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1
Introduction to forecasting

1.1 Introduction

Brief bio

• Director of Monash University’s Business & Economic Forecasting
Unit

• Editor-in-Chief, International Journal of Forecasting

How my forecasting methodology is used:

• Pharmaceutical Benefits Scheme
• Cancer incidence and mortality
• Electricity demand
• Ageing population
• Fertilizer sales

Poll: How experienced are you in forecasting?

1. Guru: I wrote the book, done it for decades, now I do the conference
circuit.

2. Expert: It has been my full time job for more than a decade.
3. Skilled: I have been doing it for years.
4. Comfortable: I understand it and have done it.
5. Learner: I am still learning.
6. Beginner: I have heard of it and would like to learn more.
7. Unknown: What is forecasting? Is that what the weather people do?

Key reference

Hyndman, R. J. & Athanasopoulos, G. (2013)
Forecasting: principles and practice.
OTexts.org/fpp/

• Free and online
• Data sets in associated R package
• R code for examples

5
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Poll: How proficient are you in using R?

1. Guru: The R core team come to me for advice.
2. Expert: I have written several packages on CRAN.
3. Skilled: I use it regularly and it is an important part of my job.
4. Comfortable: I use it often and am comfortable with the tool.
5. User: I use it sometimes, but I am often searching around for the

right function.
6. Learner: I have used it a few times.
7. Beginner: I’ve managed to download and install it.
8. Unknown: Why are you speaking like a pirate?

Install required packages

install.packages("fpp", dependencies=TRUE)

Getting help with R

# Search for terms
help.search("forecasting")

# Detailed help
help(forecast)

# Worked examples
example("forecast.ar")

# Similar names
apropos("forecast")

#Help on package
help(package="fpp")

Approximate outline

Day Topic Chapter

1 The forecaster’s toolbox 1,2
1 Seasonality and trends 6
1 Exponential smoothing 7

2 Time series decomposition 6
2 Time series cross-validation 2
2 Transformations 2
2 Stationarity and differencing 8
2 ARIMA models 8

3 State space models –
3 Dynamic regression 9
3 Hierarchical forecasting 9
3 Advanced methods 9
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Assumptions

• This is not an introduction to R. I assume you are broadly comfort-
able with R code and the R environment.

• This is not a statistics course. I assume you are familiar with con-
cepts such as the mean, standard deviation, quantiles, regression,
normal distribution, etc.

• This is not a theory course. I am not going to derive anything. I will
teach you forecasting tools, when to use them and how to use them
most effectively.

1.2 Some case studies

CASE STUDY 1: Paperware company

Problem: Want forecasts of each of hundreds of items. Series can be sta-
tionary, trended or seasonal. They currently have a large forecasting pro-
gram written in-house but it doesn’t seem to produce sensible forecasts.
They want me to tell them what is wrong and fix it.

Additional information

• Program written in COBOL making numerical calculations limited.
It is not possible to do any optimisation.

• Their programmer has little experience in numerical computing.
• They employ no statisticians and want the program to produce fore-

casts automatically.

CASE STUDY 1: Paperware company

Methods currently used

A 12 month average
C 6 month average
E straight line regression over last 12 months
G straight line regression over last 6 months
H average slope between last year’s and this year’s values.

(Equivalent to differencing at lag 12 and taking mean.)
I Same as H except over 6 months.

K I couldn’t understand the explanation.

CASE STUDY 2: PBS

The Pharmaceutical Benefits Scheme (PBS) is the Australian government
drugs subsidy scheme.

• Many drugs bought from pharmacies are subsidised to allow more
equitable access to modern drugs.

• The cost to government is determined by the number and types of
drugs purchased. Currently nearly 1% of GDP.

• The total cost is budgeted based on forecasts of drug usage.
• In 2001: $4.5 billion budget, under-forecasted by $800 million.
• Thousands of products. Seasonal demand.
• Subject to covert marketing, volatile products, uncontrollable expen-

diture.
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• Although monthly data available for 10 years, data are aggregated to
annual values, and only the first three years are used in estimating
the forecasts.

• All forecasts being done with the FORECAST function in MS-Excel!

Problem: How to do the forecasting better?

CASE STUDY 3: Airline

First class passengers: Melbourne−Sydney

Year

1988 1989 1990 1991 1992 1993

0.
0

1.
0

2.
0

Business class passengers: Melbourne−Sydney

Year

1988 1989 1990 1991 1992 1993

0
2

4
6

8

Economy class passengers: Melbourne−Sydney

Year

1988 1989 1990 1991 1992 1993

0
10

20
30

Problem: how to forecast passenger traffic on major routes.

Additional information

• They can provide a large amount of data on previous routes.
• Traffic is affected by school holidays, special events such as the

Grand Prix, advertising campaigns, competition behaviour, etc.
• They have a highly capable team of people who are able to do most

of the computing.

1.3 Time series data

Time series consist of sequences of observations collected over time. We
will assume the time periods are equally spaced.

• Daily IBM stock prices
• Monthly rainfall
• Annual Google profits
• Quarterly Australian beer production

Forecasting is estimating how the sequence of observations will con-
tinue into the future.
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Australian beer production

Year

m
eg

al
ite

rs

1995 2000 2005 2010

40
0

45
0

50
0

Australian GDP

ausgdp <- ts(scan("gdp.dat"),frequency=4, start=1971+2/4)

• Class: "ts"

• Print and plotting methods available.

> ausgdp
Qtr1 Qtr2 Qtr3 Qtr4

1971 4612 4651
1972 4645 4615 4645 4722
1973 4780 4830 4887 4933
1974 4921 4875 4867 4905
1975 4938 4934 4942 4979
1976 5028 5079 5112 5127
1977 5130 5101 5072 5069
1978 5100 5166 5244 5312
1979 5349 5370 5388 5396
1980 5388 5403 5442 5482
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Residential electricity sales

Time

au
sg

dp

1975 1980 1985 1990 199545
00

50
00

55
00

60
00

65
00

70
00

75
00 > plot(ausgdp)

> elecsales
Time Series:
Start = 1989
End = 2008
Frequency = 1
[1] 2354.34 2379.71 2318.52 2468.99 2386.09 2569.47
[7] 2575.72 2762.72 2844.50 3000.70 3108.10 3357.50
[13] 3075.70 3180.60 3221.60 3176.20 3430.60 3527.48
[19] 3637.89 3655.00

Main package used in this course

> library(fpp)

This loads:

• some data for use in examples and exercises
• forecast package (for forecasting functions)
• tseries package (for a few time series functions)
• fma package (for lots of time series data)
• expsmooth package (for more time series data)
• lmtest package (for some regression functions)
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1.4 Some simple forecasting methods

Australian quarterly beer production

m
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al
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rs

1995 2000 2005

40
0

45
0

50
0

Number of pigs slaughtered in Victoria

th
ou
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s

1990 1991 1992 1993 1994 1995

80
90

10
0

11
0

Dow Jones index (daily ending 15 Jul 94)

0 50 100 150 200 250
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00
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00
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00

39
00
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Average method

• Forecast of all future values is equal to mean of historical data
{y1, . . . , yT }.

• Forecasts: ŷT+h|T = ȳ = (y1 + · · ·+ yT )/T

Naïve method (for time series only)

• Forecasts equal to last observed value.
• Forecasts: ŷT+h|T = yT .
• Consequence of efficient market hypothesis.

Seasonal naïve method

• Forecasts equal to last value from same season.
• Forecasts: ŷT+h|T = yT+h−km where m = seasonal period and k =
b(h− 1)/mc+1.

Forecasts for quarterly beer production

1995 2000 2005

40
0

45
0

50
0

Drift method

• Forecasts equal to last value plus average change.
• Forecasts:

ŷT+h|T = yT +
h

T − 1

T∑
t=2

(yt − yt−1)

= yT +
h

T − 1
(yT − y1).

• Equivalent to extrapolating a line drawn between first and last ob-
servations.

• Mean: meanf(x, h=20)
• Naive: naive(x, h=20) or rwf(x, h=20)
• Seasonal naive: snaive(x, h=20)
• Drift: rwf(x, drift=TRUE, h=20)
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Dow Jones Index (daily ending 15 Jul 94)

Day

0 50 100 150 200 250 300

36
00

37
00

38
00

39
00

1.5 Lab Session 1

Before doing any exercises in R, load the fpp package using li-
brary(fpp).

1. Use the Dow Jones index (data set dowjones) to do the following:

(a) Produce a time plot of the series.
(b) Produce forecasts using the drift method and plot them.
(c) Show that the graphed forecasts are identical to extending the

line drawn between the first and last observations.
(d) Try some of the other benchmark functions to forecast the same

data set. Which do you think is best? Why?

2. For each of the following series, make a graph of the data with fore-
casts using the most appropriate of the four benchmark methods:
mean, naive, seasonal naive or drift.

(a) Annual bituminous coal production (1920–1968). Data set
bicoal.

(b) Price of chicken (1924–1993). Data set chicken.

(c) Monthly total of people on unemployed benefits in Australia
(January 1956–July 1992). Data set dole.

(d) Monthly total of accidental deaths in the United States (January
1973–December 1978). Data set usdeaths.

(e) Quarterly production of bricks (in millions of units) at Port-
land, Australia (March 1956–September 1994). Data set
bricksq.

(f) Annual Canadian lynx trappings (1821–1934). Data set lynx.

In each case, do you think the forecasts are reasonable? If not, how
could they be improved?



2
The forecaster’s toolbox

2.1 Time series graphics

Economy class passengers: Melbourne−Sydney

Year

T
ho

us
an

ds

1988 1989 1990 1991 1992 1993

0
5

10
15

20
25

30

plot(melsyd[,"Economy.Class"])
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Antidiabetic drug sales

Year

$ 
m

ill
io

n

1995 2000 2005

5
10
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30

> plot(a10)

Seasonal plots

5
10
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Seasonal plot: antidiabetic drug sales
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• Data plotted against the individual “seasons” in which the data
were observed. (In this case a “season” is a month.)

• Something like a time plot except that the data from each season are
overlapped.

• Enables the underlying seasonal pattern to be seen more clearly, and
also allows any substantial departures from the seasonal pattern to
be easily identified.

• In R: seasonplot
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Seasonal subseries plots

Seasonal subseries plot: antidiabetic drug sales

Month
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Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

> monthplot(a10)

• Data for each season collected together in time plot as separate time
series.

• Enables the underlying seasonal pattern to be seen clearly, and
changes in seasonality over time to be visualized.

• In R: monthplot

Quarterly Australian Beer Production

beer <- window(ausbeer,start=1992)
plot(beer)
seasonplot(beer,year.labels=TRUE)
monthplot(beer)

Australian quarterly beer production
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50
0
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0

Seasonal plot: quarterly beer production
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Seasonal subseries plot: quarterly beer production

Quarter

M
eg

al
itr

es

40
0

45
0

50
0

Jan Apr Jul Oct

2.2 Seasonal or cyclic?

Trend pattern exists when there is a long-term increase or decrease in the
data.

Seasonal pattern exists when a series is influenced by seasonal factors
(e.g., the quarter of the year, the month, or day of the week).

Cyclic pattern exists when data exhibit rises and falls that are not of fixed
period (duration usually of at least 2 years).
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Australian electricity production

Year
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US Treasury bill contracts

Day
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Annual Canadian Lynx trappings
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Differences between seasonal and cyclic patterns:

• seasonal pattern constant length; cyclic pattern variable length
• average length of cycle longer than length of seasonal pattern
• magnitude of cycle more variable than magnitude of seasonal pat-

tern

The timing of peaks and troughs is predictable with seasonal data, but
unpredictable in the long term with cyclic data.
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2.3 Autocorrelation

Covariance and correlation: measure extent of linear relationship be-
tween two variables (y and X)

Autocovariance and autocorrelation: measure linear relationship be-
tween lagged values of a time series y.

We measure the relationship between: yt and yt−1
yt and yt−2
yt and yt−3
etc.
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> lag.plot(beer,lags=9,do.lines=FALSE)

• Each graph shows yt plotted against yt−k for different values of k.
• The autocorrelations are the correlations associated with these scat-

terplots.

We denote the sample autocovariance at lag k by ck and the sample auto-
correlation at lag k by rk . Then define

ck =
1
T

T∑
t=k+1

(yt − ȳ)(yt−k − ȳ) and rk = ck/c0

• r1 indicates how successive values of y relate to each other
• r2 indicates how y values two periods apart relate to each other
• rk is almost the same as the sample correlation between yt and yt−k .
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Results for first 9 lags for beer data:

r1 r2 r3 r4 r5 r6 r7 r8 r9
−0.126 −0.650 −0.094 0.863 −0.099 −0.642 −0.098 0.834 −0.116
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0
0.

5

Lag
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F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1711 13 17

• r4 higher than for the other lags. This is due to the seasonal pattern
in the data: the peaks tend to be 4 quarters apart and the troughs
tend to be 2 quarters apart.

• r2 is more negative than for the other lags because troughs tend to
be 2 quarters behind peaks.

• Together, the autocorrelations at lags 1, 2, . . . , make up the autocor-
relation or ACF.

• The plot is known as a correlogram

Recognizing seasonality in a time series

If there is seasonality, the ACF at the seasonal lag (e.g., 12 for monthly
data) will be large and positive.

• For seasonal monthly data, a large ACF value will be seen at lag 12
and possibly also at lags 24, 36, . . .

• For seasonal quarterly data, a large ACF value will be seen at lag 4
and possibly also at lags 8, 12, . . .
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Australian monthly electricity production

Australian electricity production

Year
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Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

• The slowly decaying ACF indicates trend.
• The ACF peaks at lags 12, 24, 36, . . . , indicate seasonality of length

12.
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2.4 Forecast residuals

Residuals in forecasting: difference between observed value and its fore-
cast based on all previous observations: et = yt − ŷt|t−1.

Assumptions

1. {et} uncorrelated. If they aren’t, then information left in residuals
that should be used in computing forecasts.

2. {et} have mean zero. If they don’t, then forecasts are biased.

Useful properties (for Forecast intervals)

3. {et} have constant variance.

4. {et} are normally distributed.

Forecasting Dow-Jones index
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Naïve forecast:

ŷt|t−1 = yt−1

et = yt − yt−1

Note: et are one-step-forecast residuals
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fc <- rwf(dj)
res <- residuals(fc)
plot(res)
hist(res,breaks="FD")
Acf(res,main="")

2.5 White noise

White noise

Time

x

0 10 20 30 40 50

−
3

−
2

−
1

0
1

2

White noise data is uncorrelated across time with zero mean and constant
variance.

(Technically, we require independence as well.)

Think of white noise as completely uninteresting with no predictable
patterns.
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r1 = 0.013
r2 = −0.163
r3 = 0.163
r4 = −0.259
r5 = −0.198
r6 = 0.064
r7 = −0.139
r8 = −0.032
r9 = 0.199
r10 = −0.240 −

0.
4
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For uncorrelated data, we would expect each autocorrelation to be close to
zero.

Sampling distribution of autocorrelations

Sampling distribution of rk for white noise data is asymptotically
N(0,1/T ).

• 95% of all rk for white noise must lie within ±1.96/
√
T .

• If this is not the case, the series is probably not WN.
• Common to plot lines at ±1.96/

√
T when plotting ACF. These are

the critical values.

Example: T = 50 and so critical values at ±1.96/
√

50 = ±0.28.

All autocorrelation coefficients lie within these limits, confirming that the
data are white noise. (More precisely, the data cannot be distinguished
from white noise.)

Example: Pigs slaughtered

Monthly total number of pigs slaughtered in the state of Victoria, Aus-
tralia, from January 1990 through August 1995. (Source: Australian Bu-
reau of Statistics.)

Number of pigs slaughtered in Victoria
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• Difficult to detect pattern in time plot.
• ACF shows some significant autocorrelation at lags 1, 2, and 3.
• r12 relatively large although not significant. This may indicate some

slight seasonality.

These show the series is not a white noise series.

ACF of residuals

• We assume that the residuals are white noise (uncorrelated, mean
zero, constant variance). If they aren’t, then there is information left
in the residuals that should be used in computing forecasts.

• So a standard residual diagnostic is to check the ACF of the residu-
als of a forecasting method.

• We expect these to look like white noise.

Portmanteau tests

Consider a whole set of rk values, and develop a test to see whether the set
is significantly different from a zero set.

Box-Pierce test

Q = T
h∑
k=1

r2
k

where h is max lag being considered and T is number of observations.

• My preferences: h = 10 for non-seasonal data, h = 2m for seasonal
data.

• If each rk close to zero, Q will be small.
• If some rk values large (positive or negative), Q will be large.
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Ljung-Box test

Q∗ = T (T + 2)
h∑
k=1

(T − k)−1r2
k

where h is max lag being considered and T is number of observations.

• My preferences: h = 10 for non-seasonal data, h = 2m for seasonal
data.

• Better performance, especially in small samples.
• If data are WN, Q∗ has χ2 distribution with (h−K) degrees of freedom

where K = no. parameters in model.
• When applied to raw data, set K = 0.
• For the Dow-Jones example,
res <- residuals(naive(dj))

# lag=h and fitdf=K
> Box.test(res, lag=10, fitdf=0)

Box-Pierce test
X-squared = 14.0451, df = 10, p-value = 0.1709
> Box.test(res, lag=10, fitdf=0, type="Lj")

Box-Ljung test
X-squared = 14.4615, df = 10, p-value = 0.153

Exercise

1. Calculate the residuals from a seasonal naive forecast applied to the
quarterly Australian beer production data from 1992.

2. Test if the residuals are white noise.

beer <- window(ausbeer,start=1992)
fc <- snaive(beer)
res <- residuals(fc)
Acf(res)
Box.test(res, lag=8, fitdf=0, type="Lj")

2.6 Evaluating forecast accuracy

Let yt denote the tth observation and ŷt|t−1 denote its forecast based on all
previous data, where t = 1, . . . ,T . Then the following measures are useful.

MAE = T −1
T∑
t=1

|yt − ŷt|t−1|

MSE = T −1
T∑
t=1

(yt − ŷt|t−1)2 RMSE =

√√√
T −1

T∑
t=1

(yt − ŷt|t−1)2

MAPE = 100T −1
T∑
t=1

|yt − ŷt|t−1|/ |yt |

• MAE, MSE, RMSE are all scale dependent.
• MAPE is scale independent but is only sensible if yt � 0 for all t,

and y has a natural zero.



Forecasting: principles and practice 30

Mean Absolute Scaled Error

MASE = T −1
T∑
t=1

|yt − ŷt|t−1|/Q

where Q is a stable measure of the scale of the time series {yt}.
Proposed by Hyndman and Koehler (IJF, 2006)

For non-seasonal time series,

Q = (T − 1)−1
T∑
t=2

|yt − yt−1|

works well. Then MASE is equivalent to MAE relative to a naive method.

