Reducing the
model's features

FEATURE ENGINEERING IN R

®

Jorge Zazueta

Research Professor and Head of the
Modeling Group at the School of
Economics, UASLP

X datacamp

Reasons to reduce the number of features

Eliminating irrelevant or low-information variables can have benefits, including

Reduce model variance without significantly increasing bias
Increase out-of-sample model performance

Reducing computation time

Decreasing model complexity

Improving interpretability

FEATURE ENGINEERING IN R

Sifting data through variable importance

Fitting a model with all features Graphing variable vip
lr_recipe_full <- Lr_fit_full %>%
recipe(Loan_Status ~., data = train) %>% extract_fit_parsnip() %>%
update_role(Loan_ID, new_role = "ID") vip(aesthetics = 1ist(fill = "steelblue"))
Lr_workflow_full <- Variable importance
workflow() %>%

add_model(lr_model) %>% NI
add_recipe(lr_recipe_full) ’

-Lp_fit_fU-L-L <- EducationMot Graduate -
-LP_WOPkf-LOW_fU-L-L %>% Dependents2
Dependents 3+

fit(data = train)

Coapplicantincome

Dependents

=

4
Importance

FEATURE ENGINEERING IN R

Build a reduced model using the formula syntax

We can add features directly by using the basic R formula syntax.

Create recipe
recipe_formula <-
recipe(Loan_Status ~ Credit_History + Property_Area +
LoanAmount, data = train)

Bundle with model

workflow_formula <- # Bundle with model
workflow() %>% add_model(lr_model) %>%
add_recipe(recipe_formula)

FEATURE ENGINEERING IN R

Build a reduced model by creating a features vector

A feature vector can be passed used to select features before training.

Feature vector
features <- c("Credit_History", "Property_Area", "LoanAmount", "Loan_Status")

Training and testing data
train_features <- train %>% select(all_of(features))
test _features <- test %>% select(all_of(features))

Create recipe and bundle with model

recipe_features <- recipe(Loan_Status ~., data = train_features)

workflow_features <- workflow() %>% add_model(lr_model) %>%
add_recipe(recipe_features)

FEATURE ENGINEERING IN R

Creating the augmented objects

Augmented objects for both approaches

Lr_aug_formula <-
workflow_formula %>%
fit(data = train) %>%
augment (new_data = test)

Lr_aug_features <-
workflow_features %>%
fit(data = train_features) %>%

augment(new_data = test_features)

Both ways return the same results

all_equal(lr_aug_features,
Lr_aug_formula %>%
select(all_of(features),
starts_with(".pred")))

[1] TRUE

FEATURE ENGINEERING IN R

Comparing the full and reduced models

Using all features

lr_fit_full <- # Fit workflow
Lr_workflow_full %>%
fit(data = train)
lr_aug_full <- # Augment
Lr_fit_full %>%
augment(test)
lr_aug_Tfull %>% # Evaluate
class_evaluate(truth = Loan_Status,
estimate = .pred_class,
.pred_Y)

A tibble: 2 x 3

.metric .estimator .estimate

<chr> <chr> <dbl>
1 accuracy binary 0.842
2 roc_auc binary 0.744

Using top 3 features*®

Lr_fit_formula <- # Fit workflow
workflow_formula %>%
fit(train)
Lr_aug_formula <- # Augment
Lr_fit_formula %>%
augment(new_data = test)
Lr_aug_formula %>% # Evaluate
class_evaluate(truth = Loan_Status,
estimate = .pred_class,
.pred_Y)

A tibble: 2 x 3

.metric .estimator .estimate

<chr> <chr> <dbl>
1 accuracy binary 0.842
2 roc_auc binary 0.733

FEATURE ENGINEERING IN R

Let's practice!

