Working with unnamed lists

FOUNDATIONS OF FUNCTIONAL PROGRAMMING WITH PURRR

Auriel Fournier Instructor

But first, pipes

output <- function_one() %>% function_two()

Instead of needing

output1 <- function_one()</pre>

output <- function_two(output1)</pre>

Does my list have names?

Without Pipes

names(survey_data)

"LakeErieS" "LakeErieN" "LakeErieW" "LakeErieE"

With Pipes

survey_data %>% names()

"LakeErieS" "LakeErieN" "LakeErieW" "LakeErieE"

No names? Set some!

library(repurrsive) data(sw_films) str(sw_films)

List of 14

• • •

- : chr "A New Hope" \$ title
- \$ episode_id : int 4
- \$ opening_crawl: chr "It is a period of ..."
- \$ director : chr "George Lucas"

sw films <- sw films %>% set_names(map_chr(sw_films, "title"))

names(sw_films)

[1] "A New Hope"

- [5] "Return of the Jedi"
- [7] "The Force Awakens"

FOUNDATIONS OF FUNCTIONAL PROGRAMMING WITH PURRR

"Attack of the Clones" [3] "The Phantom Menace" "Revenge of the Sith" "The Empire Strikes Back"

Pipes within map()

waterfowl_data

map(waterfowl_data, ~.x %>% sum() %>% log())

\$LakeErieS [1] 0 0 10 5	
\$LakeErieN	
\$LakeErieW	
[1] 10000 0 0 1	
\$LakeErieE	

[1] 2.70805 \$LakeErieN

\$LakeErieS

[1] 6.912743

\$LakeErieW [1] 9.21044

\$LakeErieE [1] 3.218876

datacamp

Let's purr-actice!

More map()

FOUNDATIONS OF FUNCTIONAL PROGRAMMING WITH PURRR

Auriel Fournier Instructor

Simulate data

list_of_means

tacamp

[[1]]		
[1] 5		
[[2]]		
[1] 2		
[[3]]		
[1] 300		
[[4]]		
[1] 15		

list_of_df <- map(list_of_means,</pre> ~data.frame(a=rnorm(mean = .x, n = 200,sd = (5/2)))

head(list_of_df[[1]])

	а	
1	4.518015	
2	3.915059	
3	5.306956	
4	7.039757	
5	8.609741	
6	1.478696	

Run linear models

str(education_data[[1]])

List of 2					
<pre>\$ district_a:List of</pre>	2				
<pre>\$ education_level:</pre>	chr	[1:200]	"B.S."	"K-12"	• • •
\$ income :	num	[1:200]	487256	493378	• • •

```
models <- education_data %>%
    map(~ lm(income ~ education_level, data=.x)) %>%
    map(summary)
```


map_*() flavors

map(livingthings, ~.x[["species"]]) [[1]] [1] "Purple Flowers"

[[2]] [1] "Green Grass"

[[3]] [1] "Brown Dog" map_chr(livingthings, ~.x[["species"]]) [1] "Purple Flowers" "Green Grass" "Brown Dog"

map_lgl(livingthings, ~.x[["species"]]=="Purple Flowers") [1] TRUE FALSE FALSE

map_*() flavors with numbers

datacamp

<pre>map_dbl(bird_measurements, ~.x[["wing length"]])</pre>	<pre>map_dbl(bird_measure ~.x[["weigh"</pre>
sora robin	sora robin
75 12	96.4 76.5
<pre>map_int(bird_measurements, ~.x[["wing length"]])</pre>	<pre>map_int(bird_measure ~.x[["weight</pre>
sora robin	Error: Can't coerce
75 12	from a double to a i

FOUNDATIONS OF FUNCTIONAL PROGRAMMING WITH PURRR

ments, t"]])

ments, t"]])

element 1 nteger

map_df()

bird_measurements %>% map_df(~ data_frame(weight=.x[["weight"]], wing_length = .x[["wing length"]]))

#	A tibble	: 2 x 2
	weight w	ing_length
	<dbl></dbl>	<dbl></dbl>
1	96.4	75
2	76.5	12

Let's purr-actice!

map2() and pmap() FOUNDATIONS OF FUNCTIONAL PROGRAMMING WITH PURRR

Auriel Fournier Instructor

list_of_means

[[1]]		
[1] 5		
[[2]]		
[1] 2		
[[3]]		
[1] 300		
[[4]]		
[1] 15		

list_of_sd

[[1]]
[1]	0.5
[[2]]
[1]	0.01
[[3]]
[1]	20
[[4]]
[1]	1

а	b
4.986100	195.1436
5.216531	222.7807
4.249028	201.0155
5.125663	189.3022
4.430192	231.3301
5.557537	185.3563
	a 4.986100 5.216531 4.249028 5.125663 4.430192 5.557537

FOUNDATIONS OF FUNCTIONAL PROGRAMMING WITH PURRR

R datacamp

What if we didn't use purrr?

```
for(i in list_of_means){
  for(j in list_of_sd){
    for(k in list_of_samplesize){
    num <- 1
      simdata[[1]] <- rnorm(mean=i, sd=j, n = k)</pre>
    num <- num + 1
    }
  }
```


list_of_means list_of_sd list_of_samplesize

datacamp

<pre>[[1]] [1] 5 [[2]] [1] 2</pre>	
[[1]]	
[1] 0.5	
[[2]]	
[1] 0 01	
•••	

input_list <- list(</pre> means = list_of_means, sd = list_of_sd, samplesize = list_of_samplesize) str(input_list)

List of	3			
\$ means	5	:List	of	4
\$:	num	5		
\$:	num	2		
\$:	num	300		
\$:	num	15		
\$ sd		:List	of	4
\$:	num	0.5		
\$:	num	0.01		
\$:	num	20		
\$:	num	1		
\$ sampl	Lesiz	ze:List	of	4
\$:	num	200		
\$:	num	50		
•••				

pmap()

head(simdata[[1]])

	a
_	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

- 1 5.862376
- 2 5.308204
- 3 4.771946
- 4 5.173814
- 5 4.674113
- 6 4.681016

Let's purr-actice!

