularization
best_penalty <-
select_by_one_std_err(tune_output,
metric = 'roc_auc', desc(penalty))
best_penalty

final_fit<-
finalize_workflow(workflow_ridge_tuned,
best_penalty) %>%
 fit(data = train)

tidy(final_fit)

A tibble: 15 × 3
 term estimate penalty
 <chr> <dbl> <dbl>
 1 (Intercept) -0.799 10
 2 ApplicantIncome 0.00232 10
 3 CoapplicantIncome 0.0000537 10
 4 LoanAmount 0.00291 10
 5 Loan_Amount_Term 0.00161 10
 6 Credit_History -0.0245 10
 7 Gender_Female 0.00850 10
 8 Married_Yes -0.0140 10
 9 Dependents_X1 0.00497 10
10 Dependents_X2 -0.0100 10
11 Dependents_X3. 0.00259 10
12 Education_Not.Graduate 0.00308 10
13 Self_Employed_Yes 0.00892 10
14 Property_Area_Rural 0.0109 10

FEATURE ENGINEERING IN R

Ridge vs. Lasso

Let's practice!
FEATURE ENGINEER ING IN R

Putting it all
together

FEATURE ENGINEER ING IN R

Jorge Zazueta
Research Professor. Head of the
Modeling Group at the School of
Economics, UASLP

FEATURE ENGINEERING IN R

A stylized process modeling flow
Typical high-level modeling steps.

FEATURE ENGINEERING IN R

A stylized process modeling flow
Typical high-level modeling steps.

FEATURE ENGINEERING IN R

Prepare
Start by doing some basic housekeeping and
setting up our splits.

loans <- # Basic housekeeping
 loans %>%
 mutate(across(where(is_character),
 as_factor)) %>%
 mutate(across(Credit_History,
 as_factor))

set.seed(123) # Set up splits
split <- initial_split(loans,
 strata = Loan_Status)
test <- testing(split)
train <- training(split)

glimpse(train)

Rows: 460
Columns: 13
$ Loan_ID <fct> LP001003...
$ Gender <fct> Male, Ma...
$ Married <fct> Yes, No,...
$ Dependents <fct> 1, 0, 0,...
$ Education <fct> Graduate...
$ Self_Employed <fct> No, No, ...
$ ApplicantIncome <dbl> 4583, 18...
$ CoapplicantIncome <dbl> 1508, 28...
$ LoanAmount <dbl> 128, 114...
$ Loan_Amount_Term <dbl> 360, 360...
$ Credit_History <fct> 1, 1, 0,...
$ Property_Area <fct> Rural, R...
$ Loan_Status <fct> N, N, N,...

FEATURE ENGINEERING IN R

Preprocess
Our recipe can be quite short or very
complex.

recipe

Recipe

Inputs:

 role #variables
 ID 1
 outcome 1
 predictor 11

Operations:

Centering and scaling for all_numeric_predictors()
K-nearest neighbor imputation for all_predictors()
Dummy variables from all_nominal_predictors()

recipe <- recipe(Loan_Status ~ .,
data = train) %>%
 update_role(Loan_ID,
 new_role = "ID") %>%
 step_normalize(all_numeric_predictors()) %>%
 step_impute_knn(all_predictors()) %>%
 step_dummy(all_nominal_predictors())

FEATURE ENGINEERING IN R

Model
Set up workflow

lr_model <- logistic_reg() %>%
 set_engine("glmnet") %>%
 set_args(mixture = 1, penalty = tune())

lr_penalty_grid <- grid_regular(
 penalty(range = c(-3, 1)),
 levels = 30)

lr_workflow <-
 workflow() %>%
 add_model(lr_model) %>%
 add_recipe(recipe)

lr_workflow

--Workflow -------------------------------
Preprocessor: Recipe
Model: logistic_reg()

-- Preprocessor --------------------------
3 Recipe Steps
- step_normalize()
- step_impute_knn()
- step_dummy()

-- Model ---------------------------------
Logistic Regression Model Specification (classification)

Main Arguments:
 penalty = tune()
 mixture = 1
Computational engine: glmnet

FEATURE ENGINEERING IN R

Assess
Tune penalty for Lasso

lr_tune_output <- tune_grid(
 lr_workflow,
 resamples = vfold_cv(train, v = 5),
 metrics = metric_set(roc_auc),
 grid = penalty_grid)

autoplot(tune_output)

ROC_AUC vs. Regularization

FEATURE ENGINEERING IN R

Assess
Fitting the final model

best_penalty <-
select_by_one_std_err(lr_tune_output,
metric = 'roc_auc', desc(penalty))

lr_final_fit<-
finalize_workflow(lr_workflow, best_penalty) %>%
 fit(data = train)

lr_final_fit %>%
 augment(test) %>%
 class_evaluate(truth = Loan_Status,
 estimate = .pred_class,
 .pred_Y)

Our performance metrics

A tibble: 2 × 3
 .metric .estimator .estimate
 <chr> <chr> <dbl>
1 accuracy binary 0.818
2 roc_auc binary 0.813

Let's practice!
FEATURE ENGINEER ING IN R

Congratulations!
FEATURE ENGINEER ING IN R

Jorge Zazueta
Research Professor. Head of the
Modeling Group at the School of
Economics, UASLP

FEATURE ENGINEERING IN R

You've gone a great distance.
From zero to hero in four lessons!

FEATURE ENGINEERING IN R

Where to go from here?
Data science is a never ending journey that keeps refreshing itself. These are some datacamp
courses that you might considering as next steps.

Dimensionality reduction in R

Advanced dimensionality reduction in R

Modeling with tidymodels in R

Go get them all!
FEATURE ENGINEER ING IN R