For seasonal time series,

Q = (T −m)−1
T∑

t=m+1

|yt − yt−m|

works well. Then MASE is equivalent to MAE relative to a seasonal naive
method.

Forecasts for quarterly beer production

1995 2000 2005

40
0

45
0

50
0

Mean method
Naive method
Seasonal naive method

Mean method

RMSE MAE MAPE MASE
38.0145 33.7776 8.1700 2.2990

Naïve method

RMSE MAE MAPE MASE
70.9065 63.9091 15.8765 4.3498

Seasonal naïve method

RMSE MAE MAPE MASE
12.9685 11.2727 2.7298 0.7673
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Dow Jones Index (daily ending 15 Jul 94)

Day

0 50 100 150 200 250 300

36
00

37
00

38
00

39
00

Mean method
Naive method
Drift model

Measures of forecast accuracy

Mean method

RMSE MAE MAPE MASE
148.2357 142.4185 3.6630 8.6981

Naïve method

RMSE MAE MAPE MASE
62.0285 54.4405 1.3979 3.3249

Drift model

RMSE MAE MAPE MASE
53.6977 45.7274 1.1758 2.7928

Training and test sets

Available data

Training set Test set
(e.g., 80%) (e.g., 20%)

• The test set must not be used for any aspect of model development
or calculation of forecasts.

• Forecast accuracy is based only on the test set.

beer3 <- window(ausbeer,start=1992,end=2005.99)
beer4 <- window(ausbeer,start=2006)

fit1 <- meanf(beer3,h=20)
fit2 <- rwf(beer3,h=20)

accuracy(fit1,beer4)
accuracy(fit2,beer4)
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In-sample accuracy (one-step forecasts)

accuracy(fit1)
accuracy(fit2)

Beware of over-fitting

• A model which fits the data well does not necessarily forecast well.
• A perfect fit can always be obtained by using a model with enough

parameters. (Compare R2)
• Over-fitting a model to data is as bad as failing to identify the sys-

tematic pattern in the data.
• Problems can be overcome by measuring true out-of-sample forecast

accuracy. That is, total data divided into “training” set and “test” set.
Training set used to estimate parameters. Forecasts are made for test
set.

• Accuracy measures computed for errors in test set only.

Poll: true or false?

1. Good forecast methods should have normally distributed residuals.
2. A model with small residuals will give good forecasts.
3. The best measure of forecast accuracy is MAPE.
4. If your model doesn’t forecast well, you should make it more com-

plicated.
5. Always choose the model with the best forecast accuracy as mea-

sured on the test set.

2.7 Lab Session 2

Before doing any exercises in R, load the fpp package using
library(fpp).

1. The function tsdisplay(data, plot.type="scatter") is useful
for showing a time plot, ACF plot and lagged scatterplot on the
same graph. Use it to produce plots of the following time series:

bricksq, hsales, ibmclose

Can you spot the effects of seasonality, cyclicity and trend?

2. For each of the same series (bricksq, ibmclose, hsales):

(a) Use either the naive or seasonal naive forecasting method and
apply it to the full data set.

(b) Compute the residuals and plot their ACF. Do the residuals
appear to be white noise? What did your forecasting method
miss?

(c) Do a Ljung-Box test on the residuals. What do the results
mean?
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3. For the data set bricksq:

(a) Split the data into two parts using

bricks1 <- window(bricksq, end=1987.99)
bricks2 <- window(bricksq, start=1988)

(b) Check that your data have been split appropriately by produc-
ing the following plot.

plot(bricksq)
lines(bricks1,col="red")
lines(bricks2,col="blue")

(c) Calculate forecasts using each of the four benchmark methods
applied to bricks1.

(d) Compare the accuracy of your forecasts against the actual val-
ues stored in bricks2. For example:

f1 <- meanf(bricks1)
accuracy(f1,bricks2)

(e) Which method does best? Why?
(f) For the best method, compute the residuals and plot them. For

example

res <- residuals(f1)
plot(res)
hist(res, breaks="FD")
Acf(res)

Do the residuals appear to be uncorrelated and normally dis-
tributed?

4. Consider the daily closing IBM stock prices (data set ibmclose).

(a) Produce some plots of the data in order to become familiar
with it.

(b) Split the data into a training set of 300 observations and a test
set of 69 observations.

(c) Try various benchmark methods to forecast the training set and
compare the results on the test set. Which method did best?

(d) For the best method, compute the residuals and plot them.
What do the plots tell you?

(e) Can you invent a better forecasting method than any of the
benchmark methods for these data?

5. Consider the sales of new one-family houses in the USA (Jan 1987 –
Nov 1995). Data set: hsales.

(a) Produce some plots of the data in order to become familiar
with it.

(b) Split the data into a training set and a test set, where the test
set is the last two years of data.

(c) Try various benchmark methods to forecast the training set and
compare the results on the test set. Which method did best?

(d) For the best method, compute the residuals and plot them.
What do the plots tell you?

(e) Can you invent a better forecasting method than any of the
benchmark methods for these data?
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Exponential smoothing

3.1 The state space perspective

• Observed data: y1, . . . , yT .
• Unobserved state: x1, . . . ,xT .
• Forecast ŷT+h|T = E(yT+h|xT ).
• The “forecast variance” is Var(yT+h|xT ).
• A prediction interval or “interval forecast” is a range of values of
yT+h with high probability.

3.2 Simple exponential smoothing

Component form

Forecast equation ŷt+h|t = `t
Smoothing equation `t = αyt + (1−α)`t−1

`1 = αy1 + (1−α)`0

`2 = αy2 + (1−α)`1 = αy2 +α(1−α)y1 + (1−α)2`0

`3 = αy3 + (1−α)`2 =
2∑
j=0

α(1−α)jy3−j + (1−α)3`0

...

`t =
t−1∑
j=0

α(1−α)jyt−j + (1−α)t`0

Forecast equation

ŷt+h|t =
t∑
j=1

α(1−α)t−jyj + (1−α)t`0, (0 ≤ α ≤ 1)

34
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Weights assigned to observations for:
Observation α = 0.2 α = 0.4 α = 0.6 α = 0.8

yt 0.2 0.4 0.6 0.8
yt−1 0.16 0.24 0.24 0.16
yt−2 0.128 0.144 0.096 0.032
yt−3 0.1024 0.0864 0.0384 0.0064
yt−4 (0.2)(0.8)4 (0.4)(0.6)4 (0.6)(0.4)4 (0.8)(0.2)4

yt−5 (0.2)(0.8)5 (0.4)(0.6)5 (0.6)(0.4)5 (0.8)(0.2)5

• Limiting cases: α→ 1, α→ 0.

State space form

Observation equation yt = `t−1 + et
State equation `t = `t−1 +αet

• et = yt − `t−1 = yt − ŷt|t−1 for t = 1, . . . ,T , the one-step within-sample
forecast error at time t.

• `t is an unobserved “state”.
• Need to estimate α and `0.

Optimisation

• Need to choose value for α and `0
• Similarly to regression — we choose α and `0 by minimising MSE:

MSE =
1
T

T∑
t=1

(yt − ŷt|t−1)2 =
1
T

T∑
t=1

e2
t .

• Unlike regression there is no closed form solution — use numerical
optimization.

Multi-step forecasts

ŷT+h|T = ŷT+1|T , h = 2,3, . . .

• A “flat” forecast function.
• Remember, a forecast is an estimated mean of a future value.
• So with no trend, no seasonality, and no other patterns, the forecasts

are constant.

SES in R

library(fpp)
fit <- ses(oil, h=3)
plot(fit)
summary(fit)
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3.3 Trend methods

Holt’s local trend method

• Holt (1957) extended SES to allow forecasting of data with trends.
• Two smoothing parameters: α and β∗ (with values between 0 and 1).

Forecast ŷt+h|t = `t + hbt
Level `t = αyt + (1−α)(`t−1 + bt−1)

Trend bt = β∗(`t − `t−1) + (1− β∗)bt−1,

• `t denotes an estimate of the level of the series at time t
• bt denotes an estimate of the slope of the series at time t.

Observation equation yt = `t−1 + bt−1 + et
State equations `t = `t−1 + bt−1 +αet

bt = bt−1 + βet

• β = αβ∗
• et = yt − (`t−1 + bt−1) = yt − ŷt|t−1
• Need to estimate α,β,`0,b0.

Holt’s method in R

fit2 <- holt(ausair, h=5)
plot(fit2)
summary(fit2)

fit1 <- holt(strikes)
plot(fit1$model)
plot(fit1, plot.conf=FALSE)
lines(fitted(fit1), col="red")
fit1$model

fit2 <- ses(strikes)
plot(fit2$model)
plot(fit2, plot.conf=FALSE)
lines(fit1$mean, col="red")

accuracy(fit1)
accuracy(fit2)

Comparing Holt and SES

• Holt’s method will almost always have better in-sample RMSE be-
cause it is optimized over one additional parameter.

• It may not be better on other measures.
• You need to compare out-of-sample RMSE (using a test set) for the

comparison to be useful.
• But we don’t have enough data.
• A better method for comparison will be in the next session!
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Exponential trend method

Forecast equation ŷt+h|t = `tb
h
t

Observation equation yt = (`t−1bt−1) + et
State equations `t = `t−1bt−1 +αet

bt = bt−1 + βet/`t−1

• `t denotes an estimate of the level of the series at time t
• bt denotes an estimate of the relative growth of the series at time t.
• In R: holt(x, exponential=TRUE)

Additive damped trend

• Gardner and McKenzie (1985) suggested that the trends should be
“damped” to be more conservative for longer forecast horizons.

• Damping parameter 0 < φ < 1.

Forecast equation ŷt+h|t = `t + (φ+φ2 + · · ·+φh)bt
Observation equation yt = `t−1 +φbt−1 + et

State equations `t = `t−1 +φbt−1 +αet
bt = φbt−1 + βet

• If φ = 1, identical to Holt’s linear trend.
• As h→∞, ŷT+h|T → `T +φbT /(1−φ).
• Short-run forecasts trended, long-run forecasts constant.

Forecasts from damped Holt's method
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00
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Trend methods in R

fit4 <- holt(air, h=5, damped=TRUE)
plot(fit4)
summary(fit4)
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Multiplicative damped trend method

Taylor (2003) introduced multiplicative damping.

ŷt+h|t = `tb
(φ+φ2+···+φh)
t

`t = αyt + (1−α)(`t−1b
φ
t−1)

bt = β∗(`t/`t−1) + (1− β∗)bφt−1

• φ = 1 gives exponential trend method

• Forecasts converge to `T + bφ/(1−φ)
T as h→∞.

Example: Sheep in Asia
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3.4 Seasonal methods

Holt-Winters additive method

• Holt and Winters extended Holt’s method to capture seasonality.
• Three smoothing equations—one for the level, one for trend, and

one for seasonality.
• Parameters: 0 ≤ α ≤ 1, 0 ≤ β∗ ≤ 1, 0 ≤ γ ≤ 1−α and m = period of

seasonality.

State space form

ŷt+h|t = `t + hbt + st−m+h+
m

h+
m = b(h− 1) modmc+ 1

yt = `t−1 + bt−1 + st−m + et
`t = `t−1 + bt−1 +αet
bt = bt−1 + βet
st = st−m +γet .

ŷt+h|t = (`t + hbt)st−m+h+
m

yt = (`t−1 + bt−1)st−m + et
`t = `t−1 + bt−1 +αet/st−m
bt = bt−1 + βet/st−m
st = st−m +γet/(`t−1 + bt−1).

• Most textbooks use st = γ(yt/`t) + (1−γ)st−m
• We optimize for α, β∗, γ , `0, b0, s0, s−1, . . . , s1−m.

Seasonal methods in R

aus1 <- hw(austourists)
aus2 <- hw(austourists, seasonal="mult")

plot(aus1)
plot(aus2)

summary(aus1)
summary(aus2)

Holt-Winters damped method

Often the single most accurate forecasting method for seasonal data:

yt = (`t−1 +φbt−1)st−m + et
`t = `t−1 +φbt−1 +αet/st−m
bt = φbt−1 + βet/st−m
st = st−m +γet/(`t−1 +φbt−1).

aus3 <- hw(austourists, seasonal="mult", damped=TRUE)
summary(aus3)
plot(aus3)
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A confusing array of methods?

• All these methods can be confusing!
• How to choose between them?
• The ETS framework provides an automatic way of selecting the best

method.
• It was developed to solve the problem of automatically forecasting

pharmaceutical sales across thousands of products.

3.5 Lab Session 3

Before doing any exercises in R, load the fpp package using
library(fpp).

1. For this exercise, use the price of a dozen eggs in the United States
from 1900–1993 (data set eggs). Experiment with the various op-
tions in the holt() function to see how much the forecasts change
with damped or exponential trend. Also try changing the param-
eter values for α and β to see how they affect the forecasts. Try to
develop an intuition of what each parameter and argument is doing
to the forecasts.

[Hint: use h=100 when calling holt() so you can clearly see the
differences between the various options when plotting the forecasts.]

Which model gives the best RMSE?

Do the residuals from the best model look like white noise?

2. For this exercise, use the monthly Australian short-term overseas
visitors data, May 1985–April 2005. (Data set: visitors.)

(a) Make a time plot of your data and describe the main features of
the series.

(b) Forecast the next two years using Holt-Winters’ multiplicative
method.

(c) Why is multiplicative seasonality necessary here?

(d) Experiment with making the trend exponential and/or damped.

(e) Compare the RMSE of the one-step forecasts from the various
methods. Which do you prefer?

(f) Check that the residuals from the best model look like white
noise.

3. Forecast one of the series considered in the previous session using
an exponential smoothing method. Try to find the best trend and
seasonal specification for the series. Check if the residuals resemble
white noise.
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3.6 Taxonomy of exponential smoothing methods

Seasonal Component
Trend N A M

Component (None) (Additive) (Multiplicative)

N (None) N,N N,A N,M

A (Additive) A,N A,A A,M

Ad (Additive damped) Ad,N Ad,A Ad,M

M (Multiplicative) M,N M,A M,M

Md (Multiplicative damped) Md,N Md,A Md,M

There are 15 separate exponential smoothing methods.

3.7 Innovations state space models

• Generate same point forecasts but can also generate forecast inter-
vals.

• A stochastic (or random) data generating process that can generate
an entire forecast distribution.

• Allow for “proper” model selection.

ETS models

• Each model has an observation equation and transition equations,
one for each state (level, trend, seasonal), i.e., state space models.

• Two models for each method: one with additive and one with multi-
plicative errors, i.e., in total 30 models.

• ETS(Error,Trend,Seasonal):

– Error= {A, M}
– Trend = {N, A, Ad, M, Md}
– Seasonal = {N, A, M}.

• All ETS models can be written in innovations state space form.

• Additive and multiplicative versions give the same point forecasts
but different Forecast intervals.
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ETS(A,N,N)

Observation equation yt = `t−1 + εt ,

State equation `t = `t−1 +αεt

• et = yt − ŷt|t−1 = εt
• Assume εt ∼NID(0,σ2)
• “innovations” or “single source of error” because same error process,
εt.

ETS(M,N,N)

• Specify relative errors εt = yt−ŷt|t−1
ŷt|t−1

∼NID(0,σ2)
• Substituting ŷt|t−1 = `t−1 gives:

– yt = `t−1 + `t−1εt
– et = yt − ŷt|t−1 = `t−1εt

Observation equation yt = `t−1(1 + εt)

State equation `t = `t−1(1 +αεt)

• Models with additive and multiplicative errors with the same pa-
rameters generate the same point forecasts but different Forecast
intervals.

ETS(A,A,N)

yt = `t−1 + bt−1 + εt
`t = `t−1 + bt−1 +αεt
bt = bt−1 + βεt

ETS(M,A,N)

yt = (`t−1 + bt−1)(1 + εt)

`t = (`t−1 + bt−1)(1 +αεt)

bt = bt−1 + β(`t−1 + bt−1)εt

ETS(A,A,A)

Forecast equation ŷt+h|t = `t + hbt + st−m+h+
m

Observation equation yt = `t−1 + bt−1 + st−m + εt
State equations `t = `t−1 + bt−1 +αεt

bt = bt−1 + βεt
st = st−m +γεt

• Forecast errors: εt = yt − ŷt|t−1

• h+
m = b(h− 1) modmc+ 1.
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Additive error models

7/ exponential smoothing 149

ADDITIVE ERROR MODELS

Trend Seasonal
N A M

N yt = `t−1 + εt yt = `t−1 + st−m + εt yt = `t−1st−m + εt
`t = `t−1 +αεt `t = `t−1 +αεt `t = `t−1 +αεt/st−m

st = st−m +γεt st = st−m +γεt/`t−1

yt = `t−1 + bt−1 + εt yt = `t−1 + bt−1 + st−m + εt yt = (`t−1 + bt−1)st−m + εt
A `t = `t−1 + bt−1 +αεt `t = `t−1 + bt−1 +αεt `t = `t−1 + bt−1 +αεt/st−m

bt = bt−1 + βεt bt = bt−1 + βεt bt = bt−1 + βεt/st−m
st = st−m +γεt st = st−m +γεt/(`t−1 + bt−1)

yt = `t−1 +φbt−1 + εt yt = `t−1 +φbt−1 + st−m + εt yt = (`t−1 +φbt−1)st−m + εt
Ad `t = `t−1 +φbt−1 +αεt `t = `t−1 +φbt−1 +αεt `t = `t−1 +φbt−1 +αεt/st−m

bt = φbt−1 + βεt bt = φbt−1 + βεt bt = φbt−1 + βεt/st−m
st = st−m +γεt st = st−m +γεt/(`t−1 +φbt−1)

yt = `t−1bt−1 + εt yt = `t−1bt−1 + st−m + εt yt = `t−1bt−1st−m + εt
M `t = `t−1bt−1 +αεt `t = `t−1bt−1 +αεt `t = `t−1bt−1 +αεt/st−m

bt = bt−1 + βεt/`t−1 bt = bt−1 + βεt/`t−1 bt = bt−1 + βεt/(st−m`t−1)
st = st−m +γεt st = st−m +γεt/(`t−1bt−1)

yt = `t−1b
φ
t−1 + εt yt = `t−1b

φ
t−1 + st−m + εt yt = `t−1b

φ
t−1st−m + εt

Md `t = `t−1b
φ
t−1 +αεt `t = `t−1b

φ
t−1 +αεt `t = `t−1b

φ
t−1 +αεt/st−m

bt = b
φ
t−1 + βεt/`t−1 bt = b

φ
t−1 + βεt/`t−1 bt = b

φ
t−1 + βεt/(st−m`t−1)

st = st−m +γεt st = st−m +γεt/(`t−1b
φ
t−1)

