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Forecast intervals
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Forecast intervals
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80% forecast intervals should contain 80% of future

observations

95% forecast intervals should contain 95% of future
observations
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Fitted values and residuals

A fitted value is the forecast of an observation using all previous
observations

 That is, they are one-step forecasts

e Often not true forecasts since parameters are estimated on
all data

A residualis the difference between an observation and its
fitted value

e Thatis, they are one-step forecast errors
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Example: oil production

fc <- naive(oil)

autoplot(oil, series = "Data") + xlab("Year") +
autolayer(fitted(fc), series = "Fitted") +
ggtitle("0il production in Saudi Arabia")
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Example: oil production

autoplot(residuals(fc))
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Residuals should look like white noise

Essential assumptions

e They should be uncorrelated
e They should have mean zero

Useful properties (for computing prediction intervals)

e They should have constant variance
e They should be normally distributed

We can test these assumptions using the checkresiduals()
function.

FORECASTING IN R



checkresiduals()

checkresiduals(fc)

Ljung-Box test

data: residuals
Qx = 12.59, df = 10, p-value = 0.2475
Model df: 0. Total lags used: 10

Residuals from Naive method
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Training and test sets

Training data Test data
e @ # e ® e ® @ ® @ ° ° e e *» @ @ e 0000 tme

e The test set must not be used for any aspect of calculating
forecasts

e Build forecasts using training set

A model which fits the training data well will not necessarily
forecast well
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Example: Saudi Arabian oil production

training <- window(oil, end = 2003)

test <- window(oil, start = 2004)

fc <- naive(training, h = 10)

autoplot(fc) + autolayer(test, series = "Test data")

Forecasts from Naive method
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Forecast errors

Forecast "error" = the difference between observed
value and its forecast in the test set.

=+ residuals
e which are errors on the training set (vs. test set)

e which are based on one-step forecasts (vs. multi-step)

Compute accuracy using forecast errors on test data
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Measures of forecast accuracy

e Observation: y;

e Forecast: ;

e Forecast error: e; = y; — Uy

Accu racy medsure

Mean absolute error

Mean squared error

Mean absolute
percentage error

Mean absolute scaled
error

Calculation

MAE = avg( e, |)
MSE = avg(e?)
MAPE = 100 x avg(] ;£ |)

MASE = MTAE where () is

scaling constant
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The accuracy() command

accuracy(fc, test)

ME RMSE MAE MPE MAPE MASE ACF1 Theil's U
Training set 9.874 52.56 39.43 2.507 12.571 1.0000 0.1802 NA

Test set 21.602 35.10 29.98 3.964 5.778 0.7603 0.4030 1.185
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Time series cross-
validation
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Time series cross-validation

Traditional evaluation
Training data Test data

time
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Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
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Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
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Time series cross-validation

Traditional evaluation
Training data Test data

time

Time series cross-validation
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tsCV function

MSE using time series cross-validation

e <- tsCV (oil, forecastfunction = naive, h = 1)

mean(e”2 , na.rm = TRUE)

2355.753

When there are no parameters to be estimated, tsCV with h=1
will give the same values as residuals
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tsCV function

sq <- function(u){u”2}
tsCV(oil, forecastfunction = naive, h = 10) %>%
sq() %>% colMeans(na.rm=TRUE)

h=1 h=2 h=3 h=4 h=5 h=6
2355.753 5734.838 9842.239 14299.997 18560.887 23264.410

h=7 h=8 h=9 h=10
26932.799 30766.136 32892.200 32986.214

The MSE increases with the forecast horizon
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tsCV function

e Choose the model with the smallest MSE computed using
time series cross-validation

e Compute it at the forecast horizon of most interest to you
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