FEATURE ENGINEERING IN R

Shrinkage methods

FEATURE ENGINEERING IN R

®

Jorge Zazueta
Research Professor and Head of the

Modeling Group at the School of
Economics, UASLP

X datacamp

Two common regularization techniques
Lasso Ridge

e Adds penalty term proportional to absolute ¢ Adds penalty term proportional to square

value of model weights of model weights

e Encourages some weights to become Does not shrink some coefficients to zero
exactly zero like Lasso

o Effectively eliminates the corresponding e But can effectively reduce overfitting
features

e Can be an automated feature selection
method

FEATURE ENGINEERING IN R

A first look at Lasso

Set up the model Fit and inspect
recipe <- # Define recipe fit_lasso_manual <- # Fit workflow
recipe(Loan_Status ~ ., data = train) %>% workflow_lasso_manual %>%
step_normalize(all_numeric_predictors()) %>% fit(train)
step_dummy(all_nominal_predictors()) %>% #Inspect coefficients
update_role(Loan_ID, new_role = "ID") tidy(fit_lasso_manual)

set up model

model_lasso_manual <- logistic_reg() %>% .
] # A tibble: 15 x 3
set_engine("glmnet") %>%

) term estimate penalty
set_args(mixture = 1, penalty = .2)
. <chr> <dbl> <dbl>
Bundle 1n workflow
1 (Intercept) -0.816 0.2
workflow_lasso_manual <-]
2 ApplicantIncome 0) 0.2
workflow() %>% _
3 CoapplicantIncome 0) 0.2
add_model(model_lasso_manual) %>%
) i 4 LoanAmount 0) 0.2
add_recipe(recipe)
5 Loan_Amount_Term 0) 0.2
6 Credit_History -0.220 0.2
7 Gender_Female 0) 0.2

FEATURE ENGINEERING IN R

Simple logistic regression vs. Lasso

simple logistic regression vs. Lasso (manual penalty = 0.2)

X datacamp

Self Employed es

Property Area_Semiurban

Froperty_Arsa_Fuwral

Mamied es

LoanAnmount

Loan_Armvownt_Term

GZendar_Famak

Education_Mot. Graduste

Cependants X3, 7

Dependants 42

Cependants_XT 7

Credit Histomy

Coapplicantincome

Applicantlncoms

{Int=roept)

e:'I. 5 0.0
Feature coefficients

FEATURE ENGINEERING IN R

Hyperparameter tuning

Setting a model with tuning

model_lasso_tuned <- logistic_reg() %>%
set_engine("glmnet") %>%
set_args(mixture = 1,
penalty = tune())

workflow_lasso_tuned <-
workflow() %>%
add_model(model_lasso_tuned) %>%
add_recipe(recipe)

penalty_grid <- grid_regular(
penalty(range = c(-3, 1)),
levels = 30)

Looking at the tuning output

tune_output <- tune_grid(
workflow_lasso_tuned,
resamples = vfold_cv(train, v = 5),
metrics = metric_set(roc_auc),
grid = penalty_grid)
autoplot(tune_output)

0.7

roc_auc

=
o

1e-03 1e-02 1e-01 Te+

Amount of Regularization

FEATURE ENGINEERING IN R

00

Exploring the results

Auto-chosen features final_fit_se %% tidy()
best_penalty <- # A tibble: 15 x 3

select_by_one_std_err(tune_output, term estimate penalty
metric = 'roc_auc', desc(penalty)) <chr> <dbl> <dbl>
1 (Intercept) -0.660 0.0452
Fit Final Model 2 ApplicantIncome © 0.0452
final_fit<- 5 CoapplicantIncome 0 0.0452
finalize_workflow(workflow_lasso_tuned, 4 LoanAmount 0 0.0452
best_penalty) %>% 5 Loan_Amount_Term 0 0.0452
fit(data = train) 6 Credit_History -0.948 0.0452
7 Gender_Female 0 0.0452
8 Married_Yes -0.191 0.0452
9 Dependents_X1 0 0.0452
10 Dependents_X2 0 0.0452
11 Dependents_X3. 0) 0.0452
12 Education_Not.Graduate 0 0.0452
13 Self_Employed_VYes 0 0.0452
14 Property_Area_Rural 0 0.0452
15 Property_Area_Semiurban -0.163 0.0452