MULTIPLICATIVE ERROR MODELS

Trend Seasonal
N A M

N yt = `t−1(1 + εt) yt = (`t−1 + st−m)(1 + εt) yt = `t−1st−m(1 + εt)
`t = `t−1(1 +αεt) `t = `t−1 +α(`t−1 + st−m)εt `t = `t−1(1 +αεt)

st = st−m +γ(`t−1 + st−m)εt st = st−m(1 +γεt)

yt = (`t−1 + bt−1)(1 + εt) yt = (`t−1 + bt−1 + st−m)(1 + εt) yt = (`t−1 + bt−1)st−m(1 + εt)
A `t = (`t−1 + bt−1)(1 +αεt) `t = `t−1 + bt−1 +α(`t−1 + bt−1 + st−m)εt `t = (`t−1 + bt−1)(1 +αεt)

bt = bt−1 + β(`t−1 + bt−1)εt bt = bt−1 + β(`t−1 + bt−1 + st−m)εt bt = bt−1 + β(`t−1 + bt−1)εt
st = st−m +γ(`t−1 + bt−1 + st−m)εt st = st−m(1 +γεt)

yt = (`t−1 +φbt−1)(1 + εt) yt = (`t−1 +φbt−1 + st−m)(1 + εt) yt = (`t−1 +φbt−1)st−m(1 + εt)
Ad `t = (`t−1 +φbt−1)(1 +αεt) `t = `t−1 +φbt−1 +α(`t−1 +φbt−1 + st−m)εt `t = (`t−1 +φbt−1)(1 +αεt)

bt = φbt−1 + β(`t−1 +φbt−1)εt bt = φbt−1 + β(`t−1 +φbt−1 + st−m)εt bt = φbt−1 + β(`t−1 +φbt−1)εt
st = st−m +γ(`t−1 +φbt−1 + st−m)εt st = st−m(1 +γεt)

yt = `t−1bt−1(1 + εt) yt = (`t−1bt−1 + st−m)(1 + εt) yt = `t−1bt−1st−m(1 + εt)
M `t = `t−1bt−1(1 +αεt) `t = `t−1bt−1 +α(`t−1bt−1 + st−m)εt `t = `t−1bt−1(1 +αεt)

bt = bt−1(1 + βεt) bt = bt−1 + β(`t−1bt−1 + st−m)εt/`t−1 bt = bt−1(1 + βεt)
st = st−m +γ(`t−1bt−1 + st−m)εt st = st−m(1 +γεt)

yt = `t−1b
φ
t−1(1 + εt) yt = (`t−1b

φ
t−1 + st−m)(1 + εt) yt = `t−1b

φ
t−1st−m(1 + εt)

Md `t = `t−1b
φ
t−1(1 +αεt) `t = `t−1b

φ
t−1 +α(`t−1b

φ
t−1 + st−m)εt `t = `t−1b

φ
t−1(1 +αεt)

bt = b
φ
t−1(1 + βεt) bt = b

φ
t−1 + β(`t−1b

φ
t−1 + st−m)εt/`t−1 bt = b

φ
t−1(1 + βεt)

st = st−m +γ(`t−1b
φ
t−1 + st−m)εt st = st−m(1 +γεt)

Table 7.10: State space equations
for each of the models in the ETS
framework.

Multiplicative error models

7/ exponential smoothing 149

ADDITIVE ERROR MODELS

Trend Seasonal
N A M

N yt = `t−1 + εt yt = `t−1 + st−m + εt yt = `t−1st−m + εt
`t = `t−1 +αεt `t = `t−1 +αεt `t = `t−1 +αεt/st−m

st = st−m +γεt st = st−m +γεt/`t−1

yt = `t−1 + bt−1 + εt yt = `t−1 + bt−1 + st−m + εt yt = (`t−1 + bt−1)st−m + εt
A `t = `t−1 + bt−1 +αεt `t = `t−1 + bt−1 +αεt `t = `t−1 + bt−1 +αεt/st−m

bt = bt−1 + βεt bt = bt−1 + βεt bt = bt−1 + βεt/st−m
st = st−m +γεt st = st−m +γεt/(`t−1 + bt−1)

yt = `t−1 +φbt−1 + εt yt = `t−1 +φbt−1 + st−m + εt yt = (`t−1 +φbt−1)st−m + εt
Ad `t = `t−1 +φbt−1 +αεt `t = `t−1 +φbt−1 +αεt `t = `t−1 +φbt−1 +αεt/st−m

bt = φbt−1 + βεt bt = φbt−1 + βεt bt = φbt−1 + βεt/st−m
st = st−m +γεt st = st−m +γεt/(`t−1 +φbt−1)

yt = `t−1bt−1 + εt yt = `t−1bt−1 + st−m + εt yt = `t−1bt−1st−m + εt
M `t = `t−1bt−1 +αεt `t = `t−1bt−1 +αεt `t = `t−1bt−1 +αεt/st−m

bt = bt−1 + βεt/`t−1 bt = bt−1 + βεt/`t−1 bt = bt−1 + βεt/(st−m`t−1)
st = st−m +γεt st = st−m +γεt/(`t−1bt−1)

yt = `t−1b
φ
t−1 + εt yt = `t−1b

φ
t−1 + st−m + εt yt = `t−1b

φ
t−1st−m + εt

Md `t = `t−1b
φ
t−1 +αεt `t = `t−1b

φ
t−1 +αεt `t = `t−1b

φ
t−1 +αεt/st−m

bt = b
φ
t−1 + βεt/`t−1 bt = b

φ
t−1 + βεt/`t−1 bt = b

φ
t−1 + βεt/(st−m`t−1)

st = st−m +γεt st = st−m +γεt/(`t−1b
φ
t−1)

MULTIPLICATIVE ERROR MODELS

Trend Seasonal
N A M

N yt = `t−1(1 + εt) yt = (`t−1 + st−m)(1 + εt) yt = `t−1st−m(1 + εt)
`t = `t−1(1 +αεt) `t = `t−1 +α(`t−1 + st−m)εt `t = `t−1(1 +αεt)

st = st−m +γ(`t−1 + st−m)εt st = st−m(1 +γεt)

yt = (`t−1 + bt−1)(1 + εt) yt = (`t−1 + bt−1 + st−m)(1 + εt) yt = (`t−1 + bt−1)st−m(1 + εt)
A `t = (`t−1 + bt−1)(1 +αεt) `t = `t−1 + bt−1 +α(`t−1 + bt−1 + st−m)εt `t = (`t−1 + bt−1)(1 +αεt)

bt = bt−1 + β(`t−1 + bt−1)εt bt = bt−1 + β(`t−1 + bt−1 + st−m)εt bt = bt−1 + β(`t−1 + bt−1)εt
st = st−m +γ(`t−1 + bt−1 + st−m)εt st = st−m(1 +γεt)

yt = (`t−1 +φbt−1)(1 + εt) yt = (`t−1 +φbt−1 + st−m)(1 + εt) yt = (`t−1 +φbt−1)st−m(1 + εt)
Ad `t = (`t−1 +φbt−1)(1 +αεt) `t = `t−1 +φbt−1 +α(`t−1 +φbt−1 + st−m)εt `t = (`t−1 +φbt−1)(1 +αεt)

bt = φbt−1 + β(`t−1 +φbt−1)εt bt = φbt−1 + β(`t−1 +φbt−1 + st−m)εt bt = φbt−1 + β(`t−1 +φbt−1)εt
st = st−m +γ(`t−1 +φbt−1 + st−m)εt st = st−m(1 +γεt)

yt = `t−1bt−1(1 + εt) yt = (`t−1bt−1 + st−m)(1 + εt) yt = `t−1bt−1st−m(1 + εt)
M `t = `t−1bt−1(1 +αεt) `t = `t−1bt−1 +α(`t−1bt−1 + st−m)εt `t = `t−1bt−1(1 +αεt)

bt = bt−1(1 + βεt) bt = bt−1 + β(`t−1bt−1 + st−m)εt/`t−1 bt = bt−1(1 + βεt)
st = st−m +γ(`t−1bt−1 + st−m)εt st = st−m(1 +γεt)

yt = `t−1b
φ
t−1(1 + εt) yt = (`t−1b

φ
t−1 + st−m)(1 + εt) yt = `t−1b

φ
t−1st−m(1 + εt)

Md `t = `t−1b
φ
t−1(1 +αεt) `t = `t−1b

φ
t−1 +α(`t−1b

φ
t−1 + st−m)εt `t = `t−1b

φ
t−1(1 +αεt)

bt = b
φ
t−1(1 + βεt) bt = b

φ
t−1 + β(`t−1b

φ
t−1 + st−m)εt/`t−1 bt = b

φ
t−1(1 + βεt)

st = st−m +γ(`t−1b
φ
t−1 + st−m)εt st = st−m(1 +γεt)

Table 7.10: State space equations
for each of the models in the ETS
framework.
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Innovations state space models

Let xt = (`t ,bt , st , st−1, . . . , st−m+1) and εt
iid∼ N(0,σ2).

yt = h(xt−1)︸ ︷︷ ︸+k(xt−1)εt︸    ︷︷    ︸
µt et

xt = f (xt−1) + g(xt−1)εt
Additive errors:

k(x) = 1. yt = µt + εt.
Multiplicative errors:

k(xt−1) = µt. yt = µt(1 + εt).
εt = (yt −µt)/µt is relative error.

• All the methods can be written in this state space form.
• The only difference between the additive error and multiplicative

error models is in the observation equation.
• Additive and multiplicative versions give the same point forecasts.

Some unstable models

• Some of the combinations of (Error, Trend, Seasonal) can lead to
numerical difficulties; see equations with division by a state.

• These are: ETS(M,M,A), ETS(M,Md,A), ETS(A,N,M), ETS(A,A,M),
ETS(A,Ad,M), ETS(A,M,N), ETS(A,M,A), ETS(A,M,M), ETS(A,Md,N),
ETS(A,Md,A), and ETS(A,Md,M).

• Models with multiplicative errors are useful for strictly positive
data – but are not numerically stable with data containing zeros or
negative values. In that case only the six fully additive models will
be applied.

Seasonal Component
Trend N A M

Component (None) (Additive) (Multiplicative)

N (None) A,N,N A,N,A A,N,M

A (Additive) A,A,N A,A,A A,A,M

Ad (Additive damped) A,Ad,N A,Ad,A A,Ad,M

M (Multiplicative) A,M,N A,M,A A,M,M

Md (Multiplicative damped) A,Md,N A,Md,A A,Md,M

Seasonal Component
Trend N A M

Component (None) (Additive) (Multiplicative)

N (None) M,N,N M,N,A M,N,M

A (Additive) M,A,N M,A,A M,A,M

Ad (Additive damped) M,Ad,N M,Ad,A M,Ad,M

M (Multiplicative) M,M,N M,M,A M,M,M

Md (Multiplicative damped) M,Md,N M,Md,A M,Md,M
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Estimation

L∗(θ,x0) = n log
( n∑
t=1

ε2
t /k

2(xt−1)
)

+ 2
n∑
t=1

log |k(xt−1)|

= −2log(Likelihood) + constant

• Estimate parameters θ = (α,β,γ,φ) and initial states x0 =
(`0,b0, s0, s−1, . . . , s−m+1) by minimizing L∗.

Parameter restrictions

Usual region

• Traditional restrictions in the methods 0 < α,β∗,γ∗,φ < 1 — equa-
tions interpreted as weighted averages.

• In models we set β = αβ∗ and γ = (1−α)γ∗ therefore 0 < α < 1, 0 <
β < α and 0 < γ < 1−α.

• 0.8 < φ < 0.98 — to prevent numerical difficulties.

Admissible region

• To prevent observations in the distant past having a continuing
effect on current forecasts.

• Usually (but not always) less restrictive than the usual region.
• For example for ETS(A,N,N):

usual 0 < α < 1 — admissible is 0 < α < 2.

Model selection

Akaike’s Information Criterion

AIC = −2log(Likelihood) + 2p

where p is the number of estimated parameters in the model. Minimizing
the AIC gives the best model for prediction.

AIC corrected (for small sample bias)

AICC = AIC +
2(p+ 1)(p+ 2)

n− p
Schwartz’ Bayesian IC

BIC = AIC + p(log(n)− 2)

Akaike’s Information Criterion

• Value of AIC/AICc/BIC given in the R output.
• AIC does not have much meaning by itself. Only useful in compari-

son to AIC value for another model fitted to same data set.
• Consider several models with AIC values close to the minimum.
• A difference in AIC values of 2 or less is not regarded as substantial

and you may choose the simpler but non-optimal model.
• AIC can be negative.
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Automatic forecasting

From Hyndman et al. (IJF, 2002):

• Apply each model that is appropriate to the data. Optimize parame-
ters and initial values using MLE (or some other criterion).

• Select best method using AICc:
• Produce forecasts using best method.
• Obtain Forecast intervals using underlying state space model.

Method performed very well in M3 competition.

3.8 ETS in R

fit <- ets(ausbeer)
fit2 <- ets(ausbeer,model="AAA",damped=FALSE)
fcast1 <- forecast(fit, h=20)
fcast2 <- forecast(fit2, h=20)

ets(y, model="ZZZ", damped=NULL, alpha=NULL,
beta=NULL, gamma=NULL, phi=NULL,
additive.only=FALSE,
lower=c(rep(0.0001,3),0.80),
upper=c(rep(0.9999,3),0.98),
opt.crit=c("lik","amse","mse","sigma"), nmse=3,
bounds=c("both","usual","admissible"),
ic=c("aic","aicc","bic"), restrict=TRUE)

> fit
ETS(M,Md,M)

Smoothing parameters:
alpha = 0.1776
beta = 0.0454
gamma = 0.1947
phi = 0.9549

Initial states:
l = 263.8531
b = 0.9997
s = 1.1856 0.9109 0.8612 1.0423

sigma: 0.0356

AIC AICc BIC
2272.549 2273.444 2302.715
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> fit2
ETS(A,A,A)

Smoothing parameters:
alpha = 0.2079
beta = 0.0304
gamma = 0.2483

Initial states:
l = 255.6559
b = 0.5687
s = 52.3841 -27.1061 -37.6758 12.3978

sigma: 15.9053

AIC AICc BIC
2312.768 2313.481 2339.583

ets() function

• Automatically chooses a model by default using the AIC, AICc or
BIC.

• Can handle any combination of trend, seasonality and damping
• Produces Forecast intervals for every model
• Ensures the parameters are admissible (equivalent to invertible)
• Produces an object of class "ets".

ets objects

• Methods: "coef()", "plot()", "summary()", "residuals()", "fitted()", "sim-
ulate()" and "forecast()"

• "plot()" function shows time plots of the original time series along
with the extracted components (level, growth and seasonal).
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Goodness-of-fit

> accuracy(fit)
ME RMSE MAE MPE MAPE MASE

0.17847 15.48781 11.77800 0.07204 2.81921 0.20705

> accuracy(fit2)
ME RMSE MAE MPE MAPE MASE

-0.11711 15.90526 12.18930 -0.03765 2.91255 0.21428

Forecast intervals

Forecasts from ETS(M,Md,M)

1995 2000 2005 2010
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> plot(forecast(fit,level=c(50,80,95)))

Forecasts from ETS(M,Md,M)

1995 2000 2005 2010
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> plot(forecast(fit,fan=TRUE))

Re-fitting ETS models

"ets()" function also allows refitting model to new data set.
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> usfit <- ets(usnetelec[1:45])
> test <- ets(usnetelec[46:55], model = usfit)

> accuracy(test)
ME RMSE MAE MPE MAPE MASE

-3.35419 58.02763 43.85545 -0.07624 1.18483 0.52452

> accuracy(forecast(usfit,10), usnetelec[46:55])
ME RMSE MAE MPE MAPE MASE

40.7034 61.2075 46.3246 1.0980 1.2620 0.6776

The ets() function in R

ets(y, model="ZZZ", damped=NULL,
alpha=NULL, beta=NULL,
gamma=NULL, phi=NULL,
additive.only=FALSE,
lambda=NULL
lower=c(rep(0.0001,3),0.80),
upper=c(rep(0.9999,3),0.98),
opt.crit=c("lik","amse","mse","sigma"),
nmse=3,
bounds=c("both","usual","admissible"),
ic=c("aic","aicc","bic"), restrict=TRUE)

• y
The time series to be forecast.

• model
use the ETS classification and notation: “N” for none, “A” for addi-
tive, “M” for multiplicative, or “Z” for automatic selection. Default
ZZZ all components are selected using the information criterion.

• damped
– If damped=TRUE, then a damped trend will be used (either Ad or

Md).
– damped=FALSE, then a non-damped trend will used.
– If damped=NULL (the default), then either a damped or a non-

damped trend will be selected according to the information
criterion chosen.

• alpha, beta, gamma, phi
The values of the smoothing parameters can be specified using these
arguments. If they are set to NULL (the default value for each of
them), the parameters are estimated.

• additive.only
Only models with additive components will be considered if
additive.only=TRUE. Otherwise all models will be considered.

• lambda
Box-Cox transformation parameter. It will be ignored if
lambda=NULL (the default value). Otherwise, the time series will
be transformed before the model is estimated. When lambda is not
NULL, additive.only is set to TRUE.

• lower,upper bounds for the parameter estimates of α, β, γ and φ.
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• opt.crit=lik (default) optimisation criterion used for estimation.

• bounds Constraints on the parameters.
– usual region – "bounds=usual";
– admissible region – "bounds=admissible";
– "bounds=both" (the default) requires the parameters to satisfy

both sets of constraints.

• ic=aic (the default) information criterion to be used in selecting
models.

• restrict=TRUE (the default) models that cause numerical difficul-
ties are not considered in model selection.

3.9 Forecasting with ETS models

• Point forecasts obtained by iterating equations for t = T + 1, . . . ,T + h,
setting εt = 0 for t > T .

• Not the same as E(yt+h|xt) unless trend and seasonality are both
additive.

• Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the pa-
rameters are the same.

• Forecast intervals will differ between models with additive and
multiplicative methods.

• Exact PI available for many models.
• Otherwise, simulate future sample paths, conditional on last esti-

mate of states, and obtain PI from percentiles of simulated paths.

Point forecasts: iterate the equations for t = T + 1,T + 2, . . . ,T +h and set all
εt = 0 for t > T .

