Forecasts and potential futures

FORECASTING IN R

Rob J. Hyndman Professor of Statistics at Monash University

Total international visitors to Australia

R datacamp

Total international visitors to Australia

R datacamp

Total international visitors to Australia

R datacamp

Total international visitors to Australia

R datacamp

Total international visitors to Australia

R datacamp

Forecast intervals

Forecasts of total international visitors to Australia

R datacamp

Forecast intervals

80% forecast intervals should contain 80% of future observations

95% forecast intervals should contain 95% of future observations

Let's practice!

Fitted values and residuals

FORECASTING IN R

Rob J. Hyndman Professor of Statistics at Monash University

Fitted values and residuals

A *fitted* value is the forecast of an observation using all previous observations

- That is, they are one-step forecasts
- Often not true forecasts since parameters are estimated on all data
- A *residual* is the difference between an observation and its fitted value
- That is, they are one-step forecast errors

Example: oil production

```
fc <- naive(oil)
autoplot(oil, series = "Data") + xlab("Year") +
autolayer(fitted(fc), series = "Fitted") +
ggtitle("Oil production in Saudi Arabia")</pre>
```


R datacamp

Example: oil production

R datacamp

Residuals should look like white noise

Essential assumptions

- They should be uncorrelated
- They should have mean zero

Useful properties (for computing prediction intervals)

- They should have constant variance
- They should be normally distributed

We can test these assumptions using the checkresiduals() function.

checkresiduals()

checkresiduals(fc)

Ljung-Box test data: residuals Q* = 12.59, df = 10, p-value = 0.2475 Model df: 0. Total lags used: 10

R datacamp

Let's practice!

FORECASTING IN R

Rob J. Hyndman Professor of Statistics at Monash University

- The **test set** must **not** be used for any aspect of calculating forecasts
- Build forecasts using **training set**
- A model which fits the training data well will **not necessarily** forecast well

Example: Saudi Arabian oil production

```
training <- window(oil, end = 2003)
test <- window(oil, start = 2004)
fc <- naive(training, h = 10)
autoplot(fc) + autolayer(test, series = "Test data")</pre>
```


datacamp

Forecast errors

Forecast "error" = the difference between observed value and its forecast in the test set.

\neq residuals

- which are errors on the training set (vs. test set)
- which are based on **one-step** forecasts (vs. **multi-step**)

Compute accuracy using forecast errors on test data

Measures of forecast accuracy

• Observation: y_t

acamp

- Forecast: \hat{y}_t
- Forecast error: $e_t = y_t \hat{y}_t$

Accuracy measure	Calculation
Mean absolute error	$\mathrm{MAE} = avg(\mid e_t \mid)$
Mean squared error	$\mathrm{MSE} = avg(e_t^2)$
Mean absolute percentage error	$ ext{MAPE} = 100 imes avg(\mid rac{e_t}{y_t} \mid)$
Mean absolute scaled error	$\mathrm{MASE} = rac{\mathrm{MAE}}{Q}$ where Q is a scaling constant

The accuracy() command

accuracy(fc, test)

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	9.874	52.56	39.43	2.507	12.571	1.0000	0.1802	NA
Test set	21.602	35.10	29.98	3.964	5.778	0.7603	0.4030	1.185

Let's practice!

FORECASTING IN R

Rob J. Hyndman Professor of Statistics at Monash University

Time series cross-validation

Time series cross-validation

Time series cross-validation

tsCV function

MSE using time series cross-validation

```
e <- tsCV (oil, forecastfunction = naive, h = 1)
mean(e^2 , na.rm = TRUE)</pre>
```

2355.753

When there are no parameters to be estimated, tsCV with h=1 will give the same values as residuals

tsCV function

sq <- function(u){u^2}
tsCV(oil, forecastfunction = naive, h = 10) %>%
sq() %>% colMeans(na.rm=TRUE)

h=1	h=2	h=3	h=4	h=5	h=6
2355.753	5734.838	9842.239	14299.997	18560.887	23264.410
h=7	h=8	h=9	h=10		
26932.799	30766.136	32892.200	32986.214		

The MSE increases with the forecast horizon

tsCV function

- Choose the model with the smallest MSE computed using time series cross-validation
- Compute it at the forecast horizon of most interest to you

Let's practice!