FEATURE ENGINEERING IN R

Simple logistic regression vs. tuned Lasso

simple logistic regression vs. Lasso (tuned penalty = 0.0621

X datacamp

Self Employed es

Property Area_Semiurban

Froperty_Arsa_Fuwral

Mamied es

LoanAnmount

Loan_Armvownt_Term

GZendar_Famak

Education_Mot. Graduste

Cependants X3, 7

Dependants 42

Cependants_XT 7

Credit Histomy

Coapplicantincome

Applicantlncoms

{Int=roept)

-1.0 0.5 0.0 0.5
Feature coefficients

FEATURE ENGINEERING IN R

Ridge regularization

Ridge is the option when mixture =0 tune_output <- tune_grid(

workflow_ridge_tuned,

model_ridge_tuned <- logistic_reg() %>% resamples = vfold_cv(train, v = 5),

set_engine("glmnet") %>% metrics = metric_set(roc_auc),

set_args(mixture = 0, penalty = tune()) grid = penalty_grid)

autoplot(tune_output)
workflow_ridge_tuned <-
workflow() %>%
add_model(model_ridge_tuned) %>%
add_recipe(recipe)

0.7451

0.7404

tune_output <- tune_grid(

roc_auc

workflow_ridge_tuned,
resamples = vfold_cv(train, v = 5), o
metrics = metric_set(roc_auc),

grid = penalty_grid)

0.7301

1e-03 1e-02 1e-01 1e+00 1e+01
Amount of Regularization

FEATURE ENGINEERING IN R

Ridge regularization

best_penalty <- tidy(final_fit)
select_by_one_std_err(tune_output,

metric = 'roc_auc', desc(penalty))

A tibble: 15 3
best_penalty * © "

term estimate penalty

final fit< <chr> <dbl> <dbl>
finalize_workflow(workflow_ridge_tuned, . (Int?Pcept) ~0.799 10
best. penalty) %o 2 Appllc?ntIncome 0.00232 10
fit(data = train) 5 CoapplicantIncome 0.0000537 10

4 LoanAmount 0.00291 10

5 Loan_Amount_Term 0.00161 10

6 Credit_History -0.0245 10

7 Gender_Female 0.00850 10

8 Married_Yes -0.0140 10

9 Dependents_X1 0.00497 10

10 Dependents_X2 -0.0100 10

11 Dependents_X3. 0.00259 10

12 Education_Not.Graduate 0.00308 10

13 Self_Employed_Yes 0.00892 10

14 Property_Area_Rural 0.0109 10

FEATURE ENGINEERING IN R

Ridge vs. Lasso

X datacamp

Self Employed es

Property Area_Semiurban

Froperty_Arsa_Fuwral

Mamied es

LoanAnmount

Loan_Armvownt_Term

GZendar_Famak

Education_Mot. Graduste

Cependants X3, 7

Dependants 42

Cependants_XT 7

Credit_History 1

Coapplicantincome

Applicantlncoms

{Int=roept)

Lasso vs. Ridge

1

0.8

0.8 0.4 0.2

Feature coefficients

model
. lz==0_ tunned
. ridge_tunned

FEATURE ENGINEERING IN R

Let's practice!

FEATURE ENGINEERING IN R

Putting it all
together

FEATURE ENGINEERING IN R

®

Jorge Zazueta
Research Professor. Head of the

Modeling Group at the School of
Economics, UASLP

X datacamp

A stylized process modeling flow
Typical high-level modeling steps.

X datacawp FEATURE ENGINEERING IN R

A stylized process modeling flow
Typical high-level modeling steps.

X datacawp FEATURE ENGINEERING IN R

Prepare

Start by doing some basic housekeeping and glimpse (train)
setting up our splits.