For example, for ETS(M,A,N):

• yT+1 = (`T + bT )(1 + εT+1)
• Therefore ŷT+1|T = `T + bT
• yT+2 = (`T+1 + bT+1)(1 + εT+1) =

[(`T + bT )(1 +αεT+1) + bT + β(`T + bT )εT+1] (1 + εT+1)
• Therefore ŷT+2|T = `T + 2bT and so on.

Identical forecast with Holt’s linear method and ETS(A,A,N). So the point
forecasts obtained from the method and from the two models that un-
derly the method are identical (assuming the same parameter values are
used).

Forecast intervals: cannot be generated using the methods.

• The Forecast intervals will differ between models with additive and
multiplicative methods.

• Exact formulae for some models.
• More general to simulate future sample paths, conditional on the

last estimate of the states, and to obtain Forecast intervals from the
percentiles of these simulated future paths.

• Options are available in R using the forecast function in the fore-
cast package.
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3.10 Lab Session 4

Before doing any exercises in R, load the fpp package using
library(fpp).

1. Use ets() to find the best ETS model for the price of eggs (data set
eggs). How does this model compare to the one you found in the
previous lab session?

2. Use ets() on the various other series we have considered today.
Does it always give good forecasts? Find an example where it does
not work well. Can you figure out why?



4
Time series decomposition

Yt = f (St ,Tt ,Et)

where Yt = data at period t
St = seasonal component at period t
Tt = trend component at period t
Et = remainder (or irregular or error) component at

period t

Additive decomposition: Yt = St + Tt +Et .

4.1 Example: Euro electrical equipment

Electrical equipment manufacturing (Euro area)
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Electrical equipment manufacturing (Euro area)
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4.2 Seasonal adjustment

• Useful by-product of decomposition: an easy way to calculate sea-
sonally adjusted data.

• Additive decomposition: seasonally adjusted data given by

Yt − St = Tt +Et

Electrical equipment manufacturing
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4.3 STL decomposition

• STL: “Seasonal and Trend decomposition using Loess”,
• Very versatile and robust.
• Seasonal component allowed to change over time, and rate of

change controlled by user.
• Smoothness of trend-cycle also controlled by user.
• Robust to outliers
• Only additive.
• Use Box-Cox transformations to get other decompositions.
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fit <- stl(elecequip, t.window=15, s.window="periodic", robust=TRUE)
plot(fit)

• t.window controls wiggliness of trend component.
• s.window controls variation on seasonal component.

4.4 Forecasting and decomposition

• Forecast seasonal component by repeating the last year
• Forecast seasonally adjusted data using non-seasonal time series

method. E.g., ETS model.
• Combine forecasts of seasonal component with forecasts of season-

ally adjusted data to get forecasts of original data.
• Sometimes a decomposition is useful just for understanding the

data before building a separate forecasting model.
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Naive forecasts of seasonally adjusted data
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How to do this in R

fit <- stl(elecequip, t.window=15, s.window="periodic", robust=TRUE)

eeadj <- seasadj(fit)
plot(naive(eeadj), xlab="New orders index")

fcast <- forecast(fit, method="naive")
plot(fcast, ylab="New orders index")

Decomposition and forecast intervals

• It is common to take the Forecast intervals from the seasonally ad-
justed forecasts and modify them with the seasonal component.

• This ignores the uncertainty in the seasonal component estimate.
• It also ignores the uncertainty in the future seasonal pattern.
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4.5 Lab Session 5a

Before doing any exercises in R, load the fpp package using
library(fpp).

1. Consider the monthly sales of product A for a plastics manufacturer
for years 1 through 5 (data set plastics).

(a) Plot the time series of sales of product A. Can you identify sea-
sonal fluctuations and/or a trend?

(b) Use an STL decomposition to calculate the trend-cycle and sea-
sonal indices. (Experiment with having fixed or changing sea-
sonality.)

(c) Do the results support the graphical interpretation from part
(a)?

(d) Compute and plot the seasonally adjusted data.

(e) Use a random walk to produce forecasts of the seasonally ad-
justed data.

(f) Reseasonalize the results to give forecasts on the original scale.
[Hint: you can use the stlf function with method="naive".]

(g) Why do the forecasts look too low?



5
Time series cross-validation

5.1 Cross-validation

Traditional evaluation

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● time
Training data Test data

Standard cross-validation
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●● ●● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●●● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●

Time series cross-validation
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Assume k is the minimum number of observations for a training set.

• Select observation k + i for test set, and use observations at times
1,2, . . . , k + i − 1 to estimate model. Compute error on forecast for time
k + i.

• Repeat for i = 0,1, . . . ,T − k where T is total number of observations.
• Compute accuracy measure over all errors.

Also called rolling forecasting origin because the origin (k + i −1) at which
forecast is based rolls forward in time.

58
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Cross-sectional data

• Minimizing the AIC is asymptotically equivalent to minimizing
MSE via leave-one-out cross-validation. (Stone, 1977).

Time series cross-validation

• Minimizing the AIC is asymptotically equivalent to minimizing
MSE via one-step cross-validation. (Akaike, 1969,1973).

5.2 Example: Pharmaceutical sales

Antidiabetic drug sales
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Which of these models is best?

1. Linear model with trend and seasonal dummies applied to log data.
2. ARIMA model applied to log data
3. ETS model applied to original data

• Set k = 48 as minimum training set.
• Forecast 12 steps ahead based on data to time k + i − 1 for i =

1,2, . . . ,156.
• Compare MAE values for each forecast horizon.

k <- 48
n <- length(a10)
mae1 <- mae2 <- mae3 <- matrix(NA,n-k-12,12)
for(i in 1:(n-k-12))
{
xshort <- window(a10,end=1995+(5+i)/12)
xnext <- window(a10,start=1995+(6+i)/12,end=1996+(5+i)/12)
fit1 <- tslm(xshort ~ trend + season, lambda=0)
fcast1 <- forecast(fit1,h=12)
fit2 <- auto.arima(xshort,D=1, lambda=0)
fcast2 <- forecast(fit2,h=12)
fit3 <- ets(xshort)
fcast3 <- forecast(fit3,h=12)
mae1[i,] <- abs(fcast1[[’mean’]]-xnext)
mae2[i,] <- abs(fcast2[[’mean’]]-xnext)
mae3[i,] <- abs(fcast3[[’mean’]]-xnext)

}
plot(1:12,colMeans(mae1),type="l",col=2,xlab="horizon",ylab="MAE",

ylim=c(0.58,1.0))
lines(1:12,colMeans(mae2),type="l",col=3)
lines(1:12,colMeans(mae3),type="l",col=4)
legend("topleft",legend=c("LM","ARIMA","ETS"),col=2:4,lty=1)
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Variations on time series cross validation

Keep training window of fixed length.

xshort <- window(a10,start=i+1/12,end=1995+(5+i)/12)

Compute one-step forecasts in out-of-sample period.

for(i in 1:(n-k))
{
xshort <- window(a10,end=1995+(5+i)/12)
xlong <- window(a10,start=1995+(6+i)/12)
fit2 <- auto.arima(xshort,D=1, lambda=0)
fit2a <- Arima(xlong,model=fit2)
fit3 <- ets(xshort)
fit3a <- ets(xlong,model=fit3)
mae2a[i,] <- abs(residuals(fit3a))
mae3a[i,] <- abs(residuals(fit2a))

}
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5.3 Lab Session 5b

Before doing any exercises in R, load the fpp package using
library(fpp).

1. For this exercise, use the monthly Australian short-term overseas vis-
itors data, May 1985–April 2005. (Data set: visitors in expsmooth
package.)

(a) Use ets to find the best model for these data and record the
training set RMSE. You should find that the best model is
ETS(M,A,M).

(b) We will now check how much larger the one-step RMSE is on
out-of-sample data using time series cross-validation. The fol-
lowing code will compute the result, beginning with four years
of data in the training set.

k <- 48 # minimum size for training set
n <- length(visitors) # Total number of observations
e <- visitors*NA # Vector to record one-step forecast errors
for(i in 48:(n-1))
{

train <- ts(visitors[1:i],freq=12)
fit <- ets(train, "MAM", damped=FALSE)
fc <- forecast(fit,h=1)$mean
e[i] <- visitors[i+1]-fc

}
sqrt(mean(e^2,na.rm=TRUE))

Check that you understand what the code is doing. Ask if you
don’t.

(c) What would happen in the above loop if I had set
train <- visitors[1:i]?

(d) Plot e. What do you notice about the error variances? Why
does this occur?

(e) How does this problem bias the comparison of the RMSE val-
ues from (1a) and (1b)? (Hint: think about the effect of the
missing values in e.)

(f) In practice, we will not know that the best model on the whole
data set is ETS(M,A,M) until we observe all the data. So a more
realistic analysis would be to allow ets to select a different
model each time through the loop. Calculate the RMSE using
this approach. (Warning: it will take a while as there are a lot
of models to fit.)

(g) How does the RMSE computed in (1f) compare to that com-
puted in (1b)? Does the re-selection of a model at each step
make much difference?

2. Try a similar cross-validation approach on one of the other time
series considered yesterday.

(a) Does the ets() model selection via AICc give the same model as
obtained using cross-validation?

(b) Which model would you use in practice?



6
Making time series stationary

6.1 Transformations

If the data show different variation at different levels of the series, then a
transformation can be useful.

Denote original observations as y1, . . . , yn and transformed observations as
w1, . . . ,wn.

Square root wt =
√
yt ↓

Cube root wt = 3
√
yt Increasing

Logarithm wt = log(yt) strength

Logarithms, in particular, are useful because they are more interpretable:
changes in a log value are relative (percent) changes on the original
scale.
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Box-Cox transformations

Each of these transformations is close to a member of the family of Box-
Cox transformations:

wt =
{

log(yt), λ = 0;
(yλt − 1)/λ, λ , 0.

• λ = 1: (No substantive transformation)
• λ = 1

2 : (Square root plus linear transformation)
• λ = 0: (Natural logarithm)
• λ = −1: (Inverse plus 1)

• yλt for λ close to zero behaves like logs.
• If some yt = 0, then must have λ > 0
• if some yt < 0, no power transformation is possible unless all yt

adjusted by adding a constant to all values.
• Choose a simple value of λ. It makes explanation easier.
• Results are relatively insensitive to value of λ
• Often no transformation (λ = 1) needed.
• Transformation often makes little difference to forecasts but has

large effect on PI.
• Choosing λ = 0 is a simple way to force forecasts to be positive

We must reverse the transformation (or back-transform) to obtain forecasts
on the original scale. The reverse Box-Cox transformations are given by

yt =
{

exp(wt), λ = 0;
(λWt + 1)1/λ, λ , 0.

plot(BoxCox(elec,lambda=1/3))
fit <- snaive(elec, lambda=1/3)
plot(fit)
plot(fit, include=120)

Automated Box-Cox transformations

BoxCox.lambda(elec)

• This attempts to balance the seasonal fluctuations and random varia-
tion across the series.

• Always check the results.
• A low value of λ can give extremely large Forecast intervals.

ETS and transformations

• A Box-Cox transformation followed by an additive ETS model is
often better than an ETS model without transformation.

• It makes no sense to use a Box-Cox transformation and a non-
additive ETS model.
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6.2 Stationarity

Definition If {yt} is a stationary time series, then for all s, the distribution
of (yt , . . . , yt+s) does not depend on t.

A stationary series is:

• roughly horizontal
• constant variance
• no patterns predictable in the long-term
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Annual Canadian Lynx trappings
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Transformations help to stabilize the variance.

For ARIMA modelling, we also need to stabilize the mean.

Identifying non-stationary series

• time plot.
• The ACF of stationary data drops to zero relatively quickly
• The ACF of non-stationary data decreases slowly.
• For non-stationary data, the value of r1 is often large and positive.

Example: Dow-Jones index

Dow Jones index (daily ending 15 Jul 94)
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6.3 Ordinary differencing

Differencing

• Differencing helps to stabilize the mean.
• The differenced series is the change between each observation in the

original series: y′t = yt − yt−1.
• The differenced series will have only T − 1 values since it is not

possible to calculate a difference y′1 for the first observation.

Example: Dow-Jones index

• The differences of the Dow-Jones index are the day-today changes.
• Now the series looks just like a white noise series:

– no autocorrelations outside the 95% limits.
– Ljung-Box Q∗ statistic has a p-value 0.153 for h = 10.

• Conclusion: The daily change in the Dow-Jones index is essentially a
random amount uncorrelated with previous days.

Random walk model

Graph of differenced data suggests model for Dow-Jones index:
yt − yt−1 = et or yt = yt−1 + et .

• “Random walk” model very widely used for non-stationary data.
• This is the model behind the naïve method.
• Random walks typically have:

– long periods of apparent trends up or down
– sudden and unpredictable changes in direction.

Random walk with drift model

yt − yt−1 = c+ et or yt = c+ yt−1 + et .

• c is the average change between consecutive observations.
• This is the model behind the drift method.

Second-order differencing
Occasionally the differenced data will not appear stationary and it may be
necessary to difference the data a second time:

y′′t = y′t − y′t−1

= (yt − yt−1)− (yt−1 − yt−2)

= yt − 2yt−1 + yt−2.

• y′′t will have T − 2 values.
• In practice, it is almost never necessary to go beyond second-order

differences.
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6.4 Seasonal differencing

A seasonal difference is the difference between an observation and the
corresponding observation from the previous year.

y′t = yt − yt−m
where m = number of seasons. e.g., for monthly data m = 12.
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• Seasonally differenced series is closer to being stationary.
• Remaining non-stationarity can be removed with further first differ-

ence.

If y′t = yt−yt−12 denotes seasonally differenced series, then twice-differenced
series is y∗t = y′t − y′t−1

= (yt − yt−12)− (yt−1 − yt−13)

= yt − yt−1 − yt−12 + yt−13 .

When both seasonal and first differences are applied. . .

• it makes no difference which is done first—the result will be the
same.

• If seasonality is strong, we recommend that seasonal differencing be
done first because sometimes the resulting series will be stationary
and there will be no need for further first difference.

It is important that if differencing is used, the differences are inter-
pretable.
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Interpretation of differencing

• first differences are the change between one observation and the
next;

• seasonal differences are the change between one year to the next.

But taking lag 3 differences for yearly data, for example, results in a
model which cannot be sensibly interpreted.

6.5 Unit root tests

Statistical tests to determine the required order of differencing.

1. Augmented Dickey Fuller test: null hypothesis is that the data are
non-stationary and non-seasonal.

2. Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test: null hypothesis is
that the data are stationary and non-seasonal.

3. Other tests available for seasonal data.

Dickey-Fuller test

• Estimate regression model

y′t = φyt−1 + b1y
′
t−1 + b2y

′
t−2 + · · ·+ bky′t−k

where y′t denotes differenced series yt − yt−1.
• Number of lagged terms, k, is usually set to be about 3.
• If original series, yt, needs differencing, φ̂ ≈ 0.
• If yt is already stationary, φ̂ < 0.
• In R: Use adf.test().
• Default k = bT − 1c1/3

> adf.test(dj)

Augmented Dickey-Fuller Test

data: dj
Dickey-Fuller = -1.9872, Lag order = 6, p-value = 0.5816
alternative hypothesis: stationary

How many differences?

ndiffs(x)
nsdiffs(x)

Automated differencing

ns <- nsdiffs(x)
if(ns > 0)
xstar <- diff(x,lag=frequency(x), differences=ns)

else
xstar <- x

nd <- ndiffs(xstar)
if(nd > 0)
xstar <- diff(xstar,differences=nd)
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6.6 Backshift notation

A very useful notational device is the backward shift operator, B, which is
used as follows:

Byt = yt−1 .

In other words, B, operating on yt, has the effect of shifting the data back
one period. Two applications of B to yt shifts the data back two periods:

B(Byt) = B2yt = yt−2 .

For monthly data, if we wish to shift attention to “the same month last
year,” then B12 is used, and the notation is B12yt = yt−12.

The backward shift operator is convenient for describing the process of
differencing. A first difference can be written as

y′t = yt − yt−1 = yt −Byt = (1−B)yt .

Note that a first difference is represented by (1−B).

Similarly, if second-order differences (i.e., first differences of first differ-
ences) have to be computed, then:

y′′t = yt − 2yt−1 + yt−2 = (1−B)2yt .

• Second-order difference is denoted (1−B)2.
• Second-order difference is not the same as a second difference, which

would be denoted 1−B2;
• In general, a dth-order difference can be written as

(1−B)dyt .

• A seasonal difference followed by a first difference can be written as

(1−B)(1−Bm)yt .

The “backshift” notation is convenient because the terms can be multi-
plied together to see the combined effect.

(1−B)(1−Bm)yt = (1−B−Bm +Bm+1)yt
= yt − yt−1 − yt−m + yt−m−1.

For monthly data, m = 12 and we obtain the same result as earlier.
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6.7 Lab Session 6

Before doing any exercises in R, load the fpp package using
library(fpp).

1. For the following series, find an appropriate Box-Cox transforma-
tion and order of differencing in order to obtain stationary data.

(a) usnetelec
(b) usgdp
(c) mcopper
(d) enplanements
(e) visitors

2. Why is a Box-Cox transformation unhelpful for the cangas data?

3. Download the data at http://robjhyndman.com/data/retail.xls.
Choose one of the series and find an appropriate Box-Cox transfor-
mation and order of differencing in order to obtain stationary data.

4. For the same retail data, compare:

(a) an ETS model;
(b) an additive ETS model applied to a Box-Cox transformed series;
(c) an STL model applied to a Box-Cox transformed series, followed

by ETS on the seasonally adjusted data;
(d) a seasonal naive method applied to the Box-Cox transformed

series;

For each model, look at the residual diagnostics and compare the
forecasts on a test set of the last two years.

5. Repeat the previous question but use time series cross-validation to
compare the four models.

http://robjhyndman.com/data/retail.xls


7
Non-seasonal ARIMA models

7.1 Autoregressive models

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φpyt−p + et ,

where et is white noise. This is a multiple regression with lagged values
of yt as predictors.
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AR(1) model

yt = c+φ1yt−1 + et

• When φ1 = 0, yt is equivalent to WN
• When φ1 = 1 and c = 0, yt is equivalent to a RW
• When φ1 = 1 and c , 0, yt is equivalent to a RW with drift
• When φ1 < 0, yt tends to oscillate between positive and negative

values.

Stationarity conditions

We normally restrict autoregressive models to stationary data, and then
some constraints on the values of the parameters are required.

General condition for stationarity: Complex roots of 1−φ1z −φ2z
2 − · · · −

φpz
p lie outside the unit circle on the complex plane.

