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What you will learn

Exploring and visualizing time series
Simple benchmark methods for forecasting
Exponential smoothing and ARIMA models
Advanced forecasting methods

Measuring forecast accuracy

Choosing the best method
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Course textbook

Hyndman, R. J. &
Athanasopoulos, G. (2017)

Rob J Hyndman
George Athanasopoulos

FORECASTING

PRINCIPLES AND PRACTICE
Forecasting: principles and T E——Y

4 arn to improve your forecast accuracy using dozens
g J &

practice, 2nd edition

e Free and online at
OTexts.org/fpp2/

e Data sets in associated R

package fpp2

e R code for all examples
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Time series data

o Series of data observed over time

e Eg.: Daily IBM stock prices, monthly rainfall in London,...

Monthly Australian expenditure on eating out
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Forecasting is estimating how the sequence of observations will
continue into the future.
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Forecasts of monthly Australian expenditure on eating

out

3-year forecasts
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e What forecasting methods are available that take account of
trend, seasonality and other features of the data?

e How to measure the accuracy of your forecasts?

e How to choose a good forecasting model?
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Let's practice!
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Trends, seasonality,
and cyclicity
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Time series patterns

Pattern

Trend

Seasonal

Cyclic

Description

A pattern exists involving a long-term increase OR
decrease in the data

A periodic pattern exists due to the calendar (e.g.,
the quarter, month, or day of the week)

A pattern exists where the data exhibits rises and
falls that are not of fixed period (duration usually
of at least 2 years)
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Examples of time series patterns

Australian electricity production
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Examples of time series patterns

Australian clay brick production
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Examples of time series patterns

US Treasury bill contracts
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Examples of time series patterns

Annual Canadian lynx trappings
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Seasonal or cyclic?

Differences between seasonal and cyclic patterns:
e Seasonal pattern constant length vs. cyclic pattern variable
length

 Average length of cycle longer than length of seasonal
pattern

 Magnitude of cycle more variable than magnitude of
seasonal pattern

The timing of peaks and troughs is predictable with seasonal
data, but unpredictable in the long term with cyclic data.
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Let's practice!
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White noise
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White noise

set.seed(3) # Reproducibility
wn <- ts(rnorm(36)) # White noise
autoplot(wn) # Plot!
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Time

"White noise” is just a time series of iid data
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White noise ACF

ggAct(wn) +
ggtitle("Sample ACF for white noise")

Sample ACF for white noise
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White noise ACF

ggAcf(wn) +
ggtitle("Sample ACF for white noise")

Sample ACF for white noise
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White noise ACF

ggAcf(wn) +
ggtitle("Sample ACF for white noise")

Sample ACF for white noise

o Expectation: each autocorrelation is close to zero

L | ‘ | | |

02- 959% of all autocorrelations for white
noise should lie within the blue lines
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White noise ACF

ggAcf(wn) +
ggtitle("Sample ACF for white noise")

Sample ACF for white noise

o Expectation: each autocorrelation is close to zero

" ‘ | |

02- 95% of all autocorrelations for white If not: series is probably
noise should lie within the blue lines not white noise
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Example: Pigs slaughtered

pigs <- window(pigs, start=1990)
autoplot(pigs/1000) +
xlab("Year") +

ylab("thousands") +
ggtitle("Monthly number of pigs slaughtered in Victoria")

Monthly number of pigs slaughtered in Victoria
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Example: Pigs slaughtered

ggAcf(pigs) +
ggtitle("ACF of monthly pigs slaughtered

in Victoria")
ACF of monthly pigs slaughtered in Victoria
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Example: Pigs slaughtered

ggAcf(pigs) +
ggtitle("ACF of monthly pigs slaughtered

in Victoria")

ACF of monthly pigs slaughtered in Victoria

significant autocorrelation at lags 1, 2, and 3
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Example: Pigs slaughtered

ggAcT(pigs) +
ggtitle("ACF of monthly pigs slaughtered

in Victoria")

ACF of monthly pigs slaughtered in Victoria

significant autocorrelation at lags 1, 2, and 3
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Not a white noise series: there is info in the
_ data that can be used to forecast future values
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Ljung-Box test

The Ljung-Box test considers the first h autocorrelation values
together.

A significant test (small p-value) indicates the data are
probably not white noise.

Box.test(pigs, lag = 24, fitdf = 0, type = "Lj")

Box-Ljung test

data: pigs
X-squared = 634.15, df = 24, p-value < 2.2e-16
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White noise summary

 White noise is a time series that is purely random

e We can test for white noise by looking at an ACF plot or by
doing a Ljung-Box test
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Let's practice!
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