Rows: 460
loans <- # Basic housekeeping Cotumns: 13
loans %>% $ Loan_ID <fct> LP001003...
mutate(across(where(is_character), $ Gend?P <fct> Mate, Ma...
as_factor)) %% $ Married <fct> Yes, No,...
mutate(across(Credit_History, $ Dependents <fct> 1, 0, 0O,...
$ Education <fct> Graduate...
as_factor))
$ Self_Employed <fct> No, No,
set.seed(123) # Set up splits $ Appllc?ntlncome <dbl> 4583, 18...
Sl ee el el e, $ CoapplicantIncome <dbl> 1508, 28...
strata = Loan_Status) $ LoanAmount <dbl> 128, 114...
test <- testing(split) $ LoanTAmognt_Ter <dbl> 360, 360...
T T EETE ET $ Credit_History <fct> 1, 1, O,...
$ Property_Area <fct> Rural, R...
$ Loan_Status <fct> N, N, N,...

FEATURE ENGINEERING IN R

Preprocess

Our recipe can be quite short or very recipe
complex.

Recipe

recipe <- recipe(Loan_Status ~ .,

data = train) %>% Inputs:
update_role(Loan_ID,
new_role = "ID") %>% role #variables
step_normalize(all_numeric_predictors()) %>% ID 1
step_impute_knn(all_predictors()) %>% outcome 1
step_dummy(all_nominal_predictors()) predictor 11
Operations:

Centering and scaling for all_numeric_predictors()
K-nearest neighbor imputation for all_predictors()
Dummy variables from all_nominal_predictors()

FEATURE ENGINEERING IN R

Model

Set up workflow

lr_model <- logistic_reg() %>%
set_engine("glmnet") %>%
set_args(mixture = 1, penalty = tune())

lr_penalty_grid <- grid_regular(
penalty(range = c(-3, 1)),
levels = 30)

Lr_workflow <-
workflow() %>%
add_model(lr_model) %>%
add_recipe(recipe)

Lr_workflow

--Workflow ------------------—--— -
Preprocessor: Recipe
Model: logistic_reg()

-- Preprocessor -----——-----————-————————-
3 Recipe Steps

- step_normalize()

- step_impute_knn()

- step_dummy ()

Logistic Regression Model Specification (classification)
Main Arguments:
penalty = tune()

mixture = 1
Computational engine: glmnet

FEATURE ENGINEERING IN R

Assess

Tune penalty for Lasso ROC_AUC vs. Regularization

lr_tune_output <- tune_grid(
Lr_workflow, ey

resamples = vfold_cv(train, v = 5),
metrics = metric_set(roc_auc),

0.65

grid = penalty_grid)

oc_auc

= 0.60 7

autoplot(tune_output)

|:| EFE
onlod

1e-03 1e-02 1e-01 1e+00 1e+01
Amount of Regularization

FEATURE ENGINEERING IN R

Assess
Fitting the final model

best_penalty <-

select_by_one_std_err(lr_tune_output,

metric = 'roc_auc', desc(penalty))

lr_final_fit<-

finalize_workflow(lr_workflow, best_penalty) %>%

fit(data = train)

lr_final_fit %>%
augment(test) %>%
class_evaluate(truth

estimate =

Loan_Status,
.pred_class,
.pred_Y)

Our performance metrics

A tibble: 2 x 3

.metric .estimator .estimate
<chr> <chr> <dbl>
1 accuracy binary 0.818
2 roc_auc binary 0.813

FEATURE ENGINEERING IN R

Let's practice!

FEATURE ENGINEERING IN R

Congratulations!

FEATURE ENGINEERING IN R

®

Jorge Zazueta
Research Professor. Head of the

Modeling Group at the School of
Economics, UASLP

X datacamp

You've gone a great distance.

From zero to hero in four lessons!

i Sphtlgto
dice train and test
sets
Set up Bundle (n
a recipe workflow

X datacamp

Declare our
model

Fit the
workflow

Assess
model
performance

FEATURE ENGINEERING IN R

Where to go from here?

Data science is a never ending journey that keeps refreshing itself. These are some datacamp
courses that you might considering as next steps.

 Dimensionality reduction in R
e Advanced dimensionality reduction in R

e Modeling with tidymodels in R

FEATURE ENGINEERING IN R

Go get them all!

FEATURE ENGINEERING IN R