• For p = 1: −1 < φ1 < 1.
• For p = 2: −1 < φ2 < 1 φ2 +φ1 < 1 φ2 −φ1 < 1.
• More complicated conditions hold for p ≥ 3.
• Estimation software takes care of this.

72
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7.2 Moving average models

yt = c+ et +θ1et−1 +θ2et−2 + · · ·+θqet−q,
where et is white noise. This is a multiple regression with past errors as
predictors. Don’t confuse this with moving average smoothing!

MA(1)
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Invertibility

• Any MA(q) process can be written as an AR(∞) process if we impose
some constraints on the MA parameters.

• Then the MA model is called “invertible”.
• Invertible models have some mathematical properties that make

them easier to use in practice.
• Invertibility of an ARIMA model is equivalent to forecastability of

an ETS model.

General condition for invertibility: Complex roots of 1 +θ1z+θ2z
2 + · · ·+

θqz
q lie outside the unit circle on the complex plane.

• For q = 1: −1 < θ1 < 1.
• For q = 2: −1 < θ2 < 1 θ2 +θ1 > −1 θ1 −θ2 < 1.
• More complicated conditions hold for q ≥ 3.
• Estimation software takes care of this.

7.3 ARIMA models

Autoregressive Moving Average models:

yt = c+φ1yt−1 + · · ·+φpyt−p +θ1et−1 + · · ·+θqet−q + et .

• Predictors include both lagged values of yt and lagged errors.
• Conditions on coefficients ensure stationarity.
• Conditions on coefficients ensure invertibility.

Autoregressive Integrated Moving Average models
• Combine ARMA model with differencing.
• (1−B)dyt follows an ARMA model.
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ARIMA(p,d,q) model

AR: p = order of the autoregressive part
I: d = degree of first differencing involved

MA: q = order of the moving average part.

• White noise model: ARIMA(0,0,0)
• Random walk: ARIMA(0,1,0) with no constant
• Random walk with drift: ARIMA(0,1,0) with const.
• AR(p): ARIMA(p,0,0)
• MA(q): ARIMA(0,0,q)

Backshift notation for ARIMA

• ARMA model:
yt = c+φ1Byt + · · ·+φpBpyt + et +θ1Bet + · · ·+θqBqet

or (1−φ1B− · · · −φpBp)yt = c+ (1 +θ1B+ · · ·+θqBq)et
• ARIMA(1,1,1) model:

(1−φ1B) (1−B)yt = c+ (1 +θ1B)et
↑ ↑ ↑

AR(1) First MA(1)
difference

Written out: yt = c+ yt−1 +φ1yt−1 −φ1yt−2 +θ1et−1 + et
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> fit <- auto.arima(usconsumption[,1], max.P=0,max.Q=0,D=0)

ARIMA(0,0,3) with non-zero mean
ma1 ma2 ma3 intercept

0.2542 0.2260 0.2695 0.7562
s.e. 0.0767 0.0779 0.0692 0.0844

sigma^2 estimated as 0.3856: log likelihood=-154.73
AIC=319.46 AICc=319.84 BIC=334.96

yt = 0.756 + et + 0.254et−1 + 0.226et−2 + 0.269et−3,

where et is white noise with standard deviation 0.62 =
√

0.3856.
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Forecasts from ARIMA(0,0,3) with non−zero mean

1995 2000 2005 2010

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

2.
0

plot(forecast(fit,h=10),include=80)

Understanding ARIMA models

• If c = 0 and d = 0, the long-term forecasts will go to zero.
• If c = 0 and d = 1, the long-term forecasts will go to a non-zero

constant.
• If c = 0 and d = 2, the long-term forecasts will follow a straight line.
• If c , 0 and d = 0, the long-term forecasts will go to the mean of the

data.
• If c , 0 and d = 1, the long-term forecasts will follow a straight line.
• If c , 0 and d = 2, the long-term forecasts will follow a quadratic

trend.

Forecast variance and d

• The higher the value of d, the more rapidly the Forecast intervals
increase in size.

• For d = 0, the long-term forecast standard deviation will go to the
standard deviation of the historical data.

Cyclic behaviour

• For cyclic forecasts, p > 2 and some restrictions on coefficients are
required.

• If p = 2, we need φ2
1 + 4φ2 < 0. Then average cycle of length

(2π)/ [arc cos(−φ1(1−φ2)/(4φ2))] .
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Partial autocorrelations

Partial autocorrelations measure relationship between yt and yt−k, when
the effects of other time lags (1,2,3, . . . , k − 1) are removed.

αk = kth partial autocorrelation coefficient

= equal to the estimate of bk in regression:

yt = c+φ1yt−1 +φ2yt−2 + · · ·+φkyt−k .

• Varying number of terms on RHS gives αk for different values of k.
• There are more efficient ways of calculating αk .
• α1 = ρ1

• same critical values of ±1.96/
√
T as for ACF.

Example: US consumption
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ACF and PACF interpretation

ARIMA(p,d,0) model if ACF and PACF plots of differenced data show:

• the ACF is exponentially decaying or sinusoidal;
• there is a significant spike at lag p in PACF, but none beyond lag p.

ARIMA(0,d,q) model if ACF and PACF plots of differenced data show:

• the PACF is exponentially decaying or sinusoidal;
• there is a significant spike at lag q in ACF, but none beyond lag q.
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Example: Mink trapping

Annual number of minks trapped
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7.4 Estimation and order selection

Maximum likelihood estimation

Having identified the model order, we need to estimate the parameters c,
φ1, . . . ,φp, θ1, . . . ,θq.

• MLE is very similar to least squares estimation obtained by minimiz-
ing

∑T
t−1 e

2
t .

• The Arima() command allows CLS or MLE estimation.
• Non-linear optimization must be used in either case.
• Different software will give different estimates.

Information criteria

Akaike’s Information Criterion (AIC):
AIC = −2log(L) + 2(p+ q+ k + 1),

where L is the likelihood of the data, k = 1 if c , 0 and k = 0 if c = 0.

Corrected AIC:

AICc = AIC +
2(p+ q+ k + 1)(p+ q+ k + 2)

T − p − q − k − 2
.

Bayesian Information Criterion:
BIC = AIC + log(T )(p+ q+ k − 1).

Good models are obtained by minimizing either the AIC, AICc or BIC.
Our preference is to use the AICc.
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7.5 ARIMA modelling in R

auto.arima(): Hyndman and Khandakar (JSS, 2008) algorithm

• Select no. differences d and D via unit root tests.
• Select p,q by minimising AICc.
• Use stepwise search to traverse model space.

Step 1: Select current model (with smallest AIC) from:
ARIMA(2,d,2)
ARIMA(0,d,0)
ARIMA(1,d,0)
ARIMA(0,d,1)

Step 2: Consider variations of current model:
• vary one of p,q, from current model by ±1
• p,q both vary from current model by ±1
• Include/exclude c from current model

Model with lowest AIC becomes current model.

Repeat Step 2 until no lower AIC can be found.

Choosing your own model

tsdisplay(internet)
adf.test(internet)
kpss.test(internet)
kpss.test(diff(internet))
tsdisplay(diff(internet))
fit <- Arima(internet,order=c(3,1,0))
fit2 <- auto.arima(internet)
Acf(residuals(fit))
Box.test(residuals(fit), fitdf=3, lag=10, type="Ljung")
tsdiag(fit)
forecast(fit)
plot(forecast(fit))

Modelling procedure

1. Plot the data. Identify any unusual observations.
2. If necessary, transform the data (using a Box-Cox transformation) to

stabilize the variance.
3. If the data are non-stationary: take first differences of the data until

the data are stationary.
4. Examine the ACF/PACF: Is an AR(p) or MA(q) model appropriate?
5. Try your chosen model(s), and use the AICc to search for a better

model.
6. Check the residuals from your chosen model by plotting the ACF of

the residuals, and doing a portmanteau test of the residuals. If they
do not look like white noise, try a modified model.

7. Once the residuals look like white noise, calculate forecasts.

The automated algorithm only takes care of steps 3–5. So even if you use
it, you will still need to take care of the other steps yourself.
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8/ arima models 177

1. Plot the data. Identify
unusual observations.
Understand patterns.

2. If necessary, use a Box-
Cox transformation to
stabilize the variance.

Select model
order yourself.

Use automated
algorithm.

3. If necessary, difference
the data until it appears
stationary. Use unit-root
tests if you are unsure.

4. Plot the ACF/PACF of
the differenced data and

try to determine pos-
sible candidate models.

5. Try your chosen model(s)
and use the AICc to

search for a better model.

6. Check the residuals
from your chosen model

by plotting the ACF of the
residuals, and doing a port-

manteau test of the residuals.

Use auto.arima() to find
the best ARIMA model

for your time series.

Do the
residuals
look like

white
noise?

7. Calculate forecasts.

yes

no

Figure 8.10: General process for fore-
casting using an ARIMA model.
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Seasonally adjusted electrical equipment
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1. Time plot shows sudden changes, particularly big drop in
2008/2009 due to global economic environment. Otherwise nothing
unusual and no need for data adjustments.

2. No evidence of changing variance, so no Box-Cox transformation.
3. Data are clearly non-stationary, so we take first differences.
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> tsdisplay(diff(eeadj))

4. PACF is suggestive of AR(3). So initial candidate model is
ARIMA(3,1,0). No other obvious candidates.

5. Fit ARIMA(3,1,0) model along with variations: ARIMA(4,1,0),
ARIMA(2,1,0), ARIMA(3,1,1), etc. ARIMA(3,1,1) has smallest AICc
value.
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> fit <- Arima(eeadj, order=c(3,1,1))
> summary(fit)
Series: eeadj
ARIMA(3,1,1)

Coefficients:
ar1 ar2 ar3 ma1

0.0519 0.1191 0.3730 -0.4542
s.e. 0.1840 0.0888 0.0679 0.1993

sigma^2 estimated as 9.532: log likelihood=-484.08
AIC=978.17 AICc=978.49 BIC=994.4

6. ACF plot of residuals from ARIMA(3,1,1) model look like white
noise.

Acf(residuals(fit))
Box.test(residuals(fit), lag=24, fitdf=4, type="Ljung")

Forecasts from ARIMA(3,1,1)                   
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> plot(forecast(fit))

7.6 Forecasting

Point forecasts

1. Rearrange ARIMA equation so yt is on LHS.
2. Rewrite equation by replacing t by T + h.
3. On RHS, replace future observations by their forecasts, future errors

by zero, and past errors by corresponding residuals.

Start with h = 1. Repeat for h = 2,3, . . . .

Use US consumption model ARIMA(3,1,1) to demonstrate:

(1− φ̂1B− φ̂2B
2 − φ̂3B

3)(1−B)yt = (1 + θ̂1B)et ,

where φ̂1 = 0.0519, φ̂2 = 0.1191, φ̂3 = 0.3730 and θ̂1 = −0.4542.

Expand LHS:[
1− (1 + φ̂1)B+ (φ̂1 − φ̂2)B2 + (φ̂2 − φ̂3)B3 + φ̂3B

4
]
yt = (1 + θ̂1B)et ,
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Apply backshift operator:

yt − (1 + φ̂1)yt−1 + (φ̂1 − φ̂2)yt−2 + (φ̂2 − φ̂3)yt−3 + φ̂3yt−4 = et + θ̂1et−1.

Move all terms other than yt to RHS:

yt = (1 + φ̂1)yt−1 − (φ̂1 − φ̂2)yt−2 − (φ̂2 − φ̂3)yt−3 − φ̂3yt−4 + et + θ̂1et−1. (7.1)

h = 1

Replace t by T + 1 in (7.1):

yT+1 = (1 + φ̂1)yT − (φ̂1 − φ̂2)yT−1 − (φ̂2 − φ̂3)yT−2 − φ̂3yT−3 + eT+1 + θ̂1eT .

Replace eT+1 by 0 and eT by êT :

ŷT+1|T = (1 + φ̂1)yT − (φ̂1 − φ̂2)yT−1 − (φ̂2 − φ̂3)yT−2 − φ̂3yT−3 + θ̂1êT .

h = 2

Replace t by T + 2 in (7.1), replace yT+1 by ŷT+1, replace eT+h by 0 for h > 0:

ŷT+2|T = (1 + φ̂1)ŷT+1|T − (φ̂1 − φ̂2)yT − (φ̂2 − φ̂3)yT−1 − φ̂3yT−2.

Forecast intervals

95% forecast interval: ŷT+h|T ± 1.96√vT+h|T where vT+h|T is estimated
forecast variance.

• vT+1|T = σ̂2 for all ARIMA models regardless of parameters and
orders.

• Multi-step forecast intervals for ARIMA(0,0,q):

yt = et +
q∑
i=1

θiet−i .

vT |T+h = σ̂2

1 +
h−1∑
i=1

θ2
i

 , for h = 2,3, . . . .

• Forecast intervals increase in size with forecast horizon.
• Forecast intervals can be difficult to calculate by hand
• Calculations assume residuals are uncorrelated and normally dis-

tributed.
• Forecast intervals tend to be too narrow.

– the uncertainty in the parameter estimates has not been ac-
counted for.

– the ARIMA model assumes historical patterns will not change
during the forecast period.

– the ARIMA model assumes uncorrelated future errors
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7.7 Lab Session 7

Before doing any exercises in R, load the fpp package using
library(fpp).

1. For the wmurders data:

(a) if necessary, find a suitable Box-Cox transformation for the data;
(b) fit a suitable ARIMA model to the transformed data using

auto.arima();
(c) try some other plausible models by experimenting with the

orders chosen;
(d) choose what you think is the best model and check the residual

diagnostics;
(e) produce forecasts of your fitted model. Do the forecasts look

reasonable?
(f) compare the results with what you would obtain using ets()

(with no transformation).

2. For the usgdp data:

(a) if necessary, find a suitable Box-Cox transformation for the data;
(b) fit a suitable ARIMA model to the transformed data using

auto.arima();
(c) try some other plausible models by experimenting with the

orders chosen;
(d) choose what you think is the best model and check the residual

diagnostics;
(e) produce forecasts of your fitted model. Do the forecasts look

reasonable?
(f) compare the results with what you would obtain using ets()

(with no transformation).

3. For the mcopper data:

(a) if necessary, find a suitable Box-Cox transformation for the data;
(b) fit a suitable ARIMA model to the transformed data using

auto.arima();
(c) try some other plausible models by experimenting with the

orders chosen;
(d) choose what you think is the best model and check the residual

diagnostics;
(e) produce forecasts of your fitted model. Do the forecasts look

reasonable?
(f) compare the results with what you would obtain using ets()

(with no transformation).
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Seasonal ARIMA models

ARIMA (p,d,q)︸  ︷︷  ︸ (P ,D,Q)m︸      ︷︷      ︸ where m = number of periods per season.

↑ ↑
Non-
seasonal
part of
the model




Seasonal
part of
the model


E.g., ARIMA(1,1,1)(1,1,1)4 model (without constant)

(1−φ1B)(1−Φ1B
4)(1−B)(1−B4)yt = (1 +θ1B)(1 +Θ1B

4)et .

6 6 6 6 6 6(
Non-seasonal

AR(1)

)
(
Seasonal

AR(1)

)
(
Non-seasonal

difference

)
(

Seasonal
difference

)
(
Non-seasonal

MA(1)

)
(
Seasonal
MA(1)

)

E.g., ARIMA(1,1,1)(1,1,1)4 model (without constant)

(1−φ1B)(1−Φ1B
4)(1−B)(1−B4)yt = (1 +θ1B)(1 +Θ1B

4)et .

All the factors can be multiplied out and the general model written as
follows:

yt = (1 +φ1)yt−1 −φ1yt−2 + (1 +Φ1)yt−4

− (1 +φ1 +Φ1 +φ1Φ1)yt−5 + (φ1 +φ1Φ1)yt−6

−Φ1yt−8 + (Φ1 +φ1Φ1)yt−9 −φ1Φ1yt−10

+ et +θ1et−1 +Θ1et−4 +θ1Θ1et−5.

84
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8.1 Common ARIMA models

In the US Census Bureau uses the following models most often:

ARIMA(0,1,1)(0,1,1)m with log transformation
ARIMA(0,1,2)(0,1,1)m with log transformation
ARIMA(2,1,0)(0,1,1)m with log transformation
ARIMA(0,2,2)(0,1,1)m with log transformation
ARIMA(2,1,2)(0,1,1)m with no transformation

8.2 ACF and PACF of seasonal ARIMA models

The seasonal part of an AR or MA model will be seen in the seasonal lags
of the PACF and ACF.

ARIMA(0,0,0)(0,0,1)12 will show:

• a spike at lag 12 in the ACF but no other significant spikes.
• The PACF will show exponential decay in the seasonal lags; that is,

at lags 12, 24, 36, . . . .

ARIMA(0,0,0)(1,0,0)12 will show:

• exponential decay in the seasonal lags of the ACF
• a single significant spike at lag 12 in the PACF.

8.3 Example: European quarterly retail trade

> plot(euretail)
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> tsdisplay(diff(euretail,4))
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> tsdisplay(diff(diff(euretail,4)))
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• d = 1 and D = 1 seems necessary.
• Significant spike at lag 1 in ACF suggests non-seasonal MA(1) com-

ponent.
• Significant spike at lag 4 in ACF suggests seasonal MA(1) compo-

nent.
• Initial candidate model: ARIMA(0,1,1)(0,1,1)4.
• We could also have started with ARIMA(1,1,0)(1,1,0)4.

fit <- Arima(euretail, order=c(0,1,1), seasonal=c(0,1,1))
tsdisplay(residuals(fit))
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• ACF and PACF of residuals show significant spikes at lag 2, and
maybe lag 3.

• AICc of ARIMA(0,1,2)(0,1,1)4 model is 74.36.
• AICc of ARIMA(0,1,3)(0,1,1)4 model is 68.53.

fit <- Arima(euretail, order=c(0,1,3), seasonal=c(0,1,1))
tsdisplay(residuals(fit))
Box.test(res, lag=16, fitdf=4, type="Ljung")
plot(forecast(fit3, h=12))
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Forecasts from ARIMA(0,1,3)(0,1,1)[4]                   

2000 2005 2010 2015

90
95

10
0

> auto.arima(euretail)
ARIMA(1,1,1)(0,1,1)[4]

Coefficients:
ar1 ma1 sma1

0.8828 -0.5208 -0.9704
s.e. 0.1424 0.1755 0.6792

sigma^2 estimated as 0.1411: log likelihood=-30.19
AIC=68.37 AICc=69.11 BIC=76.68

> auto.arima(euretail, stepwise=FALSE, approximation=FALSE)
ARIMA(0,1,3)(0,1,1)[4]

Coefficients:
ma1 ma2 ma3 sma1

0.2625 0.3697 0.4194 -0.6615
s.e. 0.1239 0.1260 0.1296 0.1555

sigma^2 estimated as 0.1451: log likelihood=-28.7
AIC=67.4 AICc=68.53 BIC=77.78
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8.4 Example: Cortecosteroid drug sales
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Seasonally differenced H02 scripts
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• Choose D = 1 and d = 0.
• Spikes in PACF at lags 12 and 24 suggest seasonal AR(2) term.
• Spikes in PACF sugges possible non-seasonal AR(3) term.
• Initial candidate model: ARIMA(3,0,0)(2,1,0)12.
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Model AICc

ARIMA(3,0,0)(2,1,0)12 −475.12
ARIMA(3,0,1)(2,1,0)12 −476.31
ARIMA(3,0,2)(2,1,0)12 −474.88
ARIMA(3,0,1)(1,1,0)12 −463.40
ARIMA(3,0,1)(0,1,1)12 −483.67
ARIMA(3,0,1)(0,1,2)12 −485.48
ARIMA(3,0,1)(1,1,1)12 −484.25

> fit <- Arima(h02, order=c(3,0,1), seasonal=c(0,1,2), lambda=0)

ARIMA(3,0,1)(0,1,2)[12]
Box Cox transformation: lambda= 0

Coefficients:
ar1 ar2 ar3 ma1 sma1 sma2

-0.1603 0.5481 0.5678 0.3827 -0.5222 -0.1768
s.e. 0.1636 0.0878 0.0942 0.1895 0.0861 0.0872

sigma^2 estimated as 0.004145: log likelihood=250.04
AIC=-486.08 AICc=-485.48 BIC=-463.28
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tsdisplay(residuals(fit))
Box.test(residuals(fit), lag=36, fitdf=6, type="Ljung")
auto.arima(h02,lambda=0)
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Training: July 91 – June 06
Test: July 06 – June 08

Model RMSE

ARIMA(3,0,0)(2,1,0)12 0.0661
ARIMA(3,0,1)(2,1,0)12 0.0646
ARIMA(3,0,2)(2,1,0)12 0.0645
ARIMA(3,0,1)(1,1,0)12 0.0679
ARIMA(3,0,1)(0,1,1)12 0.0644
ARIMA(3,0,1)(0,1,2)12 0.0622
ARIMA(3,0,1)(1,1,1)12 0.0630
ARIMA(4,0,3)(0,1,1)12 0.0648
ARIMA(3,0,3)(0,1,1)12 0.0640
ARIMA(4,0,2)(0,1,1)12 0.0648
ARIMA(3,0,2)(0,1,1)12 0.0644
ARIMA(2,1,3)(0,1,1)12 0.0634
ARIMA(2,1,4)(0,1,1)12 0.0632
ARIMA(2,1,5)(0,1,1)12 0.0640

getrmse <- function(x,h,...)
{
train.end <- time(x)[length(x)-h]
test.start <- time(x)[length(x)-h+1]
train <- window(x,end=train.end)
test <- window(x,start=test.start)
fit <- Arima(train,...)
fc <- forecast(fit,h=h)
return(accuracy(fc,test)[2,"RMSE"])

}

getrmse(h02,h=24,order=c(3,0,0),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,2),seasonal=c(2,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(1,1,0),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(0,1,2),lambda=0)
getrmse(h02,h=24,order=c(3,0,1),seasonal=c(1,1,1),lambda=0)
getrmse(h02,h=24,order=c(4,0,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(4,0,2),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(3,0,2),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,3),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,4),seasonal=c(0,1,1),lambda=0)
getrmse(h02,h=24,order=c(2,1,5),seasonal=c(0,1,1),lambda=0)

• Models with lowest AICc values tend to give slightly better results
than the other models.

• AICc comparisons must have the same orders of differencing. But
RMSE test set comparisons can involve any models.

• No model passes all the residual tests.
• Use the best model available, even if it does not pass all tests.
• In this case, the ARIMA(3,0,1)(0,1,2)12 has the lowest RMSE value

and the best AICc value for models with fewer than 6 parameters.
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Forecasts from ARIMA(3,0,1)(0,1,2)[12]                   
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8.5 ARIMA vs ETS

• Myth that ARIMA models are more general than exponential
smoothing.

• Linear exponential smoothing models all special cases of ARIMA
models.

• Non-linear exponential smoothing models have no equivalent
ARIMA counterparts.

• Many ARIMA models have no exponential smoothing counterparts.
• ETS models all non-stationary. Models with seasonality or non-

damped trend (or both) have two unit roots; all other models have
one unit root.

Equivalences

Simple exponential smoothing

• Forecasts equivalent to ARIMA(0,1,1).
• Parameters: θ1 = α − 1.

Holt’s method

• Forecasts equivalent to ARIMA(0,2,2).
• Parameters: θ1 = α + β − 2 and θ2 = 1−α.

Damped Holt’s method

• Forecasts equivalent to ARIMA(1,1,2).
• Parameters: φ1 = φ, θ1 = α +φβ − 2, θ2 = (1−α)φ.

Holt-Winters’ additive method

• Forecasts equivalent to ARIMA(0,1,m+1)(0,1,0)m.
• Parameter restrictions because ARIMA has m+ 1 parameters whereas

HW uses only three parameters.

Holt-Winters’ multiplicative method

• No ARIMA equivalence
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8.6 Lab Session 8

Before doing any exercises in R, load the fpp package using
library(fpp).

1. Choose one of the following seasonal time series: condmilk, hsales,
uselec

(a) Do the data need transforming? If so, find a suitable transforma-
tion.

(b) Are the data stationary? If not, find an appropriate differencing
which yields stationary data.

(c) Identify a couple of ARIMA models that might be useful in de-
scribing the time series. Which of your models is the best ac-
cording to their AIC values?

(d) Estimate the parameters of your best model and do diagnostic
testing on the residuals. Do the residuals resemble white noise?
If not, try to find another ARIMA model which fits better.

(e) Forecast the next 24 months of data using your preferred model.
(f) Compare the forecasts obtained using ets().

2. For the time series you selected from the retail data set in Lab Ses-
sion 6, develop an appropriate seasonal ARIMA model, and com-
pare the forecasts with those you obtained earlier.

Obtain up-to-date data from January 2008 onwards from the ABS
website (www.abs.gov.au) (Cat. 8501.0, Table 11), and compare
your forecasts with the actual numbers. How good were the fore-
casts from the various models?

www.abs.gov.au


9
State space models

9.1 Simple structural models

Analogous to additive ETS models except:

• yt depends on xt.

• A different error process affects xt |xt−1 and yt |xt.

Local level model

yt = `t + εt
`t = `t−1 + ξt

• εt and ξt are independent Gaussian white noise processes.
• Compare ETS(A,N,N) where ξt = αεt−1.
• Parameters to estimate: σ2

ε and σ2
ξ .

• If σ2
ξ = 0, yt ∼NID(`0,σ

2
ε ).

Local linear trend model

yt = `t + εt
`t = `t−1 + bt−1 + ξt
bt = bt−1 + ζt

• εt, ξt and ζt are independent Gaussian white noise processes.
• Compare ETS(A,A,N) where ξt = (α + β)εt−1 and ζt = βεt−1
• Parameters to estimate: σ2

ε , σ2
ξ , and σ2

ζ .
• If σ2

ζ = σ2
ξ = 0, yt = `0 + tb0 + εt.

• Model is a time-varying linear regression.

Basic structural model

yt = `t + s1,t + εt
`t = `t−1 + bt−1 + ξt
bt = bt−1 + ζt

s1,t = −
m−1∑
j=1

sj,t−1 + ηt sj,t = sj−1,t−1, j = 2, . . . ,m− 1

94
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• εt, ξt, ζt and ηt are independent Gaussian white noise processes.
• Compare ETS(A,A,A).
• Parameters to estimate: σ2

ε , σ2
ξ , σ2

ζ and σ2
η

• Deterministic seasonality if σ2
η = 0.

Trigonometric models

yt = `t +
J∑
j=1

sj,t + εt

`t = `t−1 + bt−1 + ξt
bt = bt−1 + ζt
sj,t = cosλjsj,t−1 + sinλjs

∗
j,t−1 +ωj,t

s∗j,t = −sinλjsj,t−1 + cosλjs
∗
j,t−1 +ω∗j,t

• λj = 2πj/m
• εt, ξt, ζt, ωj,t, ω∗j,t are independent Gaussian white noise processes

• ωj,t and ω∗j,t have same variance σ2
ω,j

• Equivalent to BSM when σ2
ω,j = σ2

ω and J =m/2
• Choose J < m/2 for fewer degrees of freedom

ETS vs Structural models

• ETS models are much more general as they allow non-linear (multi-
plicative components).

• ETS allows automatic forecasting due to its larger model space.
• Additive ETS models are almost equivalent to the corresponding

structural models.
• ETS models have a larger parameter space. Structural models pa-

rameters are always non-negative (variances).
• Structural models are much easier to generalize (e.g., add covari-

ates).
• It is easier to handle missing values with structural models.

Structural models in R

StructTS(oil, type="level")
StructTS(ausair, type="trend")
StructTS(austourists, type="BSM")

fit <- StructTS(austourists, type = "BSM")
decomp <- cbind(austourists, fitted(fit))
colnames(decomp) <- c("data","level","slope", "seasonal")
plot(decomp, main="Decomposition of International visitor nights")



Forecasting: principles and practice 96

20
40

60

da
ta

25
35

45

le
ve

l

−
2.

0
−

0.
5

sl
op

e

−
10

0
10

2000 2002 2004 2006 2008 2010

se
as

on
al

Time

Decomposition of International visitor nights

9.2 Linear Gaussian state space models

Observation equation yt = f ′xt + εt
State equation xt =Gxt−1 +wt

• State vector xt of length p
• G a p × p matrix, f a vector of length p
• εt ∼NID(0,σ2), wt ∼NID(0,W ).

Local level model:
f =G = 1, xt = `t.

Local linear trend model:
f ′ = [1 0],

xt =
[
`t
bt

]
G =

[
1 1
0 1

]
W =

[
σ2
ξ 0

0 σ2
ζ

]

Basic structural model

f ′ = [1 0 1 0 · · · 0], W = diagonal(σ2
ξ ,σ

2
ζ ,σ

2
η ,0, . . . ,0)

xt =



`t
bt
s1,t
s2,t
s3,t
...

sm−1,t


G =



1 1 0 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 −1 −1 . . . −1 −1
0 0 1 0 . . . 0 0

0 0 0 1
. . .

...
...

...
...

...
. . .

. . . 0 0
0 0 0 . . . 0 1 0
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9.3 Kalman filter

Notation:

x̂t|t = E[xt |y1, . . . , yt] P̂t|t = Var[xt |y1, . . . , yt]

x̂t|t−1 = E[xt |y1, . . . , yt−1] P̂t|t−1 = Var[xt |y1, . . . , yt−1]

ŷt|t−1 = E[yt |y1, . . . , yt−1] v̂t|t−1 = Var[yt |y1, . . . , yt−1]

Forecasting: ŷt|t−1 = f ′x̂t|t−1

v̂t|t−1 = f ′ P̂t|t−1f + σ2

Updating or State Filtering: x̂t|t = x̂t|t−1 + P̂t|t−1f v̂
−1
t|t−1(yt − ŷt|t−1)

P̂t|t = P̂t|t−1 − P̂t|t−1f v̂
−1
t|t−1f

′ P̂t|t−1

State Prediction x̂t+1|t =Gx̂t|t
P̂t+1|t =GP̂t|tG′ +W

Iterate for t = 1, . . . ,T
Assume we know x1|0 and P1|0.
Just conditional expectations. So this gives minimum MSE estimates.

KALMAN
RECURSIONS

2. Forecasting

1. State Prediction 3. State Filtering

Forecast Observation

  observation at time t

Filtered State Predicted State Filtered State

Time t-1   Time t Time t
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Initializing Kalman filter

• Need x1|0 and P1|0 to get started.
• Common approach for structural models:

set x1|0 = 0 and P1|0 = kI for a very large k.
• Lots of research papers on optimal initialization choices for Kalman

recursions.
• ETS approach was to estimate x1|0 and avoid P1|0 by assuming error

processes identical.
• A random x1|0 could be used with ETS models, and then a form of

Kalman filter would be required for estimation and forecasting.
• This gives more realistic Forecast intervals.

Local level model

yt = `t + εt εt ∼NID(0,σ2)

`t = `t−1 +ut ut ∼NID(0,q2)

ŷt|t−1 = ˆ̀
t−1|t−1

v̂t|t−1 = p̂t|t−1 + σ2

ˆ̀
t|t = ˆ̀

t−1|t−1 + p̂t|t−1v̂
−1
t|t−1(yt − ŷt|t−1)

p̂t+1|t = p̂t|t−1(1− v̂−1
t|t−1p̂t|t−1) + q2

Handling missing values

Forecasting: ŷt|t−1 = f ′x̂t|t−1

v̂t|t−1 = f ′ P̂t|t−1f + σ2

Updating or State Filtering: x̂t|t = x̂t|t−1 + P̂t|t−1f v̂
−1
t|t−1(yt − ŷt|t−1)

P̂t|t = P̂t|t−1 − P̂t|t−1f v̂
−1
t|t−1f

′ P̂t|t−1

State Prediction x̂t+1|t =Gx̂t|t
P̂t+1|t =GP̂t|tG′ +W

Multi-step forecasting

Iterate for t = T + 1, . . . ,T + h starting with xT |T and PT |T .

Treat future values as missing.

What’s so special about the Kalman filter

• Very general equations for any model in state space format.
• Any model in state space format can easily be generalized.
• Optimal MSE forecasts
• Easy to handle missing values.
• Easy to compute likelihood.
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Likelihood calculation

θ = all unknown parameters
fθ(yt |y1, y2, . . . , yt−1) = one-step forecast density.

L(y1, . . . , yT ;θ) =
T∏
t=1

fθ(yt |y1, . . . , yt−1)

logL = −T
2

log(2π)− 1
2

T∑
t=1

log v̂t|t−1 − 1
2

T∑
t=1

e2
t /v̂t|t−1

where et = yt − ŷt|t−1.

All terms obtained from Kalman filter equations.

9.4 ARIMA models in state space form

AR(2) model

yt = φ1yt−1 +φ2yt−2 + et, et ∼NID(0,σ2)

Let xt =
[
yt
yt−1

]
and wt =

[
et
0

]
.

Then yt = [1 0]xt

xt =
[
φ1 φ2
1 0

]
xt−1 +wt

• Now in state space form
• We can use Kalman filter to compute likelihood and forecasts.

Alternative formulation

Let xt =
[

yt
φ2yt−1

]
and wt =

[
et
0

]
.

yt =
[
1 0

]
xt

xt =
[
φ1 1
φ2 0

]
xt−1 +wt

• Alternative state space form
• We can use Kalman filter to compute likelihood and forecasts.

AR(p) model

yt = φ1yt−1 + · · ·+φpyt−p + et , et ∼NID(0,σ2)

Let xt =


yt
yt−1
...

yt−p+1

 and wt =


et
0
...
0

.
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yt =
[
1 0 0 . . . 0

]
xt

xt =


φ1 φ2 . . . φp−1 φp
1 0 . . . 0 0
...

. . .
...

...
0 . . . 0 1 0

xt−1 +wt

ARMA(1,1) model

yt = φyt−1 +θet−1 + et , et ∼NID(0,σ2)

Let xt =
[
yt
θet

]
and wt =

[
et
θet

]
.

yt =
[
1 0

]
xt

xt =
[
φ 1
0 0

]
xt−1 +wt

ARMA(p,q) model

yt = φ1yt−1 + · · ·+φpyt−p +θ1et−1 + · · ·+θqet−q + et

Let r = max(p,q+ 1), θi = 0, q < i ≤ r, φj = 0, p < j ≤ r.

yt =
[
1 0 . . . 0

]
xt

xt =



φ1 1 0 . . . 0

φ2 0 1
. . .

...
...

...
. . .

. . . 0
φr−1 0 . . . 0 1
φr 0 0 . . . 0


xt−1 +


1
θ1
...

θr−1

et

The arima function in R is implemented using this formulation.

9.5 Kalman smoothing

Want estimate of xt |y1, . . . , yT where t < T . That is, x̂t|T .

x̂t|T = x̂t|t +At
(
x̂t+1|T − x̂t+1|t

)
P̂t|T = P̂t|t +At

(
P̂t+1|T − P̂t+1|t

)
A′t

where At = P̂t|tG′
(
P̂t+1|t

)−1
.

• Uses all data, not just previous data.
• Useful for estimating missing values: ŷt|T = f ′x̂t|T .
• Useful for seasonal adjustment when one of the states is a seasonal

component.
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fit <- StructTS(austourists, type = "BSM")
sm <- tsSmooth(fit)

plot(austourists)
lines(sm[,1],col=’blue’)
lines(fitted(fit)[,1],col=’red’)
legend("topleft",col=c(’blue’,’red’),lty=1,
legend=c("Filtered level","Smoothed level"))

fit <- StructTS(austourists, type = "BSM")
sm <- tsSmooth(fit)

plot(austourists)
lines(sm[,1],col=’blue’)
lines(fitted(fit)[,1],col=’red’)
legend("topleft",col=c(’blue’,’red’),lty=1,
legend=c("Filtered level","Smoothed level"))

plot(austourists)
# Seasonally adjusted data
aus.sa <- austourists - sm[,3]
lines(aus.sa, col=’blue’)

Time
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30

40
50

60 Filtered level
Smoothed level

fit <- StructTS(austourists, type = "BSM")
sm <- tsSmooth(fit)

plot(austourists)

# Seasonally adjusted data
aus.sa <- austourists - sm[,3]
lines(aus.sa,col=’blue’)
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x <- austourists
miss <- sample(1:length(x), 5)
x[miss] <- NA
fit <- StructTS(x, type = "BSM")
sm <- tsSmooth(fit)
estim <- sm[,1]+sm[,3]

plot(x, ylim=range(austourists))
points(time(x)[miss], estim[miss], col=’red’, pch=1)
points(time(x)[miss], austourists[miss], col=’black’, pch=1)
legend("topleft", pch=1, col=c(2,1), legend=c("Estimate","Actual"))
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9.6 Time varying parameter models

Linear Gaussian state space model

yt = f ′t xt + εt , εt ∼N(0,σ2
t )

xt =Gtxt−1 +wt wt ∼N(0,Wt)

Kalman recursions:

ŷt|t−1 = f ′t x̂t|t−1

v̂t|t−1 = f ′t P̂t|t−1ft + σ2
t

x̂t|t = x̂t|t−1 + P̂t|t−1ft v̂
−1
t|t−1(yt − ŷt|t−1)

P̂t|t = P̂t|t−1 − P̂t|t−1ft v̂
−1
t|t−1f

′
t P̂t|t−1

x̂t|t−1 =Gtx̂t−1|t−1

P̂t|t−1 =Gt P̂t−1|t−1G
′
t +Wt

Local level model with covariate

yt = `t + βzt + εt
`t = `t−1 + ξt

f ′t = [1 zt] xt =
[
`t
β

]
G =

[
1 0
0 1

]
Wt =

[
σ2
ξ 0

0 0

]
• Assumes zt is fixed and known (as in regression)
• Estimate of β is given by x̂T |T .
• Equivalent to simple linear regression with time varying intercept.
• Easy to extend to multiple regression with additional terms.

Simple linear regression with time varying parameters

yt = `t + βtzt + εt
`t = `t−1 + ξt
βt = βt−1 + ζt

f ′t = [1 zt] xt =
[
`t
βt

]
G =

[
1 0
0 1

]
Wt =

[
σ2
ξ 0

0 σ2
ζ

]
• Allows for a linear regression with parameters that change slowly

over time.
• Parameters follow independent random walks.
• Estimates of parameters given by x̂t|t or x̂t|T .

Simple linear regression with updating parameters

Same idea can be used to estimate a regression iteratively as new data
arrives. Just set

Wt =
[
0 0
0 0

]
• Updated parameter estimates given by x̂t|t.
• Recursive residuals given by yt − ŷt|t−1.
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9.7 Lab Session 9

Before doing any exercises in R, load the fpp package using
library(fpp).

1. Use StructTS to forecast each of the time series you used in Lab
session 4. How do your results compare to those obtained earlier in
terms of their point forecasts and prediction intervals?

Check the residuals of each fitted model to ensure they look like
white noise.

2. In this exercise, you will write your own code for updating regres-
sion coefficients using a Kalman filter. We will model quarterly
growth rates in US personal consumption expenditure (y) against
quarterly growth rates in US real personal disposable income (z). So
the model is yt = a+ bzt + εt. The corresponding state space model is

yt = at + btzt + εt
at = at−1

bt = bt−1

which can be written in matrix form as follows:

yt = f ′t xt + εt , εt ∼N(0,σ2
t )

xt =Gtxt−1 +ut wt ∼N(0,Wt)

where

f ′t = [1 zt], xt =
[
at
bt

]
, Gt =

[
1 0
0 1

]
, and Wt =

[
0 0
0 0

]
.

(a) Plot the data using
plot(usconsumption[,1],usconsumption[,2]) and fit
a linear regression model to the data using the lm function.

(b) Write some R code to implement the Kalman filter using the
above state space model. You can

(c) Estimate the parameters a and b by applying a Kalman filter
and calculating x̂T |T . You will need to write your own code to
implement the Kalman filter. [The only parameter that has not
been specified is σ2. It makes no difference what value you use
in your code. Why?]

(d) Check that your estimates are identical to the usual OLS esti-
mates obtained with the lm function?

(e) Use your code to obtain the sequence of parameter estimates
given by x̂1|1, x̂2|2, . . . , x̂T |T .

(f) Plot the parameters over time. Does it appear that a model
with time-varying parameters would be better?

(g) How would you estimate σ2 using your code?
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Dynamic regression models

10.1 Regression with ARIMA errors

yt = β0 + β1x1,t + · · ·+ βkxk,t + et ,

• yt modeled as function of k explanatory variables x1,t , . . . ,xk,t.
• Previously, we assumed that et was WN.
• Now we want to allow et to be autocorrelated.

Example: ARIMA(1,1,1) errors

yt = β0 + β1x1,t + · · ·+ βkxk,t +nt ,

(1−φ1B)(1−B)nt = (1 +θ1B)et ,

where et is white noise .

• Be careful in distinguishing nt from et.
• Only the errors nt are assumed to be white noise.
• In ordinary regression, nt is assumed to be white noise and so nt = et.

Estimation

If we minimize
∑
n2
t (by using ordinary regression):

• Estimated coefficients β̂0, . . . , β̂k are no longer optimal as some infor-
mation ignored.

• Statistical tests associated with the model (e.g., t-tests on the coeffi-
cients) are incorrect.

• p-values for coefficients usually too small (“spurious regression”).
• AIC of fitted models misleading.

Minimizing
∑
e2
t avoids these problems:

• Maximizing likelihood is similar to minimizing
∑
e2
t .

• All variables in the model must be stationary.
• If we estimate the model while any of these are non-stationary, the

estimated coefficients can be incorrect.
• Difference variables until all stationary.
• If necessary, apply same differencing to all variables.

105
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Model with ARIMA(1,1,1) errors

yt = β0 + β1x1,t + · · ·+ βkxk,t +nt ,

(1−φ1B)(1−B)nt = (1 +θ1B)et ,

y′t = β1x
′
1,t + · · ·+ βkx′k,t +n′t ,

(1−φ1B)n′t = (1 +θ1B)et ,

where y′t = yt − yt−1, x′t,i = xt,i − xt−1,i and n′t = nt −nt−1.

Any regression with an ARIMA error can be rewritten as a regression with
an ARMA error by differencing all variables with the same differencing
operator as in the ARIMA model.

yt = β0 + β1x1,t + · · ·+ βkxk,t +nt

where φ(B)(1−B)dNt = θ(B)et

Af terdif f erencing : y′t = β1x
′
1,t + · · ·+ βkx′k,t +n′t .

where φ(B)Nt = θ(B)et

and y′t = (1−B)dyt

Model selection

• To determine ARIMA error structure, first need to calculate nt.
• We can’t get nt without knowing β0, . . . ,βk .
• To estimate these, we need to specify ARIMA error structure.

Solution: Begin with a proxy model for the ARIMA errors.

• Assume AR(2) model for for non-seasonal data;
• Assume ARIMA(2,0,0)(1,0,0)m model for seasonal data.

Estimate model, determine better error structure, and re-estimate.

1. Check that all variables are stationary. If not, apply differencing.
Where appropriate, use the same differencing for all variables to
preserve interpretability.

2. Fit regression model with AR(2) errors for non-seasonal data or
ARIMA(2,0,0)(1,0,0)m errors for seasonal data.

3. Calculate errors (nt) from fitted regression model and identify
ARMA model for them.

4. Re-fit entire model using new ARMA model for errors.
5. Check that et series looks like white noise.

Selecting predictors

• AIC can be calculated for final model.
• Repeat procedure for all subsets of predictors to be considered, and

select model with lowest AIC value.
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10.2 Example: US personal consumption & income
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• No need for transformations or further differencing.
• Increase in income does not necessarily translate into instant in-

crease in consumption (e.g., after the loss of a job, it may take a few
months for expenses to be reduced to allow for the new circum-
stances). We will ignore this for now.

• Try a simple regression with AR(2) proxy model for errors.

fit <- Arima(usconsumption[,1], xreg=usconsumption[,2], order=c(2,0,0))
tsdisplay(arima.errors(fit), main="ARIMA errors")
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arima.errors(fit)
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• Candidate ARIMA models include MA(3) and AR(2).
• ARIMA(1,0,2) has lowest AICc value.
• Refit model with ARIMA(1,0,2) errors.

> (fit2 <- Arima(usconsumption[,1], xreg=usconsumption[,2], order=c(1,0,2)))

Coefficients:
ar1 ma1 ma2 intercept usconsumption[,2]

0.6516 -0.5440 0.2187 0.5750 0.2420
s.e. 0.1468 0.1576 0.0790 0.0951 0.0513

sigma^2 estimated as 0.3396: log likelihood=-144.27
AIC=300.54 AICc=301.08 BIC=319.14
The whole process can be automated:

> auto.arima(usconsumption[,1], xreg=usconsumption[,2])
Series: usconsumption[, 1]
ARIMA(1,0,2) with non-zero mean

ar1 ma1 ma2 intercept usconsumption[,2]
0.6516 -0.5440 0.2187 0.5750 0.2420

s.e. 0.1468 0.1576 0.0790 0.0951 0.0513

sigma^2 estimated as 0.3396: log likelihood=-144.27
AIC=300.54 AICc=301.08 BIC=319.14

> Box.test(residuals(fit2), fitdf=5, lag=10, type="Ljung")
Box-Ljung test

data: residuals(fit2)
X-squared = 4.5948, df = 5, p-value = 0.4673
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fcast <- forecast(fit2, xreg=rep(mean(usconsumption[,2]),8), h=8)
plot(fcast, main="Forecasts from regression with ARIMA(1,0,2) errors")

Forecasts from regression with ARIMA(1,0,2) errors

1970 1980 1990 2000 2010
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2

−
1

0
1
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10.3 Forecasting

• To forecast a regression model with ARIMA errors, we need to fore-
cast the regression part of the model and the ARIMA part of the
model and combine the results.

• Forecasts of macroeconomic variables may be obtained from the
ABS, for example.

• Separate forecasting models may be needed for other explanatory
variables.

• Some explanatory variable are known into the future (e.g., time,
dummies).
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10.4 Stochastic and deterministic trends

Deterministic trend
yt = β0 + β1t +nt

where nt is ARMA process.

Stochastic trend
yt = β0 + β1t +nt

where nt is ARIMA process with d ≥ 1.

Difference both sides until nt is stationary:

y′t = β1 +n′t

where n′t is ARMA process.

International visitors

Total annual international visitors to Australia

Year
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Deterministic trend
> auto.arima(austa,d=0,xreg=1:length(austa))
ARIMA(2,0,0) with non-zero mean

Coefficients:
ar1 ar2 intercept 1:length(austa)

1.0371 -0.3379 0.4173 0.1715
s.e. 0.1675 0.1797 0.1866 0.0102

sigma^2 estimated as 0.02486: log likelihood=12.7
AIC=-15.4 AICc=-13 BIC=-8.23

yt = 0.4173 + 0.1715t +nt
nt = 1.0371nt−1 − 0.3379nt−2 + et
et ∼NID(0,0.02486).
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Stochastic trend
> auto.arima(austa,d=1)
ARIMA(0,1,0) with drift

Coefficients:
drift

0.1538
s.e. 0.0323

sigma^2 estimated as 0.03132: log likelihood=9.38
AIC=-14.76 AICc=-14.32 BIC=-11.96

yt − yt−1 = 0.1538 + et
yt = y0 + 0.1538t +nt
nt = nt−1 + et
et ∼NID(0,0.03132).

Forecasts from linear trend + AR(2) error
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Forecasts from ARIMA(0,1,0) with drift        
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3

5
7

Forecasting with trend

• Point forecasts are almost identical, but forecast intervals differ.
• Stochastic trends have much wider forecast intervals because the

errors are non-stationary.
• Be careful of forecasting with deterministic trends too far ahead.
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10.5 Periodic seasonality

Fourier terms for seasonality

Periodic seasonality can be handled using pairs of Fourier terms:

sk(t) = sin
(

2πkt
m

)
ck(t) = cos

(
2πkt
m

)

yt =
K∑
k=1

[αksk(t) + βkck(t)] +nt

• nt is non-seasonal ARIMA process.
• Every periodic function can be approximated by sums of sin and cos

terms for large enough K .
• Choose K by minimizing AICc.

US Accidental Deaths

fit <- auto.arima(USAccDeaths, xreg=fourier(USAccDeaths, 5),
seasonal=FALSE)

fc <- forecast(fit, xreg=fourierf(USAccDeaths, 5, 24))

plot(fc)

Forecasts from ARIMA(0,1,1)                   
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10.6 Dynamic regression models

Sometimes a change in xt does not affect yt instantaneously

1. yt = sales, xt = advertising.
2. yt = stream flow, xt = rainfall.
3. yt = size of herd, xt = breeding stock.

• These are dynamic systems with input (xt) and output (yt).
• xt is often a leading indicator.
• There can be multiple predictors.

Lagged explanatory variables

The model include present and past values of predictor: xt ,xt−1,xt−2, . . . .
yt = a+ ν0xt + ν1xt−1 + · · ·+ νkxt−k +nt

where nt is an ARIMA process.

Rewrite model as

yt = a+ (ν0 + ν1B+ ν2B
2 + · · ·+ νkBk)xt +nt

= a+ ν(B)xt +nt .

• ν(B) is called a transfer function since it describes how change in xt is
transferred to yt.

• x can influence y, but y is not allowed to influence x.

Example: Insurance quotes and TV adverts
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Insurance advertising and quotations
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> Advert <- cbind(tv[,2], c(NA,tv[1:39,2]))
> colnames(Advert) <- c("AdLag0","AdLag1")
> fit <- auto.arima(tv[,1], xreg=Advert, d=0)
ARIMA(3,0,0) with non-zero mean

Coefficients:
ar1 ar2 ar3 intercept AdLag0 AdLag1

1.4117 -0.9317 0.3591 2.0393 1.2564 0.1625
s.e. 0.1698 0.2545 0.1592 0.9931 0.0667 0.0591

sigma^2 estimated as 0.1887: log likelihood=-23.89
AIC=61.78 AICc=65.28 BIC=73.6

yt = 2.04 + 1.26xt + 0.16xt−1 +nt
nt = 1.41nt−1 − 0.93nt−2 + 0.36nt−3

Forecast quotes with advertising set to 6
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fc <- forecast(fit, h=20,
xreg=cbind(c(Advert[40,1],rep(6,19)), rep(6,20)))

plot(fc)

10.7 Rational transfer function models

yt = a+ ν(B)xt +nt

where nt is an ARMA process. So

φ(B)nt = θ(B)et or nt =
θ(B)
φ(B)

et = ψ(B)et .

yt = a+ ν(B)xt +ψ(B)et

• ARMA models are rational approximations to general transfer func-
tions of et.

• We can also replace ν(B) by a rational approximation.
• There is no R package for forecasting using a general transfer func-

tion approach.
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10.8 Lab Session 10

Before doing any exercises in R, load the fpp package using
library(fpp).

1. For the time series you selected from the retail data set in previous
lab sessions:

(a) Develop an appropriate dynamic regression model with Fourier
terms for the seasonality. Use the AIC to select the number of
Fourier terms to include in the model. (You may need to use the
same Box-Cox transformation you identified previously.)

(b) Check the residuals of the fitted model. Does the residual series
look like white noise?

(c) Compare the forecasts with those you obtained earlier using
alternative models.

2. This exercise concerns the total monthly takings from accommo-
dation and the total room nights occupied at hotels, motels, and
guest houses in Victoria, Australia, between January 1980 and June
1995 (Data set motel). Total monthly takings are in thousands of
Australian dollars; total room nights occupied are in thousands.

(a) Use the data to calculate the average cost of a night’s accommo-
dation in Victoria each month.

(b) Plot this cost time series against CPI.

(c) Produce time series plots of both variables and explain why
logarithms of both variables need to be taken before fitting any
models.

(d) Fit an appropriate regression model with ARIMA errors.

(e) Forecast the average price per room for the next twelve months
using your fitted model. (Hint: You will need to produce fore-
casts of the CPI figures first.)
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Hierarchical forecasting

11.1 Hierarchical and grouped time series

Total

A

AA AB AC

B

BA BB BC

C

CA CB CC

Examples

• Manufacturing product hierarchies
• Net labour turnover
• Pharmaceutical sales
• Tourism demand by region and purpose

A hierarchical time series is a collection of several time series that are
linked together in a hierarchical structure.

Example: Pharmaceutical products are organized in a hierarchy under the
Anatomical Therapeutic Chemical (ATC) Classification System.

A grouped time series is a collection of time series that are aggregated in
a number of non-hierarchical ways.

Example: Australian tourism demand is grouped by region and purpose of
travel.

Hierarchical data

Total

A B C

Yt : observed aggregate of all series at time t.
YX,t : observation on series X at time t.
Bt : vector of all series at bottom level in time t.

116
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Yt = [Yt ,YA,t ,YB,t ,YC,t]′ =


1 1 1
1 0 0
0 1 0
0 0 1

︸      ︷︷      ︸
S


YA,t
YB,t
YC,t

︸︷︷︸
Bt

= SBt

Total

A

AX AY AZ

B

BX BY BZ

C

CX CY CZ

Yt =



Yt
YA,t
YB,t
YC,t
YAX,t
YAY ,t
YAZ,t
YBX,t
YBY ,t
YBZ,t
YCX,t
YCY ,t
YCZ,t



=



1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

︸                                  ︷︷                                  ︸
S



YAX,t
YAY ,t
YAZ,t
YBX,t
YBY ,t
YBZ,t
YCX,t
YCY ,t
YCZ,t

︸  ︷︷  ︸
Bt

= SBt

Grouped data

AX AY A

BX BY B

X Y Total

Yt =



Yt
YA,t
YB,t
YX,t
YY ,t
YAX,t
YAY ,t
YBX,t
YBY ,t


=



1 1 1 1
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

︸          ︷︷          ︸
S


YAX,t
YAY ,t
YBX,t
YBY ,t

︸  ︷︷  ︸
Bt

= SBt

11.2 Forecasting framework

Forecasting notation

Let Ŷn(h) be vector of initial h-step forecasts, made at time n, stacked in
same order as Yt. (They may not add up.)
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Hierarchical forecasting methods are of the form:

Ỹn(h) = SP Ŷn(h)

for some matrix P .

• P extracts and combines base forecasts Ŷn(h) to get bottom-level
forecasts.

• S adds them up
• Revised reconciled forecasts: Ỹn(h).

Bottom-up forecasts

Ỹn(h) = SP Ŷn(h)

Bottom-up forecasts are obtained using P = [0 | I] , where 0 is null matrix
and I is identity matrix.

• P matrix extracts only bottom-level forecasts from Ŷn(h)
• S adds them up to give the bottom-up forecasts.

Top-down forecasts

Ỹn(h) = SP Ŷn(h)

Top-down forecasts are obtained using P = [p | 0], where p =
[p1,p2, . . . ,pmK

]′ is a vector of proportions that sum to one.

• P distributes forecasts of the aggregate to the lowest level series.
• Different methods of top-down forecasting lead to different propor-

tionality vectors p.

General properties: bias

Ỹn(h) = SP Ŷn(h)

Assume: base forecasts Ŷn(h) are unbiased:

E[Ŷn(h)|Y1, . . . ,Yn] = E[Yn+h|Y1, . . . ,Yn]

• Let B̂n(h) be bottom level base forecasts
with βn(h) = E[B̂n(h)|Y1, . . . ,Yn].

• Then E[Ŷn(h)] = Sβn(h).
• We want the revised forecasts to be unbiased: E[Ỹn(h)] = SP Sβn(h) =
Sβn(h).

• Result will hold provided SP S = S.
• True for bottom-up, but not for any top-down method or middle-out

method.

General properties: variance

Ỹn(h) = SP Ŷn(h)

Let variance of base forecasts Ŷn(h) be given by

Σh = Var[Ŷn(h)|Y1, . . . ,Yn]

Then the variance of the revised forecasts is given by

Var[Ỹn(h)|Y1, . . . ,Yn] = SP ΣhP
′S′ .

This is a general result for all existing methods.
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11.3 Optimal forecasts

Key idea: forecast reconciliation

• Ignore structural constraints and forecast every series of interest
independently.

• Adjust forecasts to impose constraints.

Let Ŷn(h) be vector of initial h-step forecasts, made at time n, stacked in
same order as Yt.

Yt = SBt. So Ŷn(h) = Sβn(h) + εh.

• βn(h) = E[Bn+h | Y1, . . . ,Yn].
• εh has zero mean and covariance Σh.
• Estimate βn(h) using GLS?

Ỹn(h) = Sβ̂n(h) = S(S′Σ†hS)−1S′Σ†hŶn(h)

• Σ†h is generalized inverse of Σh.
• Var[Ỹn(h)|Y1, . . . ,Yn] = S(S′Σ†hS)−1S′
• Problem: Σh hard to estimate.

11.4 OLS reconciled forecasts

• Approximate Σ†1 by cI.
• Or assume εh ≈ SεB,h where εB,h is the forecast error at bottom level.
• Then Σh ≈ SΩhS′ where Ωh = Var(εB,h).
• If Moore-Penrose generalized inverse used, then

(S′Σ†hS)−1S′Σ†h = (S′S)−1S′ .

Ỹn(h) = S(S′S)−1S′Ŷn(h)

Features

• Covariates can be included in initial forecasts.
• Adjustments can be made to initial forecasts at any level.
• Very simple and flexible method. Can work with any hierarchical or

grouped time series.
• SP S = S so reconciled forcasts are unbiased.
• Conceptually easy to implement: OLS on base forecasts.
• Weights are independent of the data and of the covariance structure

of the hierarchy.

Challenges

• Computational difficulties in big hierarchies due to size of the S
matrix and singular behavior of (S′S).

• Need to estimate covariance matrix to produce Forecast intervals.
• Ignores covariance matrix in computing point forecasts.
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11.5 WLS reconciled forecasts

• Suppose we approximate Σ1 by its diagonal.

• Let Λ =
[
diagonal

(
Σ1

)]−1
contain inverse one-step forecast vari-

ances.
Ỹn(h) = S(S′ΛS)−1S′ΛŶn(h)

• Easy to estimate, and places weight where we have best forecasts.
• Ignores covariances.
• For large numbers of time series, we need to do calculation without

explicitly forming S or (S′ΛS)−1 or S′Λ.

11.6 Application: Australian tourism

Quarterly data: 1998 – 2006.
From: National Visitor Survey, based on annual interviews of 120,000
Australians aged 15+, collected by Tourism Research Australia.
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Forecast evaluation

• Select models using all observations;
• Re-estimate models using first 12 observations and generate 1- to

8-step-ahead forecasts;
• Increase sample size one observation at a time, re-estimate models,

generate forecasts until the end of the sample;
• In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead

for forecast evaluation.

MAPE h = 1 h = 2 h = 4 h = 6 h = 8 Average
Top Level: Australia
Bottom-up 3.79 3.58 4.01 4.55 4.24 4.06
OLS 3.83 3.66 3.88 4.19 4.25 3.94
Scaling (st. dev.) 3.68 3.56 3.97 4.57 4.25 4.04
Level: States
Bottom-up 10.70 10.52 10.85 11.46 11.27 11.03
OLS 11.07 10.58 11.13 11.62 12.21 11.35
Scaling (st. dev.) 10.44 10.17 10.47 10.97 10.98 10.67
Level: Zones
Bottom-up 14.99 14.97 14.98 15.69 15.65 15.32
OLS 15.16 15.06 15.27 15.74 16.15 15.48
Scaling (st. dev.) 14.63 14.62 14.68 15.17 15.25 14.94
Bottom Level: Regions
Bottom-up 33.12 32.54 32.26 33.74 33.96 33.18
OLS 35.89 33.86 34.26 36.06 37.49 35.43
Scaling (st. dev.) 31.68 31.22 31.08 32.41 32.77 31.89

11.7 Application: Australian labour market

ANZSCO

Australia and New Zealand Standard Classification of Occupations

• 8 major groups

– 43 sub-major groups

* 97 minor groups
– 359 unit groups

* 1023 occupations

Example: statistician

2 Professionals

22 Business, Human Resource and Marketing Professionals

224 Information and Organisation Professionals
2241 Actuaries, Mathematicians and Statisticians

224113 Statistician
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Forecast evaluation (rolling origin)

RMSE h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 Average
Top level
Bottom-up 74.71 102.02 121.70 131.17 147.08 157.12 169.60 178.93 135.29
OLS 52.20 77.77 101.50 119.03 138.27 150.75 160.04 166.38 120.74
WLS 61.77 86.32 107.26 119.33 137.01 146.88 156.71 162.38 122.21
Level 1
Bottom-up 21.59 27.33 30.81 32.94 35.45 37.10 39.00 40.51 33.09
OLS 21.89 28.55 32.74 35.58 38.82 41.24 43.34 45.49 35.96
WLS 20.58 26.19 29.71 31.84 34.36 35.89 37.53 38.86 31.87
Level 2
Bottom-up 8.78 10.72 11.79 12.42 13.13 13.61 14.14 14.65 12.40
OLS 9.02 11.19 12.34 13.04 13.92 14.56 15.17 15.77 13.13
WLS 8.58 10.48 11.54 12.15 12.88 13.36 13.87 14.36 12.15
Level 3
Bottom-up 5.44 6.57 7.17 7.53 7.94 8.27 8.60 8.89 7.55
OLS 5.55 6.78 7.42 7.81 8.29 8.68 9.04 9.37 7.87
WLS 5.35 6.46 7.06 7.42 7.84 8.17 8.48 8.76 7.44
Bottom Level
Bottom-up 2.35 2.79 3.02 3.15 3.29 3.42 3.54 3.65 3.15
OLS 2.40 2.86 3.10 3.24 3.41 3.55 3.68 3.80 3.25
WLS 2.34 2.77 2.99 3.12 3.27 3.40 3.52 3.63 3.13

11.8 hts package for R

hts: Hierarchical and grouped time series

Methods for analysing and forecasting hierarchical and grouped time
series

Version: 4.3
Depends: forecast (≥ 5.0)
Imports: SparseM, parallel, utils
Published: 2014-06-10
Author: Rob J Hyndman, Earo Wang and Alan Lee
Maintainer: Rob J Hyndman <Rob.Hyndman at monash.edu>
BugReports: https://github.com/robjhyndman/hts/issues
License: GPL (≥ 2)

Example using R

library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))

# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)

https://github.com/robjhyndman/hts/issues
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Total

A

AX AY AZ

B

BX BY

forecast.gts function

Usage

forecast(object, h,
method = c("comb", "bu", "mo", "tdgsf", "tdgsa", "tdfp"),
fmethod = c("ets", "rw", "arima"),
weights = c("sd", "none", "nseries"),
positive = FALSE,
parallel = FALSE, num.cores = 2, ...)

Arguments

object Hierarchical time series object of class gts.
h Forecast horizon
method Method for distributing forecasts within the hierarchy.
fmethod Forecasting method to use
positive If TRUE, forecasts are forced to be strictly positive
weights Weights used for "optimal combination" method.

When weights = "sd", it takes account of the standard
deviation of forecasts.

parallel If TRUE, allow parallel processing
num.cores If parallel = TRUE, specify how many cores are going

to be used
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11.9 Lab Session 11

Before doing any exercises in R, load the fpp package using
library(fpp).

1. We will reconcile the forecasts for the infant deaths data. The fol-
lowing code can be used. Check that you understand what each
step is doing. You will probably need to read the help files for some
functions.
library(hts)
plot(infantgts)
smatrix(infantgts)

# Forecast 10-step-ahead and reconcile the forecasts
infantforecast <- forecast(infantgts, h=10)

# plot the forecasts including the last ten historical years
plot(infantforecast, include=10)

# Create a matrix of all aggregated time series
allts_infant <- aggts(infantgts)

# Forecast all series using ARIMA models
allf <- matrix(, nrow=10, ncol=ncol(allts_infant))
for(i in 1:ncol(allts_infant))

allf[,i] <- forecast(auto.arima(allts_infant[,i]), h=10)$mean
allf <- ts(allf, start=2004)

# combine the forecasts with the group matrix to get a gts object
y.f <- combinef(allf, groups = infantgts$groups)

# set up training and testing samples
data <- window(infantgts, start=1933, end=1993)
test <- window(infantgts, start=1994, end=2003)

# Compute forecasts on training data
forecast <- forecast(data, h=10)

# calculate ME, RMSE, MAE, MAPE, MPE and MASE
accuracy.gts(forecast, test)

2. How would you measure overall forecast accuracy across the whole
collection of time series?

3. Repeat the training/test set analysis using “bottom-up” and “top-
down”forecasting. (e.g., set method="bu" in the forecast function.)

4. Does the “optimal” reconciliation method work best here?
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Vector autoregressions

Dynamic regression assumes a unidirectional relationship: forecast vari-
able influenced by predictor variables, but not vice versa.

Vector AR allow for feedback relationships. All variables treated symmet-
rically.

i.e., all variables are now treated as “endogenous”.

• Personal consumption may be affected by disposable income, and
vice-versa.

• e.g., Govt stimulus package in Dec 2008 increased Christmas spend-
ing which increased incomes.

VAR(1) y1,t = c1 +φ11,1y1,t−1 +φ12,1y2,t−1 + e1,t

y2,t = c2 +φ21,1y1,t−1 +φ22,1y2,t−1 + e2,t

Forecasts: ŷ1,T+1|T = ĉ1 + φ̂11,1y1,T + φ̂12,1y2,T

ŷ2,T+1|T = ĉ2 + φ̂21,1y1,T + φ̂22,1y2,T .

ŷ1,T+2|T = ĉ1 + φ̂11,1ŷ1,T+1 + φ̂12,1ŷ2,T+1

ŷ2,T+2|T = ĉ2 + φ̂21,1ŷ1,T+1 + φ̂22,1ŷ2,T+1.

VARs are useful when

• forecasting a collection of related variables where no explicit inter-
pretation is required;

• testing whether one variable is useful in forecasting another (the
basis of Granger causality tests);

• impulse response analysis, where the response of one variable to a
sudden but temporary change in another variable is analysed;

• forecast error variance decomposition, where the proportion of the
forecast variance of one variable is attributed to the effect of other
variables.

128
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VAR example

> ar(usconsumption,order=3)
$ar
, , 1 consumption income
consumption 0.222 0.0424
income 0.475 -0.2390

, , 2 consumption income
consumption 0.2001 -0.0977
income 0.0288 -0.1097

, , 3 consumption income
consumption 0.235 -0.0238
income 0.406 -0.0923

$var.pred
consumption income

consumption 0.393 0.193
income 0.193 0.735

> library(vars)

> VARselect(usconsumption, lag.max=8, type="const")$selection
AIC(n) HQ(n) SC(n) FPE(n)

5 1 1 5
> var <- VAR(usconsumption, p=3, type="const")
> serial.test(var, lags.pt=10, type="PT.asymptotic")
Portmanteau Test (asymptotic)
data: Residuals of VAR object var
Chi-squared = 33.3837, df = 28, p-value = 0.2219

> summary(var)
VAR Estimation Results:
=========================
Endogenous variables: consumption, income
Deterministic variables: const
Sample size: 161

Estimation results for equation consumption:
============================================

Estimate Std. Error t value Pr(>|t|)
consumption.l1 0.22280 0.08580 2.597 0.010326 *
income.l1 0.04037 0.06230 0.648 0.518003
consumption.l2 0.20142 0.09000 2.238 0.026650 *
income.l2 -0.09830 0.06411 -1.533 0.127267
consumption.l3 0.23512 0.08824 2.665 0.008530 **
income.l3 -0.02416 0.06139 -0.394 0.694427
const 0.31972 0.09119 3.506 0.000596 ***
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Estimation results for equation income:
=======================================

Estimate Std. Error t value Pr(>|t|)
consumption.l1 0.48705 0.11637 4.186 4.77e-05 ***
income.l1 -0.24881 0.08450 -2.945 0.003736 **
consumption.l2 0.03222 0.12206 0.264 0.792135
income.l2 -0.11112 0.08695 -1.278 0.203170
consumption.l3 0.40297 0.11967 3.367 0.000959 ***
income.l3 -0.09150 0.08326 -1.099 0.273484
const 0.36280 0.12368 2.933 0.003865 **
--
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation matrix of residuals:
consumption income

consumption 1.0000 0.3639
income 0.3639 1.0000
fcst <- forecast(var)
plot(fcst, xlab="Year")
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Neural network models

Simplest version: linear regression

Input #1

Input #2

Input #3

Input #4

Output

Input
layer

Output
layer

• Coefficients attached to predictors are called “weights”.
• Forecasts are obtained by a linear combination of inputs.
• Weights selected using a “learning algorithm” that minimises a “cost

function”.

Nonlinear model with one hidden layer

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

• A multilayer feed-forward network where each layer of nodes re-
ceives inputs from the previous layers.

• Inputs to each node combined using linear combination.
• Result modified by nonlinear function before being output.

Inputs to hidden neuron j linearly combined:

zj = bj +
4∑
i=1

wi,jxi .

131



Forecasting: principles and practice 132

Modified using nonlinear function such as a sigmoid:

s(z) =
1

1 + e−z
,

This tends to reduce the effect of extreme input values, thus making the
network somewhat robust to outliers.

• Weights take random values to begin with, which are then updated
using the observed data.

• There is an element of randomness in the predictions. So the net-
work is usually trained several times using different random starting
points, and the results are averaged.

• Number of hidden layers, and the number of nodes in each hidden
layer, must be specified in advance.

NNAR models

• Lagged values of the time series can be used as inputs to a neural
network.

• NNAR(p,k): p lagged inputs and k nodes in the single hidden layer.
• NNAR(p,0) model is equivalent to an ARIMA(p,0,0) model but

without stationarity restrictions.
• Seasonal NNAR(p,P ,k): inputs (yt−1, yt−2, . . . , yt−p, yt−m, yt−2m, yt−Pm)

and k neurons in the hidden layer.
• NNAR(p,P ,0)m model is equivalent to an ARIMA(p,0,0)(P ,0,0)m

model but without stationarity restrictions.

NNAR models in R

• The nnetar() function fits an NNAR(p,P ,k)m model.
• If p and P are not specified, they are automatically selected.
• For non-seasonal time series, default p = optimal number of lags

(according to the AIC) for a linear AR(p) model.
• For seasonal time series, defaults are P = 1 and p is chosen from the

optimal linear model fitted to the seasonally adjusted data.
• Default k = (p+ P + 1)/2 (rounded to the nearest integer).

Sunspots

• Surface of the sun contains magnetic regions that appear as dark
spots.

• These affect the propagation of radio waves and so telecommunica-
tion companies like to predict sunspot activity in order to plan for
any future difficulties.

• Sunspots follow a cycle of length between 9 and 14 years.
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NNAR model for sunspots

Forecasts from NNAR(9)
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fit <- nnetar(sunspotarea)
plot(forecast(fit,h=20))

To restrict to positive values:

fit <- nnetar(sunspotarea,lambda=0)
plot(forecast(fit,h=20))
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Forecasting complex seasonality

US finished motor gasoline products
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14.1 TBATS model

Trigonometric terms for seasonality
Box-Cox transformations for heterogeneity
ARMA errors for short-term dynamics
Trend (possibly damped)
Seasonal (including multiple and non-integer periods)
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yt = observation at time t

y
(ω)
t =

(yωt − 1)/ω if ω , 0;

logyt if ω = 0.

y
(ω)
t = `t−1 +φbt−1 +

M∑
i=1

s
(i)
t−mi

+ dt

`t = `t−1 +φbt−1 +αdt
bt = (1−φ)b+φbt−1 + βdt

dt =
p∑
i=1

φidt−i +
q∑
j=1

θjεt−j + εt

s
(i)
t =

ki∑
j=1

s
(i)
j,t

s
(i)
j,t = s

(i)
j,t−1 cosλ(i)

j + s∗(i)j,t−1 sinλ(i)
j +γ (i)

1 dt

s
(i)
j,t = −s(i)j,t−1 sinλ(i)

j + s∗(i)j,t−1 cosλ(i)
j +γ (i)

2 dt

Examples

Forecasts from TBATS(0.999, {2,2}, 1, {<52.1785714285714,8>})
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fit <- tbats(gasoline)
fcast <- forecast(fit)
plot(fcast)
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Forecasts from TBATS(1, {3,1}, 0.987, {<169,5>, <845,3>})
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fit <- tbats(callcentre)
fcast <- forecast(fit)
plot(fcast)

Forecasts from TBATS(0, {5,3}, 0.997, {<7,3>, <354.37,12>, <365.25,4>})
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fit <- tbats(turk)
fcast <- forecast(fit)
plot(fcast)
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14.2 Lab Session 12

Before doing any exercises in R, load the fpp package using
library(fpp).

1. Use the tbats function to model the visitors time series.

(a) Check the residuals and produce forecasts.
(b) Does this completely automated approach work for these data?
(c) Have you saved any degrees of freedom by using Fourier terms

rather than seasonal differencing?

2. The following code will read weekly data on US finished motor
gasoline products supplied (thousands of barrels per day):
gas <- read.csv("http://robjhyndman.com/data/gasoline.csv")[,1]
gas <- ts(gas, start=1991+31/365.25, frequency = 365.25/7)

(a) Fit a tbats model to these data.
(b) Check the residuals and produce forecasts.
(c) Could you model these data using any of the other methods we

have considered in this course?

3. Experiment with using nnetar() on some of the data considered in
previous lab sessions.

4. Over this course, you have developed several models for the retail
data. The last exercise is to use cross-validation to objectively com-
pare the models you have developed. Compute cross-validated MAE
values for each of the time series models you have considered. It
will take some time to run, so perhaps leave it running overnight
and check the results the next morning.



Forecasting: principles and practice 138

Congratulations on finishing the forecasting course! I hope you have
learned things that will be useful in forecasting whatever it is you want
to forecast.

For more information about forecasting resources:

robjhyndman.com/hyndsight/forecasting/

OTexts.org/fpp

robjhyndman.com/hyndsight/forecasting/
OTexts.org/fpp